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Chapter 1

Introduction

In this chapter, the general concepts and various aspects of nanoelectromechanical sys-
tems (NEMS) are introduced. We briefly highlight NEMS as recent emerging suitable
candidates for a host of potential applications in nanotechnology and fundamental
science. We then focus on the transport properties, hysteretic behavior, spectrum and
Franck-Condon couplings of particular kinds of NEMS. The focus and the structure
of the thesis is outlined at the end of this chapter.

1.1 NEMS

“If you have nanoelectromechanical systems [NEMS)]
with mobile parts, the Casimir force will be attractive,
and the parts will stick together,” R. Decca

On 29th December 1959, Richard P. Feynman held his famous talk at an American
Physical Society meeting at Caltech “There’s Plenty of Room at the Bottom” [1] which
later on motivated the very conceptual foundations of nanotechnology. Some of the
ideas discussed in his visionary talk clearly suggest the important role of manipulat-
ing the mechanical degree of freedom at the nanoscale. Consequently, NEMS based
systems have been of considerable interest in the area of nanotechnology. NEMS can
be realized in a variety of different flavors, e.g, with single molecule junctions [2-6],
suspended and laterally confined two dimensional electron gases [7], silicon [8], or
suspended graphene [9]. NEM devices exploit the interplay between electrical and
mechanical degrees of freedom at nanoscale. This characteristic feature makes them
interesting both from technological applications and fundamental research point of
view. These systems also exhibit pronounced quantum mechanical effects such as zero
point motion [10]. Because of their very high mechanical frequency, they can be used
in a new form of mechanical computers. From the fundamental science point of view,
they can serve as useful tools to probe directly the basic laws of quantum mechanics.
In general, nanoelectromechanical systems have very high mechanical quality factors
(Q-factor) normally in the range of 10 —10°, remarkably higher than those of electrical
resonant circuits [11]. These attributes make them prospective candidates for promis-
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ing technological applications such as ultrafast sensors, extremely sensitive mass and
position detectors, actuators, optical switches, turning mirrors, regulating electric cur-
rent devices, and signal processing components. Out of the broad range of potential
applications of nanoelectromechanical systems in various fields, we outline a few which
are more relevant to the findings of this thesis.

1.1.1 Nanoscale resonator

Nanoscale resonators are small size devices that oscillate at high frequencies with many
potential applications [12-14]. Here we present a carbon nanotube based resonator
which was experimentally demonstrated by Steele et al. [15]. The device consists of a
suspended carbon nanotube connected to two metallic leads and capacitively coupled
to a gate electrode as shown in Fig. 1.1. In operation, the nanotube is excited into
mechanical oscillation by applying an ac voltage to a nearby antenna. The resonance
frequency of the tube is tuned with a gate voltage. The electric field created by the
gate electrode pulls the nanotube toward the gate, increasing its length which produces
more tension in the tube. Consequently, the nanotube starts to oscillate, populating
the bending mode. It was observed in the experiment that the dc current through the
tube is influenced by the resonator motion. This effect is a hallmark of electron-vibron
interaction that can strongly affect the transport properties of nanoelectromechanical
systems. Another visible evidence of such an interaction is that a shift in resonance
frequency was observed in the measurement of frequency-voltage characteristics. This
shift can only occur if an extra electron tunnels to the nanotube which can be de-
tected in a quite high quality factor range, typically, when it exceeds 10°. Moreover,
mechanical damping and unusual nonlinear mechanical behavior were also observed in
the experiment which can be associated with a transfer of energy to electrons in the
tunneling event. All these effects clearly show that mechanical and electrical degrees
of freedom are strongly coupled in NEM devices.

1.1.2 NEM memory cell

The experimental realization of this device was achieved by Jang et al. [16]. The
device consists of a source, drain and a gate electrode as sketched in Fig. 1.2. From
the source electrode, a vertically aligned multiwalled carbon nanotube (MWCNT)
with a certain diameter was grown and coated with a dielectric layer of SiN, and a
metal layer of Cr to engineer a CNT-insulator-metal (CIM) capacitor. As a working
principle, the source is electrically grounded, while the drain and gate electrodes are
connected to a constant positive voltage such that the gate is at higher voltage than
the drain. When the setup is provided with a positive bias, the carbon nanotube on
the drain experiences a repulsive electrostatic force from the gate electrode since both
are at positive voltage and an attractive force from the source lead. As a result, the
nanotube bends until it makes contact with the metallic lead on the capacitor, see
Fig. 1.2(b). During the contact, a transient current flows from the nanotube at the
drain to the CIM capacitor and consequently the transferred charge can be used to
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Figure 1.1: (a) Schematic diagram of a high-Q mechanical resonator based on suspended carbon
nanotube. It can be driven into oscillation by applying a periodic radio frequency potential to a nearby
antenna. The resonator motion is detected by its influence on a dc current through the nanotube. (b)
Electron micrograph of the device where the arrow specifies the position of the nanotube. This figure
is taken from [15].
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Figure 1.2: Schematic representation of NEM memory device. (a) Scanning electron micrographs.
(b) NEM switched capacitor structure based on vertically aligned multi-wall carbon nanotubes. (c)
Current-voltage characteristics of the memory setup. This figure is taken from [16].
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store some information. In the absence of gate voltage, the electrostatic force which
is responsible for the deflection of the drain MWCNT vanishes and the nanotube
comes back to the vertical aligned configuration and thus exhibits ‘OFF’ state. In this
way, a carbon nanotube based switched capacitor structure defines excellent ‘ON’ and
‘OFF’ states. NEM devices are suitable candidates for memory applications due to
their well-defined ‘ON-OFF’ states and fast switching dynamics. The switching speed
of the device is characterized by the natural oscillating frequency of the MWCNT on
the drain electrode which is significantly high because of the large Young’s modulus
of rigidity of CNTs. A closer analysis of the [-V characteristics of this memory device
reveals that the current between source and drain increases sharply above a threshold
voltage and then becomes saturated, see Fig. 1.2(c). This very sharp sub-threshold
slope indicates that a very small difference in voltage can switch the device between
‘ON’” and ‘OFF’ states leading to low power consumption. This characteristic feature
makes NEM memory devices attractive for technological applications.

1.1.3 Quantum shuttle device

The shuttle device is a particular kind of NEMS which has an oscillating object of
nanometer size that transfers electrons one-by-one between source and drain elec-
trodes. One such device can be a single-molecule transistor as shown in Fig. 1.3 which
was experimentally produced by Park et al. [5]. The Cgp-molecule was placed between
two gold electrodes using a break junction technique. The entire setup is in turn placed
on a Si0, insulating layer on top of a doped silicon wafer functioning as a gate elec-
trode, see Fig. 1.3(a), which controls the electrostatic potential of the Cgy molecule.
The operation of the device can be based on the centre-of-mass oscillation of the Cgg
molecule within the Lennard-Jones like confinement potential that binds it to the
gold surface as depicted in Fig. 1.3(b). Such a potential can be well approximated
by a harmonic potential near the equilibrium position. Electron transport can occur
through the device if a bias voltage is applied between the source and drain contacts.
Thus an extra electron tunneling from the source to the Cgp-molecule compresses the
Cgo-surface bond due to the interaction between the Cgy ion and its image charge in-
duced on the metal surface. The Cgy-molecule comes back to equilibrium position upon
tunneling of the electron out to the drain electrode and consequently the molecule is
set into oscillation. The vibrational excitations can be readily observed in the I-V
characteristics. The mechanism involved in this process basically mimics a Franck-
Condon process that usually occurs in electron-transfer and light-absorption processes
in molecules where the vibrational excitations are induced by electron tunneling to or
off the molecule [17]. It turns out that on one hand, this scientific achievement provides
an evidence of strong coupling between the mechanical and electrical degrees of free-
dom in NEM devices. On the other hand, the existence of quantized nano-mechanical
oscillations (excitations) of the Cgy molecule against the gold surface observed in the
experiment justifies the law of quantum mechanics regarding the existence of discrete
energy levels at nanoscale.

Another experimental realization of a quantum shuttle device was achieved by Erbe et
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Figure 1.3: (a) Sketch of a single-Cgy transistor. (b) Typical presentation of the centre-of-mass
oscillation of a Cgy molecule used in the experiment by Park et al., where the molecule is considered
as a body of mass M attached to a spring with spring constant k. On the right, the confinement
potential that binds the Cgp molecule to the gold surface which can be well approximated by a
harmonic potential near the equilibrium position, and the corresponding quantized nano-mechanical
excitations with energy hf are shown. This figure is taken from [5].
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Figure 1.4: Electron micrograph and schematic circuit diagram (inset) of a nanomechanical quantum
shuttle device. The cantilever can be set into back and forth motion by applying an ac voltage to
the two driving gates G1 and G2. Electrons can be shuttled from source (S) to drain (D) through
the island on top of the cantilever if a bias voltage is applied across the leads. This figure is taken

from [18].
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al. [18]. The device consists of a quantum island on top of a cantilever between source
and drain contacts as depicted in Fig. 1.4. The island is electrically kept isolated from
the rest of the grounded cantilever which is capacitively coupled to two driving gates
G1 and Gy as shown in the inset of Fig. 1.4. The cantilever can be set into oscillations
if an ac voltage is applied to the gates and consequently the island comes alternatively
close to the source (S) and drain (D) leads and thus allows the electron transport
through the island. Upon applying a bias voltage across the leads, a current can be
driven through the device. It was detected in the experiment that resonant mechan-
ical motion can be excited if the frequency of the driving voltage coincides with the
eigenfrequency of the cantilever. In this situation, the current through the device ex-
hibits distinct features which can be observed in the I-V characteristics. These are
the main vibrational signatures reported in this experiment. Hence, this experimental
achievement also sheds light on the fact that vibrational modes significantly affect the
electronic transport due to electron-vibron interaction.

1.2 NEMS in molecular electronics

Molecular electronics deals with the study of electronic and thermal transport char-
acteristics of circuits in which single molecules or their combination are used as basic
building blocks [19]. These novel molecular building blocks in turn can, for example,
serve as switches, gates, rectifiers or memory elements for many important applica-
tions. From the fundamental science point of view, molecular electronics opens a new
area of research to study the conduction mechanisms at the smallest scale, where the
physics is entirely dominated by quantum mechanical effects. The small size features
of molecular circuits in combination with other interesting electrical, mechanical, ther-
mal, and optical properties can lead to many new physical phenomena. In addition,
molecular junctions can be used to probe fundamental aspects of electron transfer.
From a technological perspective, molecular electronics proposes to use molecules as
basic elements for a wide variety of potential applications. NEMS are emerging as
strong candidates for intriguing applications in nanotechnology and fundamental sci-
ence due to their remarkable electrical and mechanical properties. It turns out that
based on their promising features, NEMS can give rise to a new revolutionary field of
research in molecular electronics.

1.3 NEMS attributes in spintronics

Spintronics is a recent emerging field of science that exploits the spin degree of freedom
in addition to conventional electronics. An interesting aspect in spintronics would be
to engineer a memory-storage device based on spin manipulation. The investigation of
spin manipulation in quantum dots and single molecules is also at the core of experi-
mental [20,21] and theoretical [22] physics in the field of spintronics. Experimentally,
spin states of single atoms and molecules have been studied by using different tech-
niques, e.g., spin-polarized scanning-tunneling spectroscopy [23,24]. Such experimental



| 13

achievements have inspired controlled switching of the spin states of a single electron
by the application of an external voltage. This leads to single-spin memory effects.
Another possibility of single-spin manipulation may be achieved via NEMS, based on
the interplay between charge, spin, and vibron degrees of freedom. The combination
of polaron-memory mechanism and spin-dependent tunneling leading to a single-spin
memory effect was even proposed in a recent work [25]. Due to their novel properties,
NEMS are expected to serve as active candidates for spin-memory characteristics in
spintronics.

1.4 Thesis outline

This thesis is organized as follows: In the first part, we discuss the transport theory
of interacting quantum dots in the stationary limit. More precisely, in Chapter 2, we
develop a non-equilibrium transport theory for a generic quantum dot weakly coupled
to metallic leads using a density matrix approach. We derive a Generalized Master
Equation (GME) that describes the dynamics of the quantum dot system. We analyze
in detail the rate equations, populations of the many-body states, and current that
govern the dynamical properties of the system. Chapter 3 is dedicated to the transport
properties of a generalized Anderson-Holstein model system, where a single molecular
level is coupled to many vibrational modes. We investigate gate asymmetry and nega-
tive differential conductance (NDC) features. We also derive the conditions to explain
the NDCs effects.

In the second part (Chapter 4) of this thesis, we investigate the transport character-
istics in a polaron model system in the nonstationay limit where memory effects can
be observed. Particularly, bistability of the many-body states, quantum switching and
hysteretic behavior of the system are explored. A time-dependent master equation is
solved and the necessary conditions based on time scales are discussed. The DC-case
is presented as a special case of the time-dependent master equation where the effect
of asymmetric voltage drop across the leads will be examined.

In the third part, the band structure, vibrational modes, spectrum and Franck-Condon
couplings of single wall carbon nanotubes (SWCNTS) are discussed. This part is orga-
nized such that in Chapter 5, the electronic band structure of armchair metallic single
wall carbon nanotubes is introduced. The wave function of electrons and Hamiltonian
of the noninteracting armchair SWCNTs at low energy is presented. The different pos-
sible vibron modes are also discussed. A low-energy theory of interacting suspended
SWCNTs quantum dots in the weak tunnel coupling regime is developed in Chapter 6.
In particular, we investigate the dependence of the spectrum and Franck-Condon fac-
tors on the geometry of the junction in the presence of several vibronic modes. We also
analyze the selection rules for the excitations of different plasmon-vibron modes via
electronic tunneling processes. Diagonalization of the system Hamiltonian and the re-
sulting Franck-Condon couplings will be presented. Finally, the conclusions are drawn
in Chapter 7.






Part I
Transport theory of interacting
quantum dots






Chapter 2

Vibration-mediated transport
theory of quantum dots

Quantum transport through nanoscale devices has gained a considerable interest in the
recent years. On one hand, interesting features in the current voltage characteristics
like Coulomb blockade, spin blockade, Kondo effect, negative differential conductance
or Franck-Condon effects associated with different kinds of excitations that can be of
electronic or vibrational nature have been studied extensively by different experimen-
tal and theoretical approaches. On the other hand, bistability, quantum switching and
memory effects are investigated in nanojunctions. The study of transport properties
provides not only the transport mechanism but also the detail of the spectrum of
eigenstates of the system. Several experimental approaches are used to probe the elec-
tronic structure and transport properties of molecules and quantum dots, e.g., scanning
tunneling microscopy [26,27], electromigration technique [28,29], mechanically control-
lable break junctions technique [30-32]. Similar to the wide variety of such experimen-
tal techniques, many theoretical approaches for the study of transport properties in
quantum dot systems are used in the scientific community. One promising numerical
approach to study the electronic structure and quantum transport in nanostructures is
the ab initio density functional theory (DFT) method combined with nonequilibrium
Green’s function techniques [19,33-36]. This technique provides valuable information
about the electronic structure, vibrational frequencies, atomization energies, ioniza-
tion energies, electric and magnetic properties, molecule and lead-molecule interface
structure, etc. In particular, it is appropriate to study quantum transport when the
central system is strongly coupled to the lead contacts. Another theoretical approach
commonly employed to the description of tunneling through the molecules and quan-
tum dots is based on the Generalized Master Equation (GME) for the reduced density
operator of the dot. This technique works very well when the quantum dot is weakly
coupled to the electrodes via tunnel barriers. In this approach, the time evolution of
the many-body states of the dot is taken into account, while the effects of the leads are
integrated out by taking a trace over the lead degrees of freedom. This approach is ap-
propriate to treat exactly the strong interactions on the quantum dot. This technique
is the focus of this work which will be explained in more detail. In the following we
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Figure 2.1: Schematic diagram of a quantum dot setup. Source and drain contacts are weakly coupled
to the dot via tunnel junctions, the latter being coupled to a vibrational mode. The electrostatic
potential of the dot is modulated by a capacitively coupled gate electrode.

introduce the essential dynamical factors that play a significant role in the quantum
transport mechanism.

