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1. Bosonic commutation relations

Refresh the physics of the simple harmonic oscillator
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which can be written in “second quantized” form, by expressing & and p in terms of boson creation and
annihilation operators:
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From the canonical commutation relations between position and momentum operators, it follows immediately
(do you remember it?) that the basis commutation relations hold:

b, =1, [b,b]=0, bl0)=0

where [A, Bl = AB — BA, |0) is the vacuum, and 1 indicates the Hilbert space adjoint.

a) Show that for two non commuting bosonic operators A, and B it holds
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b) Prove, using the result of point a), the following relations valid for bosonic operators b, b
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2. Classical vibration in the diatomic linear crystal

Consider a periodic chain of atoms with alternating masses m, and M connected by springs with spring constant
K. The equilibrium position of the atoms is na with n € Z.

a) Prove that the dispersion relation of the eigenmodes reads:

K
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b) Make a sketch of the dispersion relation and discuss the dynamics of the two modes in the limiting cases
qa — 0 and 2qa — .

c¢) Show that, in the limit m = M the dispersion reduces to the one of monoatomic linear chain.