2.1 Quantum dots

In this chapter, we introduce the concept of quantum dots and analyze briefly the
transport theory of these devices. A quantum dot is a small electronic island where
the electron dynamics is confined in all three spatial directions leading to significant
quantum mechanical quantization effects. Interestingly, in this size regime, the system
dimension is comparable or even smaller than the phase coherence length of the intrin-
sic charge carriers [37-39]. Due to the ultra-small length scales, the Coulomb interac-
tion between the electrons gets importance and can give rise to many intricate effects
in the transport characteristics of a quantum dot system [40-42]. Moreover, quan-
tum dots are extremely sensitive to the influence of vibrational modes. They couple to
vibrational degrees of freedom and show several striking effects as observed in many ex-
periments [43-45]. Quantum dots are characterized by a discrete vibrational spectrum,
exhibiting pronounced signatures in the current-voltage characteristics of nanojunc-
tions [46]. Different kinds of quantum dot setups have been realized in many ways, for
instance, semiconductor dots manufactured by submicron fabrication techniques, car-
bon nanotubes, nanoparticles, metal particles or even small organic molecules. Upon
coupling a quantum dot to electrodes via tunnel barriers, a current can be driven
through the device if a finite voltage is applied across the source and drain contacts.
Quantum dot setups provide potential opportunities to explore the internal electronic
structure of complex systems. It is important because the electronic transport char-
acteristics strongly depend on the energy spectrum as well as on the structure of the
dot eigenstates. In this chapter, we present a short review of the electronic structure
and transport properties of a generic interacting quantum dot system coupled to vi-
brational mode. To proceed further, in the following we discuss the general aspects of
nanoelectromechanical quantum dot systems.
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2.2 Electron-vibron interaction effects

The electronic transport is strongly influenced by vibrational modes in nanoelec-
tromechenical systems due to the coupling between mechanical and electrical degrees
of freedom [47-49]. A detailed analysis of quantum transport theory reveals that one
can identify different regimes for electron-vibron interaction where various vibrational
signatures are expected to be observed. More detail can be found in [19,50] and refer-
ences therein. Based on the relative coupling between electronic and vibronic degrees
of freedom, the transport phenomena can be classified into one of the three distinct
regimes: (a) weak coupling, (b) intermediate coupling, and (c) strong coupling.

In the weak electron-vibron coupling regime, a small inelastic current is induced by
the vibrational modes that basically constitutes corrections to the elastic current. In
particular, this inelastic current shows well-defined signatures at energies of the vibra-
tional modes associated with neutral molecules inside the nanojunctions. In this limit,
the tunneling time is much smaller than the time that an electron requires to interact
with a vibrational mode. In this situation, the electron-electron Coulomb interaction is
usually treated within the framework of a mean field level approach and a perturbative
expansion is made in the electron-vibron interaction.

In the intermediate electron-vibron coupling regime, transient polarons are generated
on the junction. However, dephasing is not fast enough and consequently a simple
kinetic description of the problem cannot be performed. In this coupling limit, the ap-
proximation of lowest-order expansion (LOE) in the electron-vibron coupling constant
does not work and needs further improvement of the perturbation theory to include
higher order terms in the expansion. To solve this problem, many different theoret-
ical approaches are used in the scientific community. One standard approach is the
self-consistent Born approximation (SCBA) [51-55] where the lowest-order Feynman
diagrams are taken into account in the LOE by considering the full Green’s functions.
However, in this approach important contributions of some higher-order diagrams like
vertex corrections are neglected in summing up certain diagrams up to infinite order.
Hence, it works well rather in the weak electron-vibron coupling limit. Another ap-
proach is the unitary polaron transformation [56] in the single-vibron model [52,57,58].
This transformation is employed to decouple the electron-vibron interaction Hamilto-
nian which renormalizes the electronic coupling elements. The renormalized electronic
coupling contains then the effects of electron-vibron interaction to all orders. However,
this approach is appropriate for rather strong electron-vibron coupling.

In the strong electron-vibron coupling regime, vibrational effects can dominate the
transport properties of molecular nanojunctions. For example, for moderate values of
the electronic coupling to the leads, the electron-vibron interaction can give rise to
pronounced current steps in a resonant situation. These current signatures can pro-
vide very useful spectroscopic information on the vibrational modes associated with
the molecule in different charge states. The impact of vibrons on the transport prop-
erties increases with both the electron-vibron coupling and the time that electrons
reside in the molecular quantum dots. The former factor cannot be easily controlled,
while the latter one is easy to tune via the length of the dot or the dot-electrode
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coupling. In other words, in the weak tunnel coupling limit, the electrons on the dot
have enough time to interact strongly with vibrational modes giving rise to the po-
laron formation which is basically a mixed state where an electron is dressed by a
vibronic cloud [56]. Thus in the weak tunnel coupling regime, the transport is domi-
nated by the Coulomb blockade effects, while the electron-vibron coupling leads to the
appearance of sidebands in the I-V characteristics [43,45]. All the above mentioned ap-
proaches can successfully explain many vibrations induced effects, like the appearance
of vibron sidebands, which is the principal vibrational signature in resonant transport
processes. However, all these reported different theoretical approaches are approxi-
mate and the exact description of vibrational effects in the transport calculations for
arbitrary strength of the electron-vibron interaction remains an open issue for further
research, at least in nonequilibrium situations. There are other factors which play an
important role in determining the effects of vibronic modes on the transport char-
acteristics of quantum dots. For example, temperature crucially affects the transport
mechanism. Low temperature favors the coherent transport through quantum dot sys-
tems, whereas high temperature significantly increases the occupation probabilities of
vibronic states leading to a strong reduction of the inelastic scattering length and thus
makes the transport completely incoherent [19,50]. The length of the dot is another
important factor that has significant impact on the transport properties of quantum
dots, with longer dots favoring incoherent transport.

2.3 Sequential tunneling and Coulomb blockade

Sequential tunneling is a quantum mechanical phenomenon which corresponds to a
transfer of a single electron onto or out of the quantum dot. A typical setup for this
process consists of metallic source and drain contacts with a continuous density of
states weakly coupled via tunneling junctions to a quantum dot with discrete energy
spectrum. In addition, the quantum dot may be be coupled to vibrational mode as
shown in Fig. 2.1. In order to modulate the electrostatic potential of the dot and
hence control the average number of electrons, the dot is capacitively coupled to a
gate electrode. In this thesis, we focus on gate controlled sequential transport across
quantum dots of nanoelectromechanical systems in the weak tunnel coupling regime.
In this limit, electrons can tunnel between the dot and the leads in such a way that
the time between two consecutive tunneling events is large compared to the duration
of a tunneling event so that the number of electrons on the dot is well defined. In
the weak tunnel coupling regime, a perturbation theory in the tunneling amplitude
between the quantum dot and electrodes is appropriate in electronic transport. In
particular, such a perturbative treatment is valid if the tunneling-induced level width
hI' is small compared to the thermal energy kg1’ of the system. The lowest order in this
expansion leads to sequential tunneling. It is also known from transport theory that
sequential tunneling is dominant as long as the dot electrochemical potential is located
between the Fermi energies of the leads. The tunneling process satisfies Pauli exclusion
principle and energy conservation. When a tunneling event takes place, the charge on
the quantum dot abruptly changes by a quantized amount e = —1.60217646 x 10~ C.
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The corresponding change in the Coulomb energy can be conveniently described in
terms of the capacitance of the dot. Such a capacitance C' can be associated with
a quantum dot within the framework of the constant-interaction model (appropriate
for weakly tunnel coupled quantum dots) if the details of the involved many body
processes are ignored. An additional charge changes the electrostatic potential of the
quantum dot by the charging energy EFo = % The charging energy becomes very
important when it exceeds the thermal energy kg7 of the system. Particularly, at low
temperature, i.e., Ec > kgT', the transport characteristics of the quantum dot are
significantly influenced by the charging energy. If the tunnel coupling of the central
system to the electrodes is weak enough such that the wave function of the electrons
is entirely localized inside the dot, then the number of charge particles on the dot
is quantized. It means that the quantum fluctuations in the number of electrons due
to tunneling events through the barriers are small compared to the time scale of the
measurement. In this situation, the number of electrons on the dot can only be changed
by tunneling of a single electron onto or out of the dot. That is why a quantum dot
device is usually called single electron transistor (SET) [59] because the underlying
transport mechanism can be described in terms of single electron tunneling events.
Thus a SET setup always contains a definite integer number of electrons. At fixed
gate voltage V4, tunneling of an electron onto the dot is allowed only if the charging
energy is compensated by the applied external bias voltage. The transport process
can be easily understood if the dynamics is described in terms of the electrochemical
potentials of the leads and dot as sketched in Fig. 2.2. The leads are considered to be
in thermal equilibrium and relax very fast into the equilibrium state after a tunneling
event. Tunneling of an electron can take place if a transport channel is available in the
bias window. For this purpose, a bias voltage V}, is applied across the source and drain
contacts which induces a difference in their electrochemical potentials. Defining the
electrochemical potentials of source and drain electrodes as us and pg, respectively,
we follow the convention, us > pq, with pus = pq + €Vi. The electrochemical potential
of the quantum dot p is determined by NV, the number of electrons on the dot, and is
modulated by an external gate voltage. For simplicity, if the energy spectrum of the
electron eigenstates in the dot is taken continuous, the addition of an electron on the
dot changes u by FE., i.e.,

u(N +1)=u(N)+ E.. (2.1)

Tunneling of an electron onto the dot occupied by N electrons can occur only if the
condition

ps > p(N + 1) (2.2)

is satisfied. Similarly, tunneling out of the dot in the charge state N + 1 to the drain
is possible if the condition

p(N +1) > g (2.3)

is fulfilled. The resulting condition for an electron to tunnel from source to the dot
and then to the drain reads

s > (N +1) > ugq. (2.4)
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In this situation, a transport channel is available and current can flow through the
device. In a similar way, the cycle is repeated and the charge transport through the
quantum dot can be obtained as observed in the experiments. Thus the conditions
described by Egs. (2.2) and (2.3) lead to two threshold straight lines in each dot
resonance situation in a bias-gate plane, separating regions of suppressed current from
those with finite current. For a sequence of resonances such that the dot is filled with
different number of electrons, one gets generically a diamond-shaped pattern as shown
in Fig. 2.3, traditionally known as stability diagram. However, if the above conditions
are not satisfied, then the dot resides in a stable charge state and charge transport is
forbidden. In this case, the system is said to be in Coulomb blockade. The diamond-
shaped regions are conventionally called Coulomb diamonds. It follows that inside the
diamond, transport is blocked. The electrochemical potentials of the electrodes and the
quantum dot in blockade and resonance situations are presented in Fig. 2.2. Moreover,
the excitations corresponding to vibrational modes appear as excitation lines running
parallel to the Coulomb diamond edges which can be viewed as vibrational sidebands,
see Fig. 2.3. In each line, a new vibronic excited state enters the bias window, creating
an additional transport channel. It appears as a step-wise increase of the current and
a corresponding peak in the differential conductance. The transport characteristics
of a quantum dot system are significantly influenced by two characteristic energies
hl' and kgT'. Particularly, the line widths in the plot of differential conductance are
characterized by the larger one of these energies. Indeed, in the Coulomb blockade
regime it should be the second one [19,39]. It implies that sharp transition lines and
thus accurate spectroscopic information about the structure of the system can be
obtained at low temperatures and in the weak tunnel coupling regime.

2.4 Discrete energy spectrum

Based on finite size, quantum dot exhibits discrete energy spectrum. For the obser-
vation of charging effects and discrete energy spectrum, an important energy scale is
the energy level spacing AFE, i.e., the separation between the discrete energy states
of the quantum dot. In order to resolve these levels, the spacing must be much larger
than the thermal energy kgT'. Temperature also plays an important role in the energy
levels quantization of the system. Thus depending on the charging energy E. and level
spacing AFE, one can find the following different regimes [39]:

1. E. < kgT" In this regime, one cannot observe the effects arising from the discrete
nature of the energy spectrum.

2. E. > kgT > AFE: This is usually known as the classical Coulomb blockade
regime because Coulomb oscillations can be observed. In more detail, upon
sweeping the gate voltage Vj, the build up of the induced charge will be com-
pensated in periodic intervals by tunneling of discrete charges onto the quantum
dot from the leads. Such a competition between continuously induced charge and
discrete compensation leads to the so-called Coulomb oscillations which can be
readily observed in the measurement of the current or differential conductance as
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Figure 2.2: Schematic representation of the electrochemical potential profiles of the leads and of a
generic quantum dot. The dot is characterized by a spectrum with quantized levels. The electrochem-
ical potentials of the levels are measured with respect to the Fermi energy of either electrode (source
or drain) in the absence of external bias voltage. The source electrochemical potential is denoted by
s, whereas the drain by pg. (a) Coulomb blockade situation where the N-particle electrochemical
potential of the quantum dot is not in the transport window between g and puq. (b) A situation where
sequential tunneling of an electron from source to drain can occur by adjusting the gate voltage such
that the electrochemical potential of the dot comes into the transport window.

a function of gate voltage at fixed bias (source-drain) voltage. However, thermal
fluctuations can smear out the effects arising from the discrete energy levels.

3. E.,AFE > kgT: This is the so called quantum Coulomb blockade regime. In this
regime, both the charge and energy level quantization can be observed. In this
thesis, we will focus on this regime.

4. E.,AFE > hI': Such a discretization depends on the coupling of the dot to the
electrodes. The energy excitation spectrum can only be resolved if the above
condition is fulfilled.

2.5 Franck-Condon blockade

This kind of blockade in the I-V characteristics appears in quantum transport through
interacting quantum dots as a manifestation of electron-vibron interaction. The con-
clusions of various experimental results show that electron-vibron interaction has pro-
found consequences on the transport characteristics of quantum dot systems [43-45].
The differential conductance as a function of gate and bias voltage is shown in Fig. 2.3
using the generalized master-equation approach. In this plot, one can clearly see that
at low bias the Coulomb diamond edges are separated from one another which implies
that transport via low-lying vibronic states is strongly suppressed. In this section,
we are interested to explain the basic mechanism involved in this kind of transport
suppression. Theory of Franck-Condon blockade shows that strong electron-vibron
coupling can qualitatively affect the sequential tunneling dynamics [57, 58,60, 61]. In
the presence of strong electron-vibron interaction, the displacements of the potential
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Figure 2.3: Stability diagram, differential conductance as a function of gate and bias voltage, which
shows Coulomb diamonds for a generic quantum dot of a nanoelectromechanical system (NEMS).
In the diamond shaped region around Vj, = 0 and V, = 0 the current is zero because of Coulomb
blockade, while the suppression of the conductance at the charge degeneracy points represents the

Franck-Condon (FC) blockade. The excitation lines running parallel to the Coulomb diamond edges
denote the vibrational sidebands.

surfaces for the molecule in the N or N + 1-particle states are large compared to the
quantum fluctuations of the nuclear configuration in the vibrational ground state. Con-
sequently, the overlap between low-lying vibronic states is exponentially small. This
leads to a low-bias suppression of the sequential transport which is usually known
as Franck-Condon blockade [57,58]. In addition, a closer analysis of the transport
characteristics shows that FC blockade cannot be lifted by means of a gate voltage,
in contrast to other blockades like Coulomb blockade. Low bias suppression of the
transport channels and hence FC blockade can be better understood by studying the
Franck-Condon factor since the current suppression originates from the behavior of
the FC matrix elements which determine the rates. This factor basically describes the
wave-function overlap between different vibronic states participating in a particular
transition. It provides very important information about the quantum mechanics of
the quantum dot and strongly influences the transport properties of a single-molecule
junction. In Fig. 2.4(a), the FC factor is depicted where one can identify the outer max-
ima, conventionally known as Condon parabola [17,61,62]. In the classically allowed
region the FC factor is described by

(2.5)
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Figure 2.4: (a) Franck-Condon factor (FC) as a function of the vibrational numbers m and m’. (b)
Schematic representation of the effective nuclear potentials for the N- and N + 1-particle electronic
states of the quantum dot system which define the overlap between low-lying vibronic states in
the sequential tunneling process. The vibronic excitations exhibit harmonic spectrum with energy
difference of hw between consecutive levels. The NV + 1-particle nuclear potential minimum is shifted

by V2.

where m, m’ are the vibrational numbers and A is the electron-vibron dimensionless
coupling constant. When the above relation is an equality, it represents a parabola in
the (m,m’) plane whose axis of symmetry makes an angle of 7/4 with the m-axis. It
contains very important information about the geometrical configuration of the system.
It takes into account the fact that the stable nuclear configuration is shifted when the
eigenstate of the dot is occupied, see Fig. 2.4(b). In principle, the Condon-parabola
separates the classically forbidden and allowed regions. Fig. 2.4(a) reveals that the
FC-factor is nonzero only in the classically allowed region where the classical orbits
of the nuclear motion in the shifted potentials intersect in phase-space [17, 61, 62].
Within a quasi-classical envelope, the FC-factor oscillates with the vibronic numbers
m and m’ on the scale of the square of electron-vibron coupling constant [63]. The
global maxima on the two axes can be determined as: m ~ A2, m’ = 0 and m’ ~
A2, m = 0. For very small electron-vibron coupling constants such that, A — 0, the
Condon parabola narrows down to a single line, F,,,v — Omm Where Fj,,, is the
Franck-Condon factor. In the classically forbidden region, the FC-factor is extremely
small. It implies that in the weak electron-vibron coupling regime, A < 1, transitions
mostly occur along the diagonal m — m’. In the intermediate coupling limit, A ~ 1, the
distribution of transition rates becomes wider, and slightly non-diagonal transitions are
enhanced. For strong electron-vibron coupling, A > 1, the distribution widens enough
and a gap of exponentially suppressed transitions between low-lying vibronic states
opens [19,57,61]. Moreover, the vibronic excitation spectrum has harmonic nature
which means that whenever the change in vibronic number m’ —m associated with N-
and N + 1-particle states enters the resonance condition, then transitions between all
the states with the same difference m’ —m become allowed at a single resonance. It has
remarkable consequences on the vibration-assisted transport because a single-electron
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transition can trigger a significant population of high vibrational excited states.

2.6 Generalized Master Equation

We pointed out at the beginning of this chapter that, similar as for the experimental
techniques, many theoretical approaches are used for the investigation of transport
properties of nanojunctions. One standard numerical approach is the combination of
ab initio methods like density functional theory (DFT) with nonequilibrium Green’s
function techniques [33,64] which can successfully explain the structure and transport
characteristics of nanoscale devices, particularly, in the case of strong tunnel coupling.
However, this approach cannot describe the transport properties of a system in the
weak tunnel coupling regime where it cannot capture properly the effects induced by
the Coulomb interactions. Other theoretical approaches that can solve the many body
transport problems are numerical renormalization group (NRG) or the density matrix
renormalization group (DMRG) schemes [65]. These techniques can successfully de-
scribe the dynamics of quantum systems within a wide parameter range. However, they
are appropriate to solve only the problems related to simple models with a few number
of degrees of freedom due to the complexity and large computational costs of these
techniques. The Pauli-master equation description [66-68] is also a standard approach
to the investigation of transport across a quantum dot system which is well separated
from electronic reservoirs by large tunneling junctions. The occupation probabilities,
current and other transport quantities can be calculated up to second order in the
tunnel coupling [66] via rate equations using Fermi’s Golden rule. However, in this
approach the coherences, i.e., off-diagonal elements of a density matrix describing the
dynamics of the many-body states of the dot are neglected. On the other hand, for
more complex systems with degenerate states [69-75] and/or non-collinearly magnetic
polarized leads [76-80], the non-diagonal elements of the density matrix play crucial
role in the transport and can cause many quantum effects, e.g., interference [81], spin
procession [82] and thus cannot be neglected. This approach to the description of the
dynamics of the system fails because the Pauli rate equations are invariant under uni-
tary transformations within the degenerate eigenstates of the quantum dot. Hence, the
solution of a generalized master equation for the full density matrix coupling diagonal
(populations) and off-diagonal (coherences) elements of the quantum-dot is required.
Here we derive the equation of motion for the reduced density matrix (RDM) to lowest
non-vanishing order in the tunneling Hamiltonian. In the weak tunnel coupling limit,
the dynamics is extensively studied within the approach of Liouville equation method
(see e.g., Refs. [69-71,73,75,76,81,83-85]). The method is based on the well known
Liouville equation for the time evolution of the density matrix of the full system con-
sisting of the leads and generic quantum dot. In the following, we briefly introduce
the basic concepts of a generalized master equation approach which takes into account
electron transfer across the quantum dots up to second order in the tunnel coupling
and includes all possible tunneling processes. We start in Sec. 2.7 with a model Hamil-
tonian of a generic quantum dot system which is coupled to a vibrational mode and
weakly bridged between two metallic leads as depicted in Figure 2.1. Sec. 2.8 is dedi-
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cated to the solution of master equation in weak tunnel coupling regime. In Sec. 2.9, we
point out the role played by the secular approximation in the presence of degenerate
states of the system. In particular, it reduces the number of non-vanishing elements
of the density matrix, as it sets to zero all coherences between non-degenerate states.
Sec. 2.10 is devoted to the determination of current through the quantum dot system.

2.7 Model Hamiltonian

Consider a model system consisting of a generic quantum dot weakly coupled to leads
and capacitively coupled to a gate electrode. In addition, the dot is also coupled to
a vibrational mode as shown in Fig. 2.1. The overall system can be described by the
Hamiltonian

H = Hyy + Hy + Hy + Hry + Hoy, (2.6)

where flsys represents an interacting system with known many-body eigenstates. It
contains the dot Hamiltonian, vibron Hamiltonian, and the electron-vibron interaction
Hamiltonian, i.e., R X R R

Hsys = Hyoy + Hy + He.y. (27)

~

Hg)q in Eq. (2.6) describes the isolated metallic source and drain contacts as a Fermi
gas of noninteracting quasi-particles given by

]:Ia - Z Eaaﬁélgﬁéaam (28)
oK

where ¢! (Caox) creates (annihilates) a quasi-particle in a state s with spin o and
energy €.,y in lead a = s/d. The transfer of electrons between the leads and the central
system is taken into account by the tunneling Hamiltonian

Ay = 37 " (tardly oo + tiahondis) (2.9)
a=s,d olk

A

where d;fg creates an electron on the dot with spin ¢ and [ degree of freedom. The
coupling between quantum dot and leads is parametrized by the tunneling matrix
elements ¢,;. For simplicity, we assume that the tunneling amplitude £,,4, of lead s /d is
independent of the momentum Ax of the lead state. The first term in the above equation
describes tunneling into, while the second term tunneling out of the dot. The condition
for weak coupling requires that the tunneling induced level width AI' should be small
compared to the thermal energy kg7'. Finally, H..; denotes the energy dependence of
the system on the external voltage sources controlling the electrochemical potentials
of the leads and the dot.

2.8 Dynamics of the reduced density matrix

In this section, we briefly demonstrate the derivation of the equation of motion for
the reduced density matrix (RDM) to lowest nonvanishing order in the tunneling
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Hamiltonian. In the derivations presented in this chapter, we mainly follow [86,87].
Before the interaction fIT is switched on at time ¢t = ¢y, with ¢y, being some reference
time, the system is unperturbed and the full density matrix p(ty) is the direct product
of the initial state pys(to) of the quantum dot and the equilibrium state ps/q of the
leads. Later on when the perturbation is switched on, at time ¢ > tj, correlations of
the order of the tunnel coupling [86] between the leads and quantum dot is induced
by the interaction, causing p(ty) to deviate from the factorized form. Hence, we can
calculate the time evolution of p(¢) in the interaction picture as

p(t) = U(t, o) p(to) U (1, 1o), (2.10)
where the time evolution operator Uy(t, ) is described by
Ul(t, t0> — e%(I:Isys+Hs+I:Id)(t7t0)67%(ﬁsys+Hs+IA{d+HT)(t7t0) (211)

Using Egs. (2.10) and (2.11), we obtain the well known Liouville equation in the form

maﬁaﬁt) - [H{(t),ﬁf(t)] , (2.12)

which can also be expressed as
R ) i [ 8 R
p =it~ [ e [0 (213)

Substitution of Eq. (2.13) in Eq. (2.12) yields

?

i =1 [o.) + (1) [ [mo.[mose)]. e

to
where HZL(t) is the tunneling Hamiltonian in interaction picture and can be described
as

~ k3

HL(t) = eg(Hsys+Hs+ﬁd)(t—to)HTe—%(ﬁsstrﬁerHd)(t—to)

= [talégwczla(t)e%aw“t the. (2.15)

alko

Since we are interested in the transport through the central systems, it is convenient
to consider the RDM pl () of the dot, which can be obtained from p’(¢) by tracing
out the lead degrees of freedom, i.e.,

ﬁfed(t) = Trleads {ﬁl(t)} : (216)

The first term in Eq. (2.14) vanishes by taking the trace over the lead degrees of
freedom. In general, the leads are considered as large systems compared to the quantum
dot. Moreover, we consider the weak tunnel coupling regime, where the influence of the
central system on the leads is only marginal. Thus we treat the leads as reservoirs of
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noninteracting electrons in thermal equilibrium and hence we can factorize the density
matrix p’(t) as

p'(t) = ple(t) ® pspa+ O(t — to)O(Hr)
= pLis(t) @ preaas + O(t — to)O(Hr). (2.17)

Here ps/q = Z—/de —B(Hsa=ns/aNesa) denotes the thermal equilibrium grandcanonical dis-

tribution of lead s/d, Zyq is the partition function, 8 the inverse of the thermal

energy, /(/;/d the electron number operator, and f/q is the electrochemical potential
of lead s/d which depends on the applied bias voltage jis/q = 1o £ —b with pg is the
equilibrium electrochemical potential. Accounting for the tlme—evolutlon of the leads
creation/annihilation operators, Eq. (2.14) can be described as:

ta g o
red Z‘ l| /dt{ (Eaow — Ma)dla( )dT( )pred( )eh aor(t=t")

laock

+ [1 - f (5040/@ Noc)] d (t)dla( )ﬁred(t/)e Feaon(t—t')
_ [1 - f (gaof@ - ,ua)] dlg(t)pred( )d}o(t/)ehaaon(t ')

— [ (Caon — pa) di(t) Lo (t )dlg(t')e—éfam(f—t’)+h.c}. (2.18)

In the derivation of the above equation we have used the relation: Trieaqs {égméa/a/,{/ﬁsﬁd}
= Oaa'Onw oo | (Eaok — o), Where f (€a0rx — Ha) 1S the Fermi function, and cyclic prop-
erty of the trace. By summing over k we obtain the generalized master equation (GME)
for the reduced density matrix in the form

Proa(t Z ’tal’ / {Fo (t =1, pta) dio (8)d, () ploa ()

lao

(£ = ¥ =p10) d (0 ()0 (1)
= E2 =) o)tV 1)

= Fy (t =t pta) df, (8) plea (t)dio (') + Hec. (2.19)

where the correlation function F, (t — t', u,) associated with lead « is determined, in
the wide band limit, as: From Eq. (2.18) we can write

Fa (t - t/’ /‘La) = Z f(gocm-c - Na)@ésa‘m(t_t/)

— [ deuoDunf (e = i)

o0

_ ei“T"‘(t_t/) / déagDagf(€ao)€%€a0(t_t/)7 (2.20)



30 | 2.8 Dynamics of the reduced density matrix

where D, is the density of states of lead o with spin ¢ at the Fermi level. To simplify

_Be e
the above equation, we use the following relation: f (¢) = 3 (1 + ﬁ). Hence
D - Loy / e i /
FU t— t/, 2 = ao e’T(t_t) / dgaaegaaa(t—t)
(t =t ha) = =7 .

+ / de oy tanh (—%) e#w@—f’)]. (2.21)

The first term leads to the result

/ de pensor =) — 2mho (t —t'). (2.22)

o0

The simplified form of the second part in Eq. (2.21) reads:

/ deo tanh (_ 5620‘”) encas(t=1)
— / de,, tanh (— ﬁg;”)

X {COS [%(t — t')] + isin [%(t - t')] } : (2.23)

Due to symmetry the cosine component of the integral vanishes. One can further use
the following relation:

/0 dz sin(az) tanh <b§> = m, for a,b € R. (2.24)

Using Eq. (2.24), one can evaluate Eq. (2.23) to be

/Z deq, tanh (—BZM> sin [%(t — t’)} = _5Sinh2[:ﬂ} . (2.25)

hB
Putting all together, the correlation function acquires the final form, in the wide band
limit, as
i

hf3 sinh [7? (t}:ﬁtl)]

Fy (t =1, pta) = mhDape! D L5 (1 — 1) — (2.26)

This function characterizes the correlation which exists on average between events
where a lead electron is destroyed at time ¢’ and another is created at time ¢. It thus
provides very important information about the time scales which control the relaxation
dynamics of the leads. Moreover, Eq. (2.26) indicates that the correlation function
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F, (t =t o) decays with the time difference ¢ —t’ approximately as exp [—ﬂ(t};;)] on

the time scale Z—ﬁ Since we are interested in the long-term dynamical behavior of the
system, we set tg — —oo in Eq. (2.19). Further, we replace ¢ by ¢ —¢”. We then apply
the Markov approximation, where the time evolution of pl_, is taken only local in time,
meaning we approximate pred(t — t”) ~ prea(t) in Eq. (2.19). In general, the condition
of time locality requires that I' < ;5. Here we defined from Eq. (2.19) together with
Eq. (2.26), I = >, Z[tai|*Dao as the bare transfer rates and Al' = > A, as the
tunneling-induced level width. However, the Markovian approximation becomes exact
in the long time limit ¢ — oo [88]. Finally, taking into account all these simplifications,
the generalized master equation for the reduced density matrix reads

A ta 2 > 7 7 ~
ira® == X P [ @m0 ) el e~ )90

lao

T Ey (¢, —pa) dly (D (¢ — )La(1)
— B3 (1, ~1a) di ()LD (¢ — 1)
— 3 (" ) d} (0L ()i (t — ) + hic. ) (2.27)

Since the eigenstates of the system are known, it is convenient to calculate the time
evolution of p! , in the eigenstates of the system Hamiltonian I:Isys. Let |n) and |m)
be the eigenstates of ﬁsys in the N, N + 1 particle Hilbert spaces Hy and Hy.1,
respectively. Then it holds

(oldio m) = (din(0) | = (dr) | eREnEen,
where we have used the relation
Hgysn) = Enln)

and N B
CglU(t) = B%Hsys(t_to)Czlge_%HSYS(t—to).

2.9 Role of coherences and secular approximation

For a system with spectrum containing degenerate states, coherences exist between the
degenerate states which make the problem quite complex. Specifically, the situation
addressed in the next chapter, a large number of vibronic degenerate states contribute
to transport at finite bias. Generally, a system residing in an n-dimensional Hilbert
space is described by an n x n density matrix, the associated Liouvillian has dimen-
sion n*. Hence, the inclusion of the full set of all possible second order contributions
in Eq. (2.27) for any gate and bias voltage leads to a hard numerical task to solve
the equation of motion even for systems with moderate number of quantum states.
However, for most practical problems there exist some selection rules which allow us
to set to zero certain elements of the density matrix from the beginning. The reason is
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that whenever two quantum states |m) and |l) of the system differ by some quantum
number which is conserved in the total system (including the reservoirs), a coherence
can be ignored. Thus in view of the above argumentation, Eq. (2.27) can be solved
taking into account the following approximations:

(i) We assume that the system is in a pure charge state and hence the density ma-
trix elements between states representing different charge state vanish, since the total
charge is conserved. It implies that defining the reduced density matrix operator p on
the Fock space of the quantum dot, one can neglect coherences (off-diagonal elements
of the density matrix) between states with different particle number, since they are
decoupled from the dynamics of the populations. As a result, pl.; can be decomposed
into block matrices p/%¥ describing the dot in N-particle state. Consequently, Eq. (2.27)
can be expressed in the eigenbasis of HsyS as

e -~ © [ F rnte $ e

a NjE{IN)} The{IN+1)} ie{|N-1
Z [ Z Fa]’Jl:flerj—l 4 Z Pajjz\in]\’i 1} (t)e%Ej/m(t—to)
J'e{|N)} “ke{|N+1)} €{|[N-1)}
-2 [F&ﬁfw + T gxzzﬂ pie T (t)er Frit Bom)lt—t0)
k.k'e{|N+1)}
- > {ﬁ UARLISES D ”V} PIN=1 () e (Frit B (i to)} (2.28)
i €{|N-1)}

where the quantities Fg’ L,mnk represent the transition amplitudes between states with

N and N =+ 1 particle states. For transition N — N + 1

tarl? . \ NN+1 N+1N
pENL Z' i / dt"F, (pt", ) (dlg) (d*( ”)) @)
0 m n

k/

and for the transition N — N — 1

tarl? NN-1 N—1N
a, kl’vni\;kl = § | ll / t//Fo (ptlla ,ua) (dT ) (dlo(_pt//>> . (230)
0

k'm nk

In the above equations, we have used the notation

~ NN+1 ~
<dlo)k = (k|dip|m), (2.31)

m

where |k) and |m) are the eigenstates of Hyy with particle number N, N 4 1, respec-
tively. The energy differences E,; used in Eq. (2.28) are given by

E,=E,—E;.

(ii) Coherences between states with the same number of particles but with different
energies can be neglected, when their energy difference is larger than the level width
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Figure 2.5: Schematic representation of the reduced density matrix in blocks form belonging to fixed
charge N. Only coherences between states with the same number of particle and energy are retained.

RI" [86]. In this case, they are irrelevant due to their rapid fluctuation compared to the
dynamics of the system induced by the tunnel coupling. Coherences between quaside-
generate states can be retained if their energy difference is smaller than the tunneling
induced level width. It means that the secular approximation allows us to retain only
those terms in the equation of motion which have no oscillatory behavior with time
t. From the system dynamics point of view, it implies that one can not resolve the
evolution of pl ,(t) on time scales of h/(E,, — E,), where E,, and E, represent two
distinct energy levels of the system Hamiltonian ﬁsys. From the first and second line
of Eq. (2.28) the secular approximation leads to the conditions

E, = E;, (2.32)
E, =Ej, (2.33)

while the third and fourth line gives
E,-E,+Ey.—-FE,=0, E,—FE,+FE;,—F,=0. (2.34)

If we select E,, = E,,,, E, # E,, in Eq. (2.32) and Eq. (2.33), then indeed E,, = E;
E,, # E; and E,, = E;y, E, # E; must be fulfilled. Moreover, if E,, = E,,,, E,, # E,, in
Eq. (2.34), then Ey; = Ejy 4+, Ey; # Ei» must hold. It follows that as a consequence
of the secular approximation, in the equations of motion Eq. (2.28) the elements of the
RDM between degenerate and non-degenerate states get decoupled [86,87]. Since the
current is determined by the dynamics of the populations of the many body states, it
is convenient to focus on the time evolution of the degenerate matrix elements. Thus
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we can further divide p!,(t) into block matrices p/2N (t) restricted to the Hilbert space
Hp, spanned by the states with a particular energy level Ey and charge state N. A
schematic representation of the resulting pattern of the RDM is given in Fig. 2.5. To be
more compact, we can represent the equations of motion for ,Z)fij () in Bloch-Redfield
form [71,86,87]

EnNE’ IE/
PN (t) == REN g0+ > DY RN M (), (2.35)

kK’ M=N=+1 E’' kK

where the indices n,m, k, k" refer to the eigenstates of Hsys and k, k" runs over all
degenerate states with fixed particle number. The Redfield tensors are given by

Ry = Z Z <5mk: FJTZ?ZEM + 5nkra k/]j;v,,;EM> : (2.36)
a=s,d M,E',j
and
E E! p)E\ E
miikly - Z Fa k/qfnkNa (2.37)
a,p=%

where the quantities Fip .343’7]7\7,]nkM are transition rates from a state with N particles and

energy Fy to a state with M particles and energy Ej,. Let us start with tunneling in,
e., N — N + 1 process. Its transition rate is given by

p)ENE), ‘t l‘ A ENEN+1 “ N+1EN e A _ ”
«, k/q‘]rzvnkN+1 Z i, ( a) . <dT > dt”Fa (pt//7 ,ua) e ph(ENJrl En)t ,
0

nk
(2.38)

whereas for the transition N — N — 1

Fo b Z o (AU>ENEN ) / AU, () e PHE B

nk 0

(2.39)

where we have used
. \EnEy., .
()" = Wil 2.40)

which represents the matrix element of the dot electron operator a?lg between the
eigenstates of the system |k) and |m) with particle number N, N 4+ 1 and energy E,
E'y ., respectively. Eq. (2.35) explicitly captures all the dynamical properties of the
charge transport through the dot. In order to investigate the transport characteristics,
it is convenient to determine a relation for a current.
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2.10 Current

Current can be described as the net tunneling rate through a quantum dot in a specific
direction at the source or drain contact. To determine the current through lead o, we
calculate the current operator as [52]

~

i = d‘g“ _ —ih [IQITQ,/\L} , (2.41)

>

where Hr, is the tunneling Hamiltonian of a particle between the quantum dot and
lead «, whereas N, = > __¢él .0, is the particle number operator of lead . Thus

the current can be evaluated as
I = Thys {faﬁfed(t)} . (2.42)
Substituting the values, Eq. (2.42) yields

Io=2aRe > S (PO - r ) ph (2.43)

a,njjk a,njjk
N,E.E' nkj

where we have introduced the convention o« = s/d = £1. In the above equation, the
first term on the right side denotes the tunneling into the dot, while the second term
represents tunneling out of the dot. In the steady state the current through the source
must be equal to the current at the drain in order to avoid the net accumulation
of charge on the quantum dot. In transport calculations we are often interested in
long-term dynamical behavior of the system. Hence, we can determine the stationary
current by replacing p!"V with pét’EN in Eq. (2.43). Note that the above expression
of the current explicitly takes into account the coherences of the RDM. In particular,
coherences between states with the same number of particles but different energies
can become important when the difference in their energies is of the same order of
magnitude as the tunneling induced level width, while the coherences between states
with different number of particles are decoupled from the dynamics of populations and
eventually vanish exactly in the stationary limit. From a mathematical point of view,
it is crucial to take into account the coherences in order to ensure the invariance of the
transport calculations under any unitary transformation Ug, within the Hilbert spaces
‘H g, consisting of all the eigenstates of the system with a particular energy and particle
number. Since the RDM is hermitian, there always exists an appropriate eigenbasis
of the system Hamiltonian ﬁsys in which all coherences are vanishing. However, for
a complex system it is not trivial to find a priori the basis that diagonalizes the
Hamiltonian of the system. In addition, this diagonalizing basis strongly depends on
the energies provided to the system, particularly on the external voltage.
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Chapter 3

Vibration-assisted transport
through nanostructures

Vibrational modes strongly affect the transport characteristics of a quantum dot sys-
tem. Pronounced vibrational signatures in electronic transport have been observed in
many recent experiments on molecules [2-6] and single wall carbon nanotube quantum
dots [43-45,89]. In order to explain some of these features, specifically, negative dif-
ferential conductances (NDCs) in the measured stability diagrams, we propose here in
this chapter a theoretical model where a single molecule is coupled to several vibronic
modes. The molecular quantum dot (QD) is further weakly coupled to source (S) and
drain (D) contacts and capacitively coupled to a gate electrode, see Fig. 3.1. We ad-
dress two different cases: (i) Symmetric setup (ii) Asymmetric setup. In the first case,
the dot is symmetrically coupled to the leads, whereas in the second case one orbital
degree of freedom is stronger coupled to the leads compared to the other. To proceed,
we model the system Hamiltonian as below.

Figure 3.1: Transport setup with a generic multilevel quantum dot (QD) symmetrically coupled to
source (S) and drain (D) contacts and capacitively coupled to a gate electrode. In addition, the dot is
coupled to the nth vibrational mode with energy hw, via a dimensionless coupling constant .. vs/4,1
and 7,42 denote coupling constants of the orbital states 1 and 2 to the source and drain contacts,
respectively.
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3.1 Model Hamiltonian for the central system

In most cases the simple Anderson-Holstein model, where a quantum dot is coupled
to a vibrational mode, has been studied [58,60-62]. In this chapter, we consider a
different situation in which we characterize the system by a generalized Anderson-
Holstein model where two degenerate or quasidegenerate molecular levels are coupled
to many vibrational modes. This model appropriately describes transport through
vibrating quantum dots with a discrete electronic spectrum. Consequently, several
energetic degenerate vibronic configurations arise which may contribute to transport
at finite bias. Thus the Hamiltonian of the central system is modeled in the form

[A{sys = Amol+ﬁv+[:[-va (31)

where H,,, describes two quasidegenerate levels whose Hamiltonian can be represented
as

X X U . /.
Hoo = Z el + 5 N (N - 1) : (3.2)

where [ = 1,2 is the orbital and o =1, is the spin degree of freedom. The operator
N d dla counts the number of electrons with spin ¢ in the orbital [. N = Yo Nzg

is the total number operator. The orbital energy is g, = €9 [1 + (-1)’ A], with A an

orbital mismatch. The Coulomb blockade is taken into account via the charging energy
U and we assume U > g.
The vibron Hamiltonian is expressed as

H, = ;gn( i ) (3.3)

where G, (a!) annihilates (creates) a vibron in the nth mode with energy &, = hw,.
We assume that the energy of the nth mode is given by

en = nhw, (3.4)

being an nth multiple of the energy £; = hw of the fundamental mode as it is, for
example, for longitudinal stretching modes in quantum wires and carbon nanotubes.
Finally, the electron-vibron interaction Hamiltonian is describes as

=33 9ulNie (a + ) , (3.5)
n>1 lo

where g, is the coupling constant for the nth vibronic mode.

3.1.1 Elimination of electron-vibron interaction

In order to solve the Hamiltonian of the system and obtain its spectrum, we decouple
the electron-vibron interaction Hamiltonian by applying a unitary polaron transfor-
mation [56]. Explicitly, we set HSys = f[syse_s , where

S=> ") NN (&, - an) (3.6)

n>1 lo
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and A\, = g¢,/hw, is the dimensionless coupling constant associated with mode n.
Note that A = fu—l is the coupling constant of the fundamental mode. We assume

A =0.68, 0.83 and 1.18 in the analysis of the spectrum, which is in the range of values
observed e.g., in experiments on carbon nanotubes 43,45, 89]. Under the polaron
transformation the operator d,; is transformed as

CZJ = eédlge_g = dlUX, (37)

where X = exp [— 2@1 An (&L — &n)]. In a similar way, the shifted vibronic operator
is

Qn =t — Ao Y _ Ny (3.8)
lo

The transformed form of the system Hamiltonian is thus

Hiys 251N10+Zen( i )+ZN<N 1), (3.9)

n>1
2 ~
where &, =¢,— ) ‘% is the renormalized orbital energy and U = U —23 = ‘g”
the Coulomb repulsion modified by the vibron mediated interaction.
The eigenstates of the system are

N, 1, r=e 5| N, 1m,). (3.10)

where N = (Nit, N1y, Nop, Noy) and Nj, the number of electrons in the branch (lo).
Note that N = >, N, defines the total number of electrons on the dot. For later
purposes we indicate the ground state and first excited state with 0 electrons as, see

Fig. 3.3(b)

1My = (1,0,0,..))1, (3.11)

The first excited state with 0 electron contains one vibronic excitation in the first mode,
ie., m, = (1,0,0,...). In a similar way, we define the ground states and first excited
states with N = 1 electron. For zero orbital mismatch one has fourfold degeneracy, see
again Fig. 3.3(b), i.e

1;,001, k=1,2,3,4,
|1k, 1> = | jey My = (1,0,0, ...)}1, (3.12)

where 1, € {(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1) }. We note that both for N = 0
and N = 1 the second excited states are vibronically degenerate for the dispersion
relation Eq. (3.4), then the configurations m, = (2,0,0,...) and m, = (0, 1,0, ...) have
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the same energy. For finite orbital mismatch A # 0, the orbital degeneracy is broken.
The case 0 < gpA < hw is illustrated in Fig. 3.9(b). The corresponding states are:

119, 0) := [Ty, 0)1, Kk =1,2,

15e, 0) i= |The, 0)1, K =1,2,

[11g, 1) := [Thg, 770 = (1,0,0,..))1,

ke, 1) := | Te, 72y = (1,0,0,...))1, (3.13)

and 1y, € {(1,0,0,0),(0,1,0,0)}, Tr € {(0,0,1,0),(0,0,0,1)},

3.2 Generalized master equation for unpolarized
quantum dots

In the case of high degeneracy of the spectrum, the appropriate technique to treat
the dynamics of the system in the weak coupling regime is the Liouville equation
method for the time evolution of the density matrix of the total system consisting of
the leads and the dot. The detailed analysis and derivation can be found in Chapter 2
where the generalized master equation given by Eq. (2.35) was derived for a generic
quantum dot. In order to determine the specific form of the Bloch Redfield tensors
REN . and Rng,ig/ we need to find the values for the transition amplitudes Fg ﬁgiﬁ”
given by Egs. (2.38) and (2.39). Note that for the special case to be considered in this
chapter, we have to take into account that if N = 0 then M = 1, while if N = 4
then M = 3. To solve the system we need to calculate the matrix elements of the dot
electron operators in the eigenbasis of ﬁsys. In the following we determine the matrix
elements of the electron operators.

3.3 Transition matrix elements of electron
operators and the transition rates

In order to determine the transition rates, first we need to calculate the transition
matrix elements. Thus in the eigenbasis of the system, the transition matrix elements
yield

(rldio]s) = e 2 2T F (i, ml), (3.14)
where |r) and |s) represent the eigenstates given by Eq. (3.10). The function F'(A,m, m’)

determines the coupling between states with a different vibronic number of excitations
with effective coupling A and is expressed as [71,90]

FOLm,m') = [0(m' — m)A™ m+@(m m') (=A%) "]

mln Mmin A - '
,/m §j (CIAP) Mmax” (3.15)
max Z' Z + Mmax — mmin)! (mmin - Z)‘
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where My /max = min/max(m,m’). Now using the above equation, one can readily
calculate the transition rates in the form

EE ~ \ ENEly o\ Eni1EN
o™ = 2 G (), (), e

with e, = —eV, — (EN — Ey +1) and V,, the electrochemical potential of lead «. Like-
wise

o \ENEN 1 (5 \ BN E
Tt Zral_ e (dh,) 7 (de) (3.17)
with €/, = —eV, — (Ely_; — En). Moreover, we introduced
fi
Fggﬁ: (B) = yaf* (E) + - alP <E) (3.18)

where f* (¢) = f (¢) is the Fermi function while f~ (¢) = 1—f (¢) and 7o = 22D, ltou|”
are the bare transfer rates with constant density of states of lead D,. Note that the
transition rates calculated above explicitly contain product of Franck-Condon factors
with coupling constants depending on the mode number. Finally, knowing the sta-

tionary density matrix pl,, the (particle) current through lead « is determined by, cf.
Eq. (2.43)

Io=20Re Y S (T T ) oy (3.19)

N,E,E’ nkj

If the relation given by Eq. (3.4) holds, then spin and orbital degeneracies intrinsic in
the electronic structure are supplemented by degeneracies related to the vibronic struc-
ture. Several vibronic modes with frequencies w,, = nw multiples of the fundamental
frequency w give rise, in fact, naturally to several degenerate vibronic configurations.
This is the situation we shall focus on in the rest of this chapter.

A degenerate spectrum is a necessary condition for the appearance of interference ef-
fects in the transport characteristics both in the linear and non linear regime [69, 70,
72,73,75,76,79,80,85,90,91] and these effects can be captured only by considering
not only populations (diagonal elements) but also coherences (off-diagonal elements)
of the reduced density matrix.

For the system considered in this chapter, we calculated the current both with and
without coherences between degenerate states up to five vibronic modes, obtaining
though only quantitative but not qualitative differences. While spin and orbital de-
generacies can be a priori excluded from the transport through a single molecule with
nonpolarized leads [90], the role played by the vibronic coherences requires a more
careful analysis.

We have confirmed that it is not possible to construct a linear combination of degener-
ate states {|s)} with finite transition amplitude to a state |r) at one lead but decoupled
from |r) at the other lead, where |r) and |s) represent the states given by Eq. (3.10).
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This observation, complemented by the general method presented in Ref. [92], proves
the absence of interference blocking states in our system. Thus, interference, even if
present, does not have dramatic consequences on the transport characteristics of the
system.

All the current maps presented in the next section are hence, apart from Fig. 3.7(b),
calculated neglecting coherences. As shown explicitly in Fig. 3.7(b), this approxima-
tion does not affect qualitatively the results (at least in the low bias regime). Moreover,
the negative differential conductance and the associated dynamical symmetry breaking
that we present in the next section are not related to the interference and can thus be
obtained by considering the dynamics of the populations alone.

3.4 Transport calculations

Here we present our transport characteristics of the system for two different cases.
In the first case, we consider a central system symmetrically coupled to the leads as
shown in Fig. 3.1. In the second case, we consider a situation where different orbital
states are differently coupled to the source and drain contacts as depicted in Fig. 3.11.

3.5 Symmetric setup

In this section, we are going to show that the additional presence of spin and/or orbital
degeneracies opens the possibility of getting slow channels contributing to transport.
As a consequence, NDC phenomena can occur despite a fully symmetric quantum-
dot setup. A peculiarity of the observed features is, in particular, an asymmetry with
respect to the gate voltage in the stability diagrams. Here, we present our transport
characteristics and focus on the 0 <> 1 transitions. In the calculation, we also assume
for the coupling constant of the nth mode g, = \/ng; (as expected for stretching modes
in carbon nanotubes [93]). The system is symmetrically coupled to source and drain
contacts (75 = Ya), see Fig. 3.1, and the lowest five vibron modes are included. Re-
sults for the differential conductance for different values of the dimensionless coupling
constant A are illustrated in Fig. 3.2 and Fig. 3.8, obtained for zero and finite orbital
mismatch ex = g9/, respectively.

3.5.1 Current-voltage characteristics at low bias with zero
band mismatch

When the orbital mismatch is zero, i.e., eo = 0, then the two orbital energies ¢; are the
same. The minimum energy to produce a charge excitation is 9. We take the value of
this energy as g9 = 1.4 meV (comparable to the level spacing energy of a suspended
single wall carbon nanotube of 1.2 pum length). Furthermore, we assume the energy
of the lowest vibronic mode to be ¢; = 0.04 meV. Thus the charge excitation energy
is much larger than the energy of the lowest vibron mode. Indeed, all the equidistant
lines running parallel to the diamond edges observed in Fig. 3.2 are due to vibron
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Figure 3.2: (a)-(c) Plots of the numerical differential conductance dI/dV (arbitrary units) of the
system for coupling constants A = 0.68, 0.83 and 1.18, respectively. The charge excitation energy is
gop = 1.4 meV and the energy of the lowest vibron mode is £; = 0.04 meV. Additional parameters are
a thermal energy of kgT = 0.8 peV, orbital mismatch e = 0 and v5 = vq = 0.02 peV for [ =1, 2.
The black lines running parallel to the Coulomb diamond edges correspond to negative differential
conductance (NDC). Note that here and in the following figures dI/dV (arbitrary units) is normalized
to the maximum of dI/dV (arbitrary units) in the considered parameter range. The gate voltage is
set to zero by convention at the degeneracy point.

excited states. What striking is the occurrence of negative differential conductance
(NDC) features at moderate coupling (A = 0.68 and 0.83) which, however, disappear
when the coupling is increased (A = 1.18). Moreover, the NDC lines are only running
parallel to one of the diamond edges, which indicates an asymmetry with respect to
the gate voltage V. As we are going to explain, at low bias, these features are a con-
sequence of Franck-Condon-assisted tunneling combined with the spin and/or orbital
degeneracy in the system.

Specifically, let us focus on the low bias region, see Fig. 3.3(a), where only ground-
state <» ground-state transitions (region A), and ground-state <> first excited-state
transitions (regions B, C) are relevant. The 0- and 1-particle states involved are illus-
trated in Fig. 3.3(b), together with their degeneracy due to spin and orbital degrees of
freedom, and have energies below the dashed line in Fig. 3.3(b). The states above the
dashed line require an energy of at least 2hw and have thus also a vibron degeneracy.
In the considered energy range no degenerate vibron configurations are involved. More-
over, coherences between degenerate electronic configurations are not present such that
a rate equation description only in terms of populations is appropriate. At low bias
and in the stationary limit Eq. (2.35) yields the equation for the populations:

M=N=+1 E’

or, equivalently,

= > ZZZ( I —Ff,ﬁ;fprkE,?), (3.21)

M=N=+1 E'
where ¥ = 9Rel (NN and T2 = 2Rl (PHEY | see Egs. (3. 16) (3 18).
Note in partlcular that Faﬁk N = YufT (E]’Wrl — By — eVa) C,r and Faﬁl =

Yarf ( Ni1— En — eVa) Chk, i.e., they only differ in the Fermi factors. The transition
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Figure 3.3: (a) The low-bias transition regions of the stability diagram are labeled as A, B, C, D.
(b) Energy-level scheme for the relevant transitions in the stability diagram involving regions A-D.
Above the dashed line region D is activated with two vibron modes being in the transport window.
The energy of the lowest vibron mode is iw = 0.04 meV. The number of degenerate states is indicated
in bracket.
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Let us now focus on region A. In this case only the O-particle ground state |0, 0), see
Eq. (3.11), with energy Ej and the four 1-particle ground states |1, 0), see Eq. (3.12),
with energy EY contribute to transport. Moreover, inside region A it holds

fEY = By = eVi) =1,
1—f (B} — Ej —eVa) =1, (3.23)

such that, if Ya1 = Va2 = Yas Vs = 74, it also follows (|n) = 10,0), |k) € {|14,0)})
IR VRN NS WIS {1 (3.24)

This situation is illustrated in the table of Fig. 3.4, where a dashed red (black) arrow
indicates a transition involving the source (drain). Condition (3.24) with (3.21) then
implies that

,055 = pkEE Vk, and n (3.25)
and hence P := pfﬁ =5 Pl=3%, pkEg = 1, yielding, with Eq. (3.22) for the current
in region A, Iy = %FOO. Along similar lines we can calculate the current in regions
B and C. Let us start with region B where, see table of Fig. 3.4, the gate voltage V,
is such that the 1-particle ground states |15, 0) have energy EY smaller than the one,
EJ, of the 0-particle ground state |0,0). Moreover, in this region also the first excited
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state |1y, 1) with energy E} enters the transport window. We also assume that the
rate I'y; between the states |0,1) and |1, 1) is negligible with respect to I'gg and T';.
Corrections due to a finite [';; will be discussed later. Inside region B it holds, besides
Eq. (3.23), and hence Eq. (3.25), f (E1 E) —eVy)=1land 1—f (E] — Ey —eV4) = 1.

Hence, it follows that (|n) = [0,0), {\11@, )})
Tn=Y rfﬁﬁll =S i =1y, (3.26)

Eq. (3.21) implies thus that in region B it holds

g1
PyEuS = Pkk; = Pk = 9’ (3.27)

and hence Py = pfﬁ? =5 Pl =3, p,f,? =5 PE=>, pf,i = 5. The total current
in region B follows from Eq. (3.22) and reads I = § (I'oo + I'o1). The condition to
observe NDC is that Iz < 4, which implies

4
g < groo. (328)

Along similar lines, see table in Fig. 3.4, one finds for the transition from region A to
C that Io < 14 if

1
Lor < 5F00~ (3.29)
Let us look in more detail at Eqgs. (3.28) and (3.29). The rates I'gg and I'g; describe tran-

sitions between states which only differ in their vibronic part. From Eqgs. (3.24), (3.26)
and (3.14) it follows that

Tu _ pe (A,0,1) = N2 (3.30)
Loo
Hence, to observe NDC for the transition from region A to B one needs that \? <
On the other hand, for NDC in the transition from A to C we must require \? <
Indeed, as shown in Fig. 3.2, NDC for the transition A <+ B is observed for A = 0. 68
and 0.83, but it vanishes for A = 1.18. On the other hand, NDC is never observed
for the transition region A <+ C. Let us now turn to region B and to a finite I'y; =
Y FaEﬁnEk% =, Fi%k?’ with [n) = |0,1), & € {|1k,1)}. Because now |0,1) can get
populated, also transitions from |0, 1) to |15, 0) are activated, see Fig. 3.5.
Because of E} — EY > eV, eVy it holds

Flo_zrankl #FOl _Zrakn

Hence, the stationary solution with equal probabilities is spoiled, at finite I'1;, due to
the inequality of I'g; and I'jg. In fact, in the case I'y; = 0, the same inequality only

cnl»—'cnlu;
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Figure 3.4: In the table for each of the different regions A, B, C in the stability diagram, relevant
transitions, population of states, and current are given. PJ, P§ represent the population of the
O-particle ground and first excited states, respectively, and PY, Pf the population of the 1-particle
ground and first excited states. I is the corresponding current in each region. In the transition scheme,
the black arrows represent the drain and the dashed red arrows the source transitions. I'gg denotes
the transition rate from 0-particle ground state to the 1-particle ground state, while I'g; the transition
rate from the O-particle ground state to a 1-particle first excited state.

Figure 3.5: (a) Energy-level scheme for transitions in region B and (b) in region C. Importantly,
because the bias voltage is too low, the transition |1;,0) — |0,1) in region B and the transition
|0,0) — |1k, 1) in region C are not allowed.

implies that ,OEé = 0. We also note that f‘lo = I'19. Moreover, the rates I'y; and 'y
only differ in their vibronic configuration: it holds, cf. Eq. (3.15)

2

'y . o\ i 2 2
S A = (123,
= S| =0-x)

)

Likewise

Fll (1 — )\2)2

T X
Hence, if |A| & 1 it is indeed I'1; < T'gg, g1 and an expansion to lowest order in the
ratios B, L1 can be performed. In this case the conditions for NDC acquire a more

Too’ T
complicgotedo%orm. The condition to get NDC in the source threshold lines, from A to



3.5.2 Current-voltage characteristics at low bias with finite band mismatch | 47

B in Fig. 3.3(a), is
4 23
F()l < SFOO — 4_01—‘11’ (331)

while the condition for NDC in the drain threshold lines, from A to C in Fig. 3.3(a),

Is
1 7
For < =Too — —=TI'11. 3.32
o1 < zloo =t ( )

It means that the presence of chain transition processes redistributes the population
among the many-body states in a way that privileges the low energy states, see Fig. 3.6;
this in turn weakens NDC since it privileges the conducting channels that carry more
current. Eventually, let us consider explicitly the effects of the higher harmonics and
of the coherences between states with different vibronic configuration on the transport
characteristics of the system. In Fig. 3.7(a) we present the stability diagram for a
coupling constant A = 0.68 in which we artificially neglect the higher harmonics. By a
direct comparison with Fig. 3.2(a), it is clear that this approximation only marginally
affects the NDC and positive differential conductance (PDC) pattern, thus confirming
the dominant role played by the spin and pseudospin (orbital) degeneracies in the
gate asymmetry. The effect of the coherences, shown in Fig.3.7(b), is more complex.
Nothing changes for the lowest transition lines where no degeneracy is involved. For
higher biases, though, some source transition lines change their character from PDC
to NDC. Thus, the gate asymmetry introduced by the spin and orbital degeneracy
and the corresponding NDC (PDC) character of the source (drain) transition lines is
exact in the low-bias limit but should be taken only as a trend when several excited
vibronic states participate in the transport.

3.5.2 Current-voltage characteristics at low bias with finite
band mismatch

In this section, we discuss our results on vibration-assisted transport with the same
parameters as in Sec. 3.5.1 but with a finite orbital mismatch, i.e, eo # 0. In this case
the orbital degeneracy is broken. The corresponding stability diagrams are shown in
Fig. 3.8. The analysis for the NDC conditions at low bias remains almost the same
as before. Slight differences occur because in this case the orbital degeneracy is lost
and the populations are redistributed over the many-body states in a different way. In
Fig. 3.9(a), the different transition regions of the stability diagram have been labeled
while the energy-level scheme has been shown in Fig. 3.9(b), where the degeneracy of
each state is given in brackets. We again truncate the process at the dashed line to
analyze the lowest-energy excitations. As before [ = 1 and [ = 2 are the orbital degrees
of freedom. The transition scheme for regions D and F is shown explicitly in Fig. 3.10.
The current-voltage characteristics Figs. 3.8(a)-(c) and 3.8(d)-3.8(f) are qualitatively
the same as far as the mismatch is in the moderate regime kT < en < hw, the
only difference being the position of the resonance lines, which depends on the specific
position of the energy levels. In other terms, despite the size and the position of the
regions of the stability diagram, see Fig. 3.8, depend on the mismatch ex, the value
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Figure 3.6: Populations of the low-energy states corresponding to the stationary density matrix
calculated for different electron-vibron coupling A and different gate-bias ranges. The first column
corresponds to the case A = 1, thus I'y; = 0, while in the second column A = 0.83. The letters A, B,
C labeling the rows refer to the stability diagram regions defined in Fig. 3.3. The states are ordered
in energy. The rest of the parameters are the same as used for Fig. 3.2.
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Figure 3.7: Plots of the differential conductance for a coupling constant A = 0.68 with two different
approximations: (a) neglecting the higher harmonics of the system vibrations, (b) keeping coherences
between the degenerate states with different vibronic configurations. The rest of the parameters are
the same as used for Fig. 3.2(a).
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Figure 3.8: (a)-(c) Stability diagrams for coupling constants A = 0.68, 0.83 and 1.18, respectively.
Additional parameters are a thermal energy of kgT = 0.8 peV, orbital mismatch ea = 0.016gy =
0.56e; and vs = 74 = 0.02 peV while for (d)-(f) ea = 0.006eq. The rest of the parameters are the
same as used for Fig. 3.2.
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Figure 3.9: (a) The low-bias transition regions are labeled as A, B, C, D, E, F, G. (b) Energy-level
scheme for the transitions relevant in the low-bias regions of the stability diagram. As in Fig. 3.3,
hw = 0.04 meV. The degeneracy of each state has been shown in brackets.

of the current in each region is independent of it. Thus a unified treatment of the two
cases presented in Fig. 3.8 is allowed, despite their apparent qualitative differences. In
particular, we can observe that the current in region B is larger than the current in
region A since a new transport channel is opening with the same geometrical coupling
(I'gp) when passing from A to B. This implies that the first source threshold transition
line is always a positive differential conductance (PDC) line. The current in C is
equal to the one in A since, due to energy conservation, no new transport channel is
opening when passing from A to C. The corresponding resonance line is thus invisible
in the stability diagram, see Fig. 3.8. The transition that defines the threshold line
separating A from C (|1ge, 0) <> |0,1) at the drain) involves, in fact, states which are
not populated in that bias and gate voltage range. Finally, the comparison between
currents in the adjacent B and D regions and between the currents in the C and F
regions results in conditions for the appearance of NDC lines which are very similar to
the one in absence of mismatch. In particular, the condition for NDC at the transition
between regions B and D is identical to the one for the transition between regions A
and the B corresponding to zero mismatch given in Eq. (3.31). The NDC condition
for the transition between region C and F reads instead

Pop <—F7—Too+ - |1-—=

% ; = (3.33)

V57T —1 1( 3 )
F117

to be compared with the one for the transition between the regions A and C and
zero mismatch given in Eq. (3.32). A similar analysis can be repeated for higher-
energy transitions which participate in the transport for higher biases. It is already
clear though from the low-energy transitions that a moderate breaking of the orbital
degeneracy introduced by the finite mismatch e does not change qualitatively the
transport characteristics of the system. In particular, it preserves the presence or
absence of asymmetric NDC lines as a function of the electron vibron coupling A,
compare Figs. 3.2 and 3.8.



Figure 3.10: (a) Transition scheme for region D at ea = 0.016&¢. (b) Transition scheme for region
F at e = 0.016¢¢.

3.6 Asymmetric setup

In some of the experiments [43,89], the slope of the NDC lines is the same for both
positive and negative biases. This characteristic has been associated with the left and
right asymmetry in the coupling to the leads [89]. We confirm that including the
higher harmonics does not change the effect and give an analytical interpretation of
the numerical results for low biases. Hence, we retain source-drain symmetry but allow
for an asymmetry in the coupling to the two orbitally degenerate states. We show that
this asymmetry is sufficient to explain the experimental observations. In asymmetric
setup, we consider the following two different cases:

3.6.1 Effect of an asymmetric coupling of the different
orbital states to the leads

In this case, we focus on a situation in which one orbital is weakly coupled to the source
and drain leads compared to the other as shown Fig. 3.11(a). The Franck Condon
factors are still assumed to be the same for the source and drain tunneling and no
overall asymmetry is introduced in the tunnel coupling of the molecule dot to the
source and drain (vs1/2 = 7a,1/2). The theory can produce, though, alternating PDC
and NDC traces as discussed in Ref. [89] if we assume that coupling of the [ = 1 and
[ = 2 orbitals to be different. In Fig. 3.12 we have plotted the differential conductance
(d1/dV’) for an asymmetry parameter a = zZ—; = 1/45 where “1”7 |, “2” represent the
orbital degrees of freedom, respectively and o means source or drain. For convenience,
in the numerical calculations, we use parameters as in Figs. 3.2 and 3.8. As seen by
comparing Fig. 3.8 with Fig. 3.12, at A = 1.18 NDC can now occur. Moreover, an
alternation of PDC with NDC lines, as seen in the experiments [43,45,89] occurs.
Repeating the same analysis as in Sec. 3.5.2, we indeed find that: (i) the transition
from region A to B gives a NDC line for a > 3/2 independent of the value of \. (ii)
the condition governing the transition from region B to D is now modified to be (at
'y =0)

ryY ., 2+2a
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Figure 3.11: Schematic diagrams of a generic multilevel quantum dot (QD) asymmetrically coupled
to the leads and capacitively coupled to a gate electrode. The dot is in turn coupled to the nth
vibrational mode with energy fiw,, via a dimensionless coupling constant A,. 7s/q4,1 and ~s/q,2 denote
coupling constants of the orbital states 1 and 2 to the source (S) and drain (D) contacts, respectively.
(a) Orbitals 1 and 2 are symmetrically coupled to the source and drain leads such that orbital 1 is
weaker coupled compared to orbital 2. (b) Orbitals 1 and 2 are symmetrically coupled to the source
and drain, respectively, whereas orbital 2 is strongly coupled to the source and orbital 1 is weakly
coupled to the drain such that both the conditions a = % =1/45 and b = jﬁ = 45 are satisfied.
(c) Orbitals 2 and 1 are symmetrically coupled to the source and drain, respectively, whereas orbital

2 is strongly coupled to the drain and orbital 1 is weakly coupled to the source such that both the
conditions a = 72> = 1/45 and b = 23 = 1/45 are fulfilled.
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Figure 3.12: (a)-(c) Stability diagrams for a molecule for the case of a coupling to the leads which
depends on the orbital degree of freedom. All the parameters are the same as used in Figs. 3.2 and 3.8.
The asymmetry is a = 1/45 with orbital mismatch ex = 0.016¢.

which, for a < 1, increases the range of \ giving NDC also for A = 1.18, see Fig. 3.12(c).

I‘gg and Féll) are defined analogously I'gg and I'g; by considering the [ dependence of
the bare tunneling rates ;. (iii) the transition from region D to G is governed by the

condition: o
Lo _ e M, (3.35)
F(()%) 7—2a
which explains the persistence of a PDC line also for smaller values A\, compare again
Fig. 3.8 with Fig. 3.12. The corrections introduced by a finite I';; rate do not change
qualitatively the analysis and can be calculated for completeness as follows:
Here we give the conditions which determine the sign of the current change in the
transition from region B to D and D to G with finite mismatch ea, see Fig. 3.9. We
take only the first order contribution in the ratios I'11/Tgp and I'1;/Tg;. The validity
of these formulas is thus restricted to A =~ 1. The condition for the transition B to D

reads
2+ QCLF(Q) 14 + 9a (2)

@ _ 3.36
01 50/ 00 20(1 + a) 11> ( )
while for the transition D to G one obtains
2 1 4a® — 16a — 11
pe o Aot Dpe a7 - 16a 2) (3.37)

7—2a °  4la+1)(2a—7) 1

where @ = 741 /742 measures in both cases the asymmetry between the coupling to the
different orbitals.

3.6.2 Effect of the asymmetric coupling to the left and right
lead

In this section, we consider another asymmetric setup in which the effect of an asymme-
try in the coupling to the left and right lead in combination to the orbital asymmetry
discussed in the previous section is taken into account. We introduce the asymmetry
via the parameter b = 7y, /vg,; where | = 1,2 represents the orbital degree of freedom
and by convention ~,; = 1, for positive bias voltages. In Fig. 3.13 we present the sta-
bility diagrams for a molecule coupled to vibrons with an orbital asymmetry a = 1/45
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Figure 3.13: (a),(b) Stability diagrams for both an orbital and left and right asymmetry. All the
parameters are the same as used in Fig. 3.12(c). The asymmetry with respect to the left and right
lead is b = 45 in panel (a), while it is b = 1/45 in panel (b).

and two different left and right asymmetries. In Fig. 3.13(a) the asymmetry parameter
b =45, see Fig. 3.11(b), while b = 1/45, see Fig. 3.11(c), in Fig. 3.13(b). Since b is the
only parameter of the system that breaks the left and right symmetry, the differential
conductances in Fig. 3.13 can be obtained one from the other by a reflection of the
bias. The most striking effect of the left and right asymmetry is, though, to produce
the NDC lines always in the same direction, compare Figs. 3.12(c) and 3.13(a), both
for positive and negative biases. As in the previous sections, we studied analytically
the transitions lines separating the A, B, D and G low-bias regions of the stability
diagram, see Fig. 3.9. We could thus obtain the NDC conditions for arbitrary values
of the asymmetry parameters a and b. The transition line between region A and B is
a NDC line for every electron-vibron coupling A under the condition

2b+1

>
“Z o

, (3.38)

The NDC condition for the transition between the B and D region reads instead

2a+1) b

A2 )
ST a 1xa (3:39)
while the transition between the regions D and G is governed by the relation
2(a+1)b
N ——— 3.40
S 1126 a)p (3.40)

Egs. (3.38)-(3.40) allow a partial interpretation of the numerical results presented in
Fig. 3.13. It is in fact easy to demonstrate that, if b > 1, for sufficiently small values of
a (a < 1/b) the alternating NDC and PDC pattern at positive biases is not modified by
the left and right asymmetry parameter b. With the help of the same set of equations
and the symmetry property mentioned above we can also analyze the negative bias
transitions. The sequence of transitions between regions A, B, D, and G in Fig. 3.13(b)
reveals in fact a very different pattern of strong PDC transitions alternated by very
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weak NDC lines. This sequence can be obtained by the conditions expressed in Egs.
(3.38)-(3.40) by substituting b with 1/b in the limit b > 1. Unfortunately, due to
the peculiar structure of the harmonic spectrum, the number of states involved in the
regions E and F of the stability diagram grows rapidly and the analytical analysis of
the transition, even if possible, becomes very cumbersome. Our numerical findings are
nevertheless consistent with the ones reported by other groups [89], where the left and
right asymmetry has been given as a necessary condition for achieving NDC with the
same slope at both positive and negative biases.

The results presented in this chapter were worked out in collaboration with Andrea
Donarini, Sonja Koller and Milena Grifoni. They were published in

[83] Abdullah Yar, Andrea Donarini, Sonja Koller and Milena Grifoni, Phys. Rev. B
84, 115432 (2011).
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Chapter 4

Vibration induced memory effects
and switching in ac-driven
molecular nanojunctions

There is a considerable excitement and interest in the area of nanoscale quantum
switching. From a practical point of view, new switching paradigms are continually
being explored in order to advance the current switching based memory technology.
From a fundamental science point of view, the study of switching dynamics involves
deep physical insight into subtle issues such as memory, bistability and hysteresis in
nanoscale systems. One such experimental realization has been envisioned via molec-
ular electronics [94-97]. Electron-vibron interaction has profound consequences on the
transport characteristics of nanoelectromechanical systems [43,44,57,58]. Under ap-
propriate conditions, the system can even be driven to a bistable state where memory
effects can be expected. In this respect, different theoretical approaches have been
adopted to explore memory attributes in NEMS based nanojunctions [25, 98-103].
In this chapter, we investigate a vibron-mediated memory mechanism in a simple
Anderson-Holstein model system. The model consists of a single level weakly coupled
two metallic leads via tunnel barriers and capacitively coupled to a gate electrode that
modulates its electrostatic potential. In addition, the dot is coupled to a vibrational
mode as shown in Fig. 4.1.

4.1 The model

We consider a simple Anderson-Holstein model which appropriately describes trans-
port through vibrating quantum dots with a discrete spectrum. The Hamiltonian of
the central system is described as

Hsys = ]:Imol + I:Iv + He—w (41)
where ﬁmol represents a spinless single molecular level modeled by the Hamiltonian

Hyol = (20 + €Vy) d'd, (4.2)
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Figure 4.1: Schematic diagram of the system where a single level with energy £y is coupled to
a vibrational mode with energy hwg via a dimensionless coupling constant . The energy level is
broadened due to coupling to the leads. In turn the electrostatic potential of the dot is controlled by
a gate electrode.

where df(d) is the creation (annihilation) operator of an electron on the molecule and
go is the energy of the molecular level, and V; accounts for an externally applied gate
voltage. Here we assume a strong Coulomb interaction, U — oo, i.e., we have at most
one excess charge localized on the molecule. This approximation is appropriate when
eV, kT < U, with V}, being the bias voltage drop between the leads. The vibron
Hamiltonian can be written as

H, = hwy (a*a + %) : (4.3)

where af(a) creates (annihilates) a vibron with energy fiw,. Finally, the electron-vibron
interaction Hamiltonian is expressed as

He, = gdid (0" +a), (4.4)

where ¢ is a coupling constant. This model assumes that transport occurs through an
electronic state coupled to a single vibrational mode.

4.1.1 Diagonalization of the system Hamiltonian

To study the transport features of the system, the spectrum of the Hamiltonian de-
scribed by Eq. (4.1) is required which can be achieved by eliminating the electron-
vibron interaction in the same way as explained in Chapter 3. Hence, for the de-
coupling of electron-vibron interaction Hamiltonian, we apply the canonical polaron

unitary transformation [56]. Explicitly, we set, I:Isys = 8 ]:Isyse‘g , where

S =\d'd(at —a), (4.5)
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with A = h%o as the dimensionless coupling constant. The transformed form of the
electron operator is

A A

= dX, (4.6)

Qs

where X = exp [—/\ (&T — d)}. In a similar way, the vibron operator is transformed as
a=a—A\d'd. (4.7)

Now the transformed form of the system Hamiltonian reads

A~

. 1
Hy = ed'd + hwy (aTa + 5) , (4.8)

where € = gg+eVy— % is the polaron energy with polaron shift e, = Fu%' The polaron

eigenstates of the system are
In,m), = e %n,m), (4.9)

where n denotes the number of electrons on the molecular quantum dot, whereas the
quantum number m characterizes a vibrational excitation induced by the electron
transfer to or from the dot.

4.2 Sequential transport

We are interested to analyze the transport properties of the system in the limit of weak
coupling to the leads. The Hamiltonian of the full system is described in the form

~

H(t) = Hys + Hy + Y Ha(t), (4.10)

where o = s, d denotes the source and the drain contacts, respectively. The tunneling
Hamiltonian is given by

e =Yt (éjmci +dl éom> , (4.11)

where ¢! _(¢,x) creates (annihilates) an electron in lead a. The coupling between
molecule and leads is parametrized by the tunneling matrix elements ¢, and t4. Here,
we consider the weak coupling regime so that the energy broadening Al' of molecular
levels due to ﬁT is small, i.e., hl' < hwy, kg1, and a perturbative treatment for [:IT
in the framework of rate equations is appropriate. For simplicity, we assume that the
tunneling amplitude t,/q of lead s/d is real and independent of the momentum hx of
the lead state. In addition, we consider a symmetric device with t; = t4. Finally, the
time dependent lead Hamiltonian is described by

Ho(t) =) [en + Apta(t)] & clan. (4.12)

K
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t=t1

Figure 4.2: Schematic representation for the x-independent shift of all single-particle levels of the
lead in the vertical direction, i.e., along y-axis.

The above equation describes the lead Hamiltonian of non-interacting electrons with
dispersion relation ¢,. The time-varying chemical potential Ay, (t) of lead o depends
on the applied bias voltage, and yields x-independent shift of all the single-particle
levels as schematically shown in Fig. 4.2.

4.2.1 Time dependent master equation

In this section, we calculate the dynamics of the system in the same way as discussed
in Chapter 2. However, in this chapter the equation of motion for the reduced density
matrix (RDM) of the molecular junction is solved accounting for the time-dependence,
Eq. (4.12), of the leads Hamiltonian H,(t). We also derive the important time scale
relations which govern the switching dynamics of the system. Hence, we start with the
well known Liouville equation for the time evolution of the density matrix for the full
system consisting of the leads and the generic quantum dot as

o Opreq(t ST A
zhpr(;—(;() = Tricads [H%(t),pl(t)] : (4.13)

for the reduced density matrix preq(t) = Trieaas {4(t)} in interaction picture, where the
trace over the leads degrees of freedom is taken. In the above equation, HZL(t) is the
tunneling Hamiltonian in the interaction picture to be calculated as below:

HE) =3t [élnd(t)e%[“”ca(t” + h.c} , (4.14)
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where (,(t) = ft'; Ao (t')dt’. We make the following standard approximations to solve
the above equation: (i) The leads are considered as reservoirs of noninteracting elec-
trons in adiabatic thermal equilibrium. Note that this implies that the time scale of
variation of the external perturbation has to be large compared to the relaxation time
scale of the reservoirs, cf. Eq. (4.19) below. We assume the coupling between system
and reservoirs has been switched on at time ¢t = to and consider a factorized initial
condition. Thus at times t > #, it holds p!(t) = pl(t) ® pspa + O(t — to)O(Hr) =
pgys(t) ® Pleads + O(t — tO)O(]:IT). Here pyq = Zsl/d e~ B a®)=1sa®Ne/a) denotes the
thermal equilibrium grandcanonical distribution of lead s/d, Zs/q is the partition func-

~

tion, [ the inverse of the thermal energy, N the electron number operator, and
tssa(t) = po + Apsa(t) is the time dependent chemical potential of lead s/d which
depends on the applied bias voltage. Note that the levels shift is taken into account by
the time-dependent perturbation Agg/q(t), while the change in chemical potential is
taken into account accordingly via the chemical potential 1i5/4(t) so that the net posi-
tive or negative charge accumulation in the leads is avoided. Conventionally, we take
the molecular energy levels as a fixed reference and let the bias voltage drop across
the source and drain contacts through the Fermi energies as [104]

pis(t) = po + (1 —m)eVi (),
pa(t) = po — neVi(t), (4.15)

where 0 < 1 < 1 describes the symmetry of the voltage drop across the junction.
Specifically, n = 0 corresponds to the most asymmetric situation, while n = 1/2
represents the symmetric case. In addition, we consider a sinusoidally-varying bias
voltage, i.e., V4, (t) = Vjsin(wt), where w is the frequency of the driving field. (ii) Since
we assume weak coupling of the molecule to the leads, we treat the effects of Hy
perturbatively up to second order. Accounting for the time-evolution as in Eq. (4.14)
of the leads creation/annihilation operators, we find:

ita(®) == Lok [av{ e - w)dtde)3ttt)

x erErt=t)HaO=C] 11— (e — po)]
X dF (1) d() plag (1o HER 16O Cal®)

— (1= fa(ex — po)] d(t)plea(t")d' (t')

x erlEr WG] _ ¢ (e o) df(¢)

X ;’){ed(t’)j(t’)e—%[sﬁ(t—t’)+<a(t)—<a(t’)] + h.c}. (4.16)

In the derivation of the above equation we have used the relation: Trieads { ¢f,cCarnfspa | =
Oaa Ot | (Ex — o), where f (£, — po) is the Fermi function, and the cyclic property of
the trace. By summing over xk we obtain the generalized master equation (GME) for
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the reduced density matrix in the form

. ta 2 t - 2. i ’
) == 3 et | dt’{Faa — ' ao) () ()l (¢ e HEe 0760
to

o Falt =t —po)d (Dd(t)pfea(t )™ 70O
= F(t =t —p)d(0)plog () ()=

CE— 1 o) ()L () (e HEe O] h} (4.17)

where the correlation function F, (t —t', uo) of lead o whose detailed derivation is
given in Chapter 2 has, in the wide band limit, the following form:

F(t—t, o) = ThDe'n (tt){ét—t’ — ! , } 4.18
(8=t o) = whDac™s (t=1) B3 sinh [r 1] (4.18)

which decays with the time difference t — t' approximately as exp [—W(t;;)] on the

time scale % Here D, is the density of states of lead « at the Fermi level. (iii)
Since we are interested in the long-term dynamical behavior of the system, we set
ty — —oo in Eq. (4.17). Furthermore, we replace ¢’ by t — ¢”. We then apply the
Markov approximation, where the time evolution of p ; is taken only local in time,
meaning we approximate prea(t — t”) ~ prea(t) in Eq. (4.17). In general, the condition
of time locality requires that [88]

Here we defined from Eq. (4.17) together with Eq. (4.18), Ty = 2%[t4|*D, as the bare
transfer rates and hI' = > _Al', as the tunneling-induced level width. Finally, the
condition of adiabatic driving Eq. (4.19) allows to approximate (,(t) — (o (t — ") =

Apg(t)t”. Taking into account these simplifications, the generalized master equation
(GME) for the reduced density matrix acquires the form

ity == ok ["ard e i - )it

b FIE, (O (0 — ) ()
P, —pra(d(OpLa()d (¢ — )
P (O () pla0)d( — 1) +h.c.}, (4.20)
where F[t" . (t)] = Fa(t”, ,uo)ehA“a(t)t

Since the eigenstates |n,m), of Hsys are known, it is convenient to calculate the time
evolution of p!_, in this basis. For a generic quantum dot system, this projection yields
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a set of differential equations coupling diagonal (populations) and off-diagonal (coher-
ences) components of the RDM. For the simple Anderson-Holstein model Eq. (4.1) co-
herences and populations are, however, decoupled. In the sequential-tunneling regime,
the master equation for the occupation probabilities P = | (n, m|prea|n, m); of finding
the system in one of the polaron eigenstates assumes the form

Z T ) Z Tt (4.21)

Here, the coefficient I} 7™ denotes the transition rate from |n’,m’); into the many
body state [n,m);, while [7™" describes the transition rate out of the state |n,m);
to |n/,m’);. Taking into account all possible single-electron-tunneling processes, we

obtain the incoming and outgoing tunneling rates, in the wide band limit, as
Fg‘_ﬁm = Z CoFl [T [5 + hwo (m' —m) — ua(t)}

= Z T (t) (4.22)

7 om(t) = Z Lo B [~ [+ T (M — m) — p1a(t)]

= Z Tmom(t) (4.23)

where the terms describing sequential tunneling from and to the lead « are proportional
to the Fermi functions f*(z — pa) = f(x — o) and f7(x — po) = 1 — f(x — pa),
respectively. The factor F,,, = |(m|X|m')|? is the Franck-Condon matrix element
which can be calculated, with X defined in Sec. 4.1.1, explicitly by determining the
matrix elements

(rld|s) = e 2 F (A, m,m), (4.24)

where |r) and |s) represent the eigenstates given by Eq. (4.9). The function F'(X\, m,m’)
determines the coupling between states with a different vibronic number of excitations
with effective coupling A and is given by Eq. (3.15). Consequently, the FC factor F,,
is defined as

For = € N F2(\, m,m). (4.25)

Thesumrules ) Fop =Y, Fom = 1 are well satisfied because of the completeness
of each vibrational basis set {|0,m)} and {|1,m’);}. This factor describes the wave-
function overlap between the vibronic states participating in the particular transition.
It contains essential information about the quantum mechanics of the molecule and
significantly influences the transport properties of the single-molecule junction. Within
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the rate-equation approach, the (particle) current through lead « is determined by, cf.
Eq. (2.41)

L(t) = (Ta il (P (8) = TH2 O (1)) (4.26)

mm/

and it is in general time dependent. Moreover, differently from the stationary case, in
general I (t) # —Ig(t). The charge is though not accumulating on the dot since, for
the average quantities

t+Tex
I = lim dt'1,(t") (4.27)
t—o00 t
it holds I}, av = —IRav, as it can be easily proved considering that the average charge

on the dot oscillates with the same period T¢, of the driving bias. Finally, in the DC
limit w — 0 the relation I1,(t) = —Ix(¢) holds as the fully adiabatic driving allows to
reach the quasi-stationary limit at all times.

4.3 Lifetimes and bistability of states

In this section, we show that when the bias voltage drop is asymmetric across the
junction, upon sweeping the bias, one can tune the lifetime of the neutral and charged
states to achieve a bistable system. The lifetime of a state is obtained by calculating
the switching rate of that state. The lifetime 7,,, of a generic quantum state |n,m);
is given by the sum of the rates of all possible processes which change this state, i.e.,

Tom = > _ Tt (4.28)

Thus, at finite bias voltage, the inverse lifetime of the O-particle mth vibronic state is
given by the relation

7_0_7; = Z Fame’f+ [5 + hwo (m/ - m) - Moc}- (4.29)

a,m/’

In a similar way, the inverse lifetime of the 1-particle and mth vibronic state is ex-
pressed as

Ty = Z Lo P [~ € + Ry (m — m') — pa]. (4.30)

a,m/’

A consequence of Eqgs. (4.29) and (4.30) is that, due to the characteristic features of
the Franck-Condon matrix elements, in the strong electron-vibron coupling regime, the
tunneling with small changes in m —m’ is suppressed exponentially. Hence, only some
selected vibronic states contribute to the tunneling process. However, tunneling also
depends on the bias voltage and temperature through the Fermi function. To proceed
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further, let us focus first on the lifetime of the 0- and 1-particle ground states for the
case of fully asymmetric coupling of the bias voltage to the leads, i.e., n = 0:

A2y om/
e VA
oo = Z T{st+ (e +m'hwo — po — €V3)
-+ Fder (8 + m/th — ,uo)}, (431)
. €—>\2)\2m’ B )
mio' =D, ——or—ATaf " (e = m'hiwo — o — eVi)
-+ Fdf_ (8 — m'ﬁwo — [LQ)} (432)

One can see from Eq. (4.31) that if in the considered parameters range is € +m/hwy >
o, i.e., f (e 4+ m'hwy — po) — 0, then the second term in the bracket is negligible.
The first term is nonzero at large positive bias, while at large negative bias it remains
negligible. In a similar way one can analyze the behavior of 7;,' in which the first
term on the r.h.s. of Eq. (4.32) will be dominating at large negative bias. In order
to understand the mechanism of this process the energy-level scheme for the relevant
transitions in a coordinate system given by the particle number N and the grand-
canonical energy £ — po/N shown in Fig. 4.3. We choose V, = 0 and jop = 0. Moreover,
the polaron energy levels are at resonance with the 0-particle states for our chosen set
of parameters: we set ¢, = €9 and hence ¢ = 0. Then the only transitions allowed at
zero bias are ground state <> ground state transitions. At finite bias also transitions
involving excited vibronic states become allowed. In particular, at V;, = 0 it follows
from Egs. (4.31), and (4.32) that

7ot (Vi = 0) = 755" (Vi = 0) = e M (Ts + Tq) /2, (4.33)
while at |V4,| — oo it holds

700 (Vo = 00) = 73 (V, = —00)

r
=T+ ide—kz ~Ty=71, (4.34)
whereas
-1 -1 L'y -2 _ 1
Too (Vb = —00) =110 (Vb = 00) = —e " =1, (4.35)

2 max’

In practice the asymptotic behaviors are already reached at e|V;|/hwy ~ 2A? as ob-
served in Fig. 4.3(b). Note that Tyax and 7y, set the maximum and minimum achiev-
able lifetimes which, due to Tax/Tmin ~ e’\Z, can differ by several orders of magnitude
for A > 1. Note also that near zero bias the lifetimes are so long that the system never
likes to charge or discharge and a bistable situation is reached. A selective switching,
however, can occur upon sweeping the bias voltage. Hence, 7., also sets the time scale
for switching: T ~ Tswitch-
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Figure 4.3: (a) Energy-level scheme for the relevant transitions in a coordinate system given by
the particle number N and grandcanonical energy E — uoN at V}, = 0. The red lines represent the
transitions threshold, where the thickness of each transition line gives the strength of the transition.
The polaron energy levels are aligned with the O-particle states for our chosen set of parameters
(o = 0, Vg =0, g9 = 25wy, A = 5) yielding the polaron shift e, = go. (b) Inverse lifetimes
(7'71011)_1 on logarithmic scale as a function of normalized bias voltage eV}, /hiwg. The red thick line
represents the inverse lifetime of the 1-particle ground state, while the thin blue line refers to the

0-particle ground state.
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Figure 4.4: Inverse lifetime (7,,,,')"" as a function of normalized bias voltage Vi /hwy for (a)
vibronic ground states, (b) first excited states, (c) second excited states, (d) third excited states, (e)
fourth excited states, (f) fifth excited states when Vy; = 0. The blue thin line represents the inverse
lifetime of the O-particle state (n = 0), while the thick dashed red line refers to the 1-particle state
(n =1). The asymmetry parameter is 7 = 0 and we fix the zero of the energy at the leads chemical
potential at zero bias: pg = 0. The energy of the molecular level is ¢y = 25hAwy. The electron-
vibron coupling constant is A = 5 yielding a polaron shift €, = €. Finally, the thermal energy is
kT = 0.2hwy, the frequency of the driving field is w = 0.002wy, and I'y = 'y = 0.006wy.
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Figure 4.5: Inverse lifetime (7,,,I) "
vibronic ground states, (b) first excited states, (c) fifth excited states when eV /hwy = 8, while (d)
shows vibronic ground states, (e) first excited states, and (f) fifth excited states, when eV, /hwy = —8.
The remaining parameters are the same as used in Fig. 4.4.

as a function of normalized bias voltage eV}, /fuwy for (a)
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Analogously, we can explain the behavior of the lifetimes of the excited states, see
Fig. 4.4. It follows that in the considered parameters range, in general, the O-particle
vibronic states are stable at large enough negative bias voltage, while the 1-particle
vibronic states are stable at large positive bias. There is, however, an interval of bias
voltage, the so-called bistable region, where both states |1,m'); and |0,m); are stable
for not too large m and m’, as shown in Fig. 4.4. Moreover, m steps are observed in
the inverse lifetimes 7,1 see Figs. 4.4(b-f), because for certain values of the coupling
constant A some of the FC factors F;,,,» vanish or are exponentially small such that the
additional channels opened upon increasing the bias voltage do not have pronounced
contribution. For instance, the FC factor for the first excited vibronic state can be
described as

(m' — )2, (4.36)

which vanishes for m’ = A\?. That is why a plateau around eV;,/hiwy = 25 in Fig. 4.4(b)
is observed for our chosen parameters. Analogously, for the second excited vibronic
state, one has the expression for Fj,, in the form

\2(m'~2)

2lm/|

21
Fypy = e {§>\6 - ;x* + 207 + [m” —m/(142)%) + A4]2}, (4.37)

which has two minima at

142X+ 14 4)2
= m
2 M

142N - VT AN

5 (4.38)

my 2
Hence, two plateau can be observed, see Fig. 4.4(c), around eV}, /hwy = 20 and
eVh,/hwy = 31. Similar arguments can be extended to explain the steps in the inverse
lifetimes of higher excited states. This also implies that the bias window for bistability
shrinks for excited states and even disappears for large enough m. It follows that the
major contribution in bistability is coming from low excited vibronic states. Note that
the bistability of the many body states is crucial for the hysteresis and hence memory
effects which is discussed in the next section. Finally, a closer inspection of Fig. 4.4
reveals that the minimum of the inverse lifetime increases with the vibronic quantum
number m. This effect can be understood easily by analyzing the minimum of the in-
verse lifetime for each particle state. For example the minimum of the inverse lifetime
for the O-particle vibronic ground state is, cf Eq. (4.35), whereas for the O-particle
vibonic first excited state is

r
7 (Vi) — —o0) = 5(1 + AHe (4.39)

From Eqs. (4.35) and (4.39), one can conclude that 755" (Vi, — —o0) < 75, (Vi, — —00).
A similar explanation can be extended to the higher excited states. For gate voltages
such that eV, > 0, the 1-particle vibronic excited states are becoming unstable faster
than the O-particle states, see Fig. 4.5(a)-(c), while for large negative gate (eV, < 0),
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the O-particle states are getting unstable fast, see Fig. 4.5(d)-(f). In order to explain
this effect, we analyze the shift of the inverse lifetime of the 0-particle vibronic first
excited state, 7'0_11, as follows:

The maximum of the inverse lifetime for V, # 0 is

7o' (Vb = 00) =g+ Ta Y Fin f(eVy + hwo(m — 1)), (4.40)

whereas the minimum is given by

T (Vb = —00) =Tq > Fiof(eVy + hwg(m — 1)). (4.41)

Eqs. (4.40) and (4.41) imply that both minimum and maximum of 75,' shift by an
equal amount and the condition of the bistability region can be tuned by setting V.

4.4 Quantum switching and hysteresis

Neutral and charged (polaron) states correspond to different potential energy surfaces
and transitions between low-lying vibronic states are strongly suppressed in the pres-
ence of strong electron-vibron interaction. This leads to the bistability of the system.
Upon applying an external voltage, one can change the state of this bistable system ob-
taining under specific conditions hysteretic charge-voltage and current-voltage curves.
Here it is crucial to point out that only if the time scale of variation of the exter-
nal perturbation is shorter than the maximum lifetime but longer than the minimum
lifetime of the system hysteresis can be observed, i.e.;, Tmin ~ Tewiteh < Tex < Tmax-
Due to Tmax > Tex, the system stays in the stable state during the sweeping until the
sign of the perturbation changes, the former stable state becomes unstable and, due
to Tox < Tmin, @ switching to the new stable state can occur. In this section we now
consider the situation when w ~ TI', i.e., Ty ~ Tywiten While in Sec. 4.5 the regime
w < ' e, Tox > Towiten 18 addressed. In Figs. 4.6 and 4.7 we present the populations
of the electronic states, P, =) P, as well as of the vibronic states, P =) P,
respectively. Specifically, in Fig. 4.6(a)-(b), we have plotted the populations of the 0-
and 1-particle electronic states as a function of normalized bias voltage, where hys-
teresis loops can be seen. In Fig. 4.6(c), instead, we have shown the population of the
O-particle electronic state as a function of time. The latter can be used to determine
the time 7yyiten Of switching between the neutral and charged states. In a similar way,
the sweeping time T, of the bias voltage can be calculated using Fig. 4.6(d). By com-
parison of these two time scales, it is apparent that the switching time is of the same
order as the sweeping time and much shorter than the lifetime in the bistable region,
see Fig. 4.3. The relation 7yyiten & Tox also explains why the switching between the
neutral and charged state is on average never complete (P, oscillates between 0.2 and
0.8). In Fig. 4.7, the populations of the vibronic states as a function of the normalized
bias voltage are shown, while in Fig. 4.8 the populations of the different vibronic states
resolved for different charges have been plotted. Clearly not only the vibronic ground
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Figure 4.6: (a)-(b) Occupation probabilities Py and P; of the 0- and 1-particle electronic states
as a function of normalized time dependent bias voltage eV, /hwg, (c) population of the O-particle
configuration as a function of time; (d) normalized bias voltage as a function of time. The parameters
are the same as used in Fig. 4.4.
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Figure 4.7: Populations P™ of the vibronic states as a function of normalized time dependent bias

voltage eV, /fiwg for (a) ground state, (b) first excited state, (c) second excited state, and (d) fifth
excited state. The parameters are the same as used in Fig. 4.4.
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Figure 4.8: Plots of the population P as a function of normalized time dependent voltage eV}, /fiuwg
for the O-particle vibronic (a) ground state, (b) first excited state, (c¢) fifth excited state, and for the
1-particle vibronic (d) ground state, (e) first excited state, (f) fifth excited state. The parameters are
the same as used in Fig. 4.4.

states (which were considered in Ref. [102]) show hysteretic behavior but the vibronic
excited states also exhibit these interesting features. Furthermore, inspection of these
figures reveals that even after relaxation on the stable limit cycle, the vibronic excited
states are highly populated in the non-stationary case in contrast to the stationary
case w — 0, see e.g., Figs. 4.17 and 4.19, where the population of the excited states
is strongly suppressed. Hence it is natural to take into account the vibronic excited
states in the dynamics of the system.

4.4.1 Memory effects in the current-voltage characteristics

The hysteretic behavior of the bistable system is also reflected in the current as a func-
tion of normalized bias, see Fig. 4.9, where a hysteresis loop (single loop) is observed
in the current calculated both at the left and the right lead. Interestingly, the left and
the right currents differ by more than a sign, in contrast to the stationary case. This
behavior is understandable again in terms of relaxation time scales. In fact, for volt-
ages |V,| outside the bistable region the system relaxes to the stationary regime on a
time scale Tyyiten- Though, since the driving time 7T, has the same order of magnitude,
the stationary regime cannot be reached. Yet, no net charge accumulation occurs since
It v = —IRay. In Fig. 4.10, we plot the left time dependent current as a function of
the normalized bias for different values of the electron-vibron coupling constant. An
inspection of this figure reveals that the width of the hysteresis loop decreases and
shifts from zero bias upon decreasing the coupling constant A. This feature can be un-
derstood by observing that for A # 5 the polaron shift €, does not longer compensate
the energy of the molecular level £y, and hence the polaron energy € # 0. In other
words, the system is no longer behaving symmetrically upon exchange of the sign of
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Figure 4.9: Time dependent current as a function of normalized voltage for (a) left lead, (b) right
lead. The parameters are the same as used in Fig. 4.4.

the bias voltage. If we consider e.g. the case A = 1 is, for Vy = py = 0, ¢/hwy = 24.
In turn this implies that 75,'(Vi, = 0) ~ 0 and 7;,(V4, = 0) ~ Iy + Iy, i.e., the
region around zero bias is no longer bistable as for the case A = 5. Hence the dot is
preferably empty at zero bias. Switching however can be reached upon increasing V4, in
the region around eV}, ~ e. Overall however the bistability region has shrunk. Similar
considerations apply to the other considered values of .

4.4.2 Role of vibron energy in memory attributes

In this section, we illustrate the role played by the vibronic energy in the hysteretic
behavior of the system. The vibron energy of the whole system can be expressed as

1
Ev = TI‘SyS {pAredEWO (&Td + 5) } ) (442)

where the trace is taken over the system degrees of freedom. The normalized vibronic
energy as a function of normalized bias voltage is depicted in Fig. 4.11(a), where
hysteretic loops are also observed. The value of the vibronic energy, together with the
observation that the probability distribution is relatively flat over the excitations, see
Fig. 4.8, ensures that, depending on the bias, between 10 and 20 vibronic excited states
are considerably populated. Further insight in the dynamics of the system is obtained
by considering the correlation between the vibronic energy and the charge occupation.
The vibron energy associated with the O-particle state is determined by the relation

1
By = Trys { pohg (&Ta + 5) } : (4.43)

with po = preal0,m)11(0,m|. In Fig. 4.11(b), the normalized vibronic energy as a
function of normalized bias voltage for the O-particle configuration has been plotted.
The hysteresis loop resembles that of Fig. 4.6(a) implying a direct correlation between
the vibronic energy and the population of the neutral state i.e., the more the neutral
state is occupied the higher is the associated vibronic energy. Qualitatively the result
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Figure 4.10: Time dependent current for left lead as a function of the normalized voltage for coupling
constants (a) A =4, (b) A =3, (¢) A =2, and (d) A = 1. The remaining parameters are the same as
used in Fig. 4.4.



| 77

(@) (b) (c)

20 10 10
15 S S

30 2 5 2 5
£ S =
> 10 > pe
w L L

5 0 0

-60  -30 0 30 60 60 -30 0 30 60 60 -30 0 30 60
eVp/hwyg eVp/hwg eVp/hwy

Figure 4.11: (a) Total vibron energy as a function of the time dependent bias voltage. (b) Vibron
energy for the O-particle, and (c) for the 1-particle configuration only. Parameters are the same as
used in Fig. 4.4.

can be explained as follows: transitions from the charged to the neutral states are
predominantly involving low energy charged states and highly excited neutral states.
Due to energy conservation and asymmetric bias drop these transitions are confined
to the large negative biases where the highly excited neutral states show also a long
life time. This situation remains roughly unchanged during the up sweep of the bias
until the symmetric condition is obtained at high positive bias and the charged excited
states are maximally populated. Finally, the bistability around zero bias explains the
hysteresis. The analytical expression for the vibronic energy of the 1-particle state is
given by

1
Eyq = Try { p1hwo (a*a + 5) } , (4.44)

with p; = prea|l, m)11(1, m|. The normalized average vibron energy as a function of
normalized bias voltage for the 1-particle configuration is sketched in Fig. 4.11(c),
where we can observe a hysteresis loop resembling that of Fig. 4.6(b). In conclusion,
the vibron energies also show hysteretic behavior, in analogy to the population-voltage
and current-voltage curves, in the non-stationary limit.

4.5 Testing lower driving frequencies

When lowering the driving frequency w (w < I') of the external perturbation, we
choose w = 2 x 107wy, our model displays features similar to those presented in
Ref. [102]. In more detail, we show the population of the electronic states as a func-
tion of normalized bias and time in Fig. 4.12(a)-(b), Fig. 4.12(c), respectively, whereas
in Fig. 4.12(d) the normalized bias as a function of time is shown. In this case the
population-voltage curve is slightly different from Fig. 4.6 because the transition be-
tween 0 and 1 occurs more abruptly as a function of V4, and it is complete. Indeed,
for the parameter chosen in Fig. 4.12is ¢ = 0 and 7,1, ~ wpin < w < T ~ 71 0. In
other words the frequency is small compared to the charge/discharge rate. The system
thus follows adiabatically the changes of the bias voltage and only switches at those
values of the bias where 7,0 ~ Tawiten. The time-dependent left current as a function of

normalized bias is shown in Fig. 4.13(a) giving two loops, one for positive bias sweeping
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Figure 4.12: (a)-(b) Population of the 0- and 1-particle electronic states as a function of the bias
voltage, (c¢) population of the O-particle electronic state as a function of time, and (d) normalized
bias voltage as a function of time. The frequency of the driving field is w = 2 x 10~ 5wy. The other
parameters are the same as used in Fig. 4.4.
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Figure 4.13: Plot of the time dependent current as a function of normalized voltage for (a) left
lead, (b) right lead. The value of gate voltage is V; = 0 and the frequency of the driving field is
w =2 x 107 %wy. The other parameters are the same as used in Fig. 4.4.

and the other for negative sweeping. The right current is shown in Fig. 4.13(b). Due
to the extremely low frequency the currents substantially fulfill the quasi-stationary
relation I (t) = —Ig(t) associated to a fully adiabatic regime. In Fig. 4.14, we present
the populations of the vibronic states and hysteretic loops are visible. Vibronic states
with quantum numbers up to A all display nonvanishing populations, much less than
in the case Ty & Tawitch-

4.6 The DC-case (w — 0)

In this section, we consider the limit (w — 0) of DC-bias as a special case of the
master equation presented in the previous section and compare the results. Even if the
system still exhibits the bistable properties discussed in Sec. 4.3 (they are in fact not
related to the sweeping time of the bias) the hysteretic behavior cannot be observed
anymore. In Fig. 4.15, we present the population of the electronic states for gate
voltage V, = 0. At large negative bias the system is empty, while at large positive
bias it is charged. The system makes transitions from the 0- to 1-particle state near
zero bias. Analogously, in Fig. 4.16, the population of electronic states as a function
of normalized bias is depicted for gate voltage eV, /hwy = 8. Due to a finite ¢, the
transition 0 — 1 occurs at positive bias voltages. Moreover, the populations of the
vibronic states are sketched in Fig. 4.17 for gate voltage V, = 0, which clearly shows
that, for the considered parameters, only the vibronic ground state and first excited
state are populated, whereas the populations of higher excited states are very small.
This is in contrast to the non-stationary case where the excited states are highly
populated, see Fig. 4.7. In a similar way, the populations of the vibronic states for
gate voltage eV, /hwy = 8 are presented in figure 4.18 where higher excited states also
get populated. Finally, in Figs. 4.19 and 4.20 we show the populations of the 0- and
1-particle vibronic states for gate voltages V; = 0 and eV} /hwy = 8, respectively, which
basically provide the same information as mentioned before.
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Figure 4.14: Plots of populations of vibronic (a) ground state, (b) first excited state, (¢) second
excited state, and (d) fifth excited state. The frequency of the driving field is w = 2 x 10~ %wg. The

other parameters are the same as used in Fig. 4.4.
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Figure 4.15: Population of (a) the O-particle electronic state, (b) the 1-particle electronic state. The
value of gate voltage is V; = 0, and the frequency of the driving field is w < 1/7max. The other
parameters are the same as used in Fig. 4.4.
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Figure 4.16: (a) Population of the 0-particle electronic state, (b) population of the 1-particle elec-
tronic state. The value of the gate voltage is eV, /hwo = 8, and the frequency of the driving field is
w < 1/Tmax. The other parameters are the same as used in Fig. 4.4.
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Figure 4.17: Populations as a function of normalized bias voltage for (a) vibronic ground state, (b)
first excited state, (c) second excited state, and (d) fifth excited state. The frequency of the driving
field is w < 1/Timax. The other parameters are the same as used in Fig. 4.4.
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Figure 4.18: Population as a function of normalized bias voltage for (a) vibronic ground state, (b)
first excited state, (c) second excited state, and (d) fifth excited state. The value of the gate voltage
is eVy/hwy = 8, and the frequency of the driving field is w < 1/Tax. The other parameters are the
same as used in Fig. 4.4.
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Figure 4.19: Populations P} as a function of normalized bias voltage for the 0-particle (a) vibronic
ground state, (b) first excited state, (c) second excited state, (d) third excited state, (e) fourth excited
state, (f) fifth excited state, (g) sixth excited state, (h) seventh excited state, and (i) eighth excited
state. The frequency of the driving field is w < 1/Tnax- The other parameters are the same as used
in Fig. 4.4.
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Figure 4.20: Population as a function of normalized bias voltage for the O-particle (a) vibronic
ground state, (b) first excited state, (c) fifth excited state and (d) 1-particle ground state, (e) first
excited state, (f) fifth excited state. The value of the gate voltage is eV /fwy = 8, and the frequency
of the driving field is w < 1/Tax. The other parameters are the same as used in Fig. 4.4.

4.6.1 Current-voltage characteristics for the DC-case

In the DC-case the analytical expression for the current remains the same as given
by Eq. (4.26) taking into account a time independent bias. Let us first discuss the
situation when the 0- and 1-particle states are in resonance, € = ¢y — ¢, = 0 and
Ve = 0. In this particular case, an interesting behavior of the I-V characteristics with
two opposite current peaks around zero bias can be observed, see Fig. 4.21. In order to
understand the mechanism of this process, we consider the source current which can
be expressed in the form

=T Fe{f"[e + hwy (m' = m) — V3] B
——

— [ [e 4 B (m! —m) — eV P} (4.45)
At V, = 0 only ground to ground state transitions are open and P = P} = 1.
Hence in this region the current is zero. At large positive bias, i.e., Vj, — oo, the
current is zero because the system is in a 1-particle stable state and no new transition
channel is available. For finite bias, the behavior of the Franck-Condon factor F,,,, is
of importance. In particular, it suffices to investigate the classically allowed transitions
as determined by the Franck-Condon parabola [17,61]. The minimum of the parabola
is for m = m/ ~ (%)2, ie., m,m' < (%)2 transitions are exponentially suppressed.
Moreover, F,,, attains the maximal values for F,,,, = F0 or Fy,,v = Fy,w and m
or m’ of the order of A\2. Hence Fig. 4.19 describes a threshold effect. The populations
P of the 1-particle states are mirror symmetric with respect to the bias inversion
(not shown). Analogously, we can analyze in the same way as above the current peak

in Fig. 4.22 which occurs at eV}, ~ ¢ for gate voltage eV /hwy = 8.
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Figure 4.21: Current as a function of normalized bias. The frequency of the driving field is w <
1/Tmax- The other parameters are the same as used in Fig. 4.4.
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Figure 4.22: Current as a function of normalized bias. The value of gate voltage is, eVy/hwy = 8.
The other parameters are the same as used in Fig. 4.4.
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Chapter 5

Electronic band structure of
SWCNTs

Carbon nanotubes are an interesting realization of one-dimensional (1D) electronic sys-
tem due to their remarkable electrical and mechanical properties inherited from the
unusual band structure of a graphene sheet [106]. A short time after their discovery
by Tijima [107], carbon nanotubes became an attractive research field with promising
perspectives for applications and fundamental science. Suspended single-wall carbon
nanotubes (SWCNTSs) provide ideal building blocks for NEMS (main focus of this
thesis), due to a low mass, easy scalablility through their length, and a large Young’s
modulus of rigidity, typically 1.25 TPa, which is almost an order of magnitude higher
than that of silicon [106]. In this chapter, the physics of noninteracting electrons in
single-wall carbon nanotubes (SWCNTSs) is shortly reviewed in order to get the basic
knowledge of these systems. The results and main concepts will be used in the next
chapter where we will take into account the electron-electron and electron-vibron in-
teractions. In order to understand the electronic properties of SWCNTs, it is more
convenient to study first the band structure of graphene. The band structure of SWC-
NTs can be readily obtained from that of a graphene sheet by rolling it using a zone
folding technique. It turns out that different types of SWCNTSs, e.g., metallic or semi-
conductor, can be obtained depending on their diameters and helical configuration.

5.1 Electronic band structure of graphene

Graphene is made out of carbon which belongs to the fourth group of periodic table
of elements having four valence electrons in the outermost shell that are responsi-
ble for the chemical bonding. The electronic structure of an isolated carbon atom is
15225%2p%. In carbon based materials, new orbitals are constructed by a linear com-
bination of different atomic orbital wave functions in order to minimize the bonding
energy. The inner two 1s electrons remain chemically inert. However, the 2s and 2p
electrons can hybridize leading to the formation of different structures. One possible
configuration is the sp® hybridization building four similar orbitals, which naturally
tend to establish a tetrahedral bonding structure that accommodates all the valence
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electrons. The example is a well known solid form of carbon, diamond, which is a
good insulator with band gap ~5 eV because all the four electrons participate in the
chemical bonding and no free charge carriers are left for conduction. Another possi-
ble structure is sp? hybridization which leads to the formation of three sp?-orbitals,
leaving one p-orbital unaffected. In this situation, all the three sp®-orbitals are ar-
ranged in a plane at 120° angles, and the lattice thus formed is the hexagonal lattice.
In this case, the hybridization of the 2s-orbital with the 2p,- and 2p,-orbitals re-
sults in the formation of strong o-bonds in the lattice plane, whereas the electrons
in the remaining 2p.-orbitals, oriented perpendicular to the zy-plane with rotational
symmetry around the z-axis, form m-bands which essentially determine the electronic
properties of graphene at low energies. The structure of the m-band is such that the
valence (m-bonding) and conduction (7*-antibonding) bands touch each other at the
corner points of the first Brillouin zone, also known as Dirac points, see Fig. 5.2. Since
there is only one p.-electron per carbon atom, in isolated graphene the valence band
is completely filled, whereas the conduction band is empty. That is why graphene is
known as a semimetal or zero-gap semiconductor with a vanishing gap. In the vicinity
of the Dirac points, the band structure shows a linear dispersion behavior, see the
zoomed in region in Fig. 5.2, reminiscent of the one of massless relativistic particles.
In this thesis, we focus on the region of linear dispersion which extends far above room
temperature (beyond 1 meV). Using a nearest neighbor tight binding calculation tech-
nique, one can describe the p,-electrons in terms of Dirac equation which provides all
the required information on the m-band in the vicinity of the Dirac points [108, 109].
It is important to point out that there are two inequivalent sublattices A and B in
the graphene sheet, see Fig. 5.1, with the neighborhoods of the corresponding atoms
being mirror images of one another. It means that the Bravais lattice of graphene is
not the hexagonal lattice itself but it is a triangular lattice with two atoms per unit
cell so that we can characterize two different sublattices A and B in the structure. In
order to determine the band structure of graphene, it is convenient to choose a Bravais
lattice with primitive lattice vectors a@; and s, see Fig. 5.1, given by

- iy = (—1,\/§> , (5.1)

where ay denotes the nearest-neighbor C-C bond length. Its value for graphene is
0.142 nm. The two carbon atoms in the unit cell are shifted with respect to the real

lattice nodes by
7 = Vi (1) L VBao (1Y (5.2)
2 V3 2 V3

The reciprocal lattice vectors 51 and 52 defined by the condition a; - l_;j = 2m0;; are
given by

A (\/5 1) by = ;—; (—\/5, 1) . (5.3)

B 3CLO
The first Brillouin zone of the reciprocal lattice is the region bounded by the planes
bisecting the vectors to the nearest reciprocal lattice points. In graphene the first
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Figure 5.1: (a) Schematic representation of the honeycomb lattice structure of 2D graphene consist-
ing of two interpenetrating triangular lattices. Two primitive lattice vectors are denoted by d; and
ds. A rhombic unit cell in real space containing two carbon atoms labeled as A and B is shown. The
two carbon atoms in the unit cell are specified by 7;,, p = . The coordinate system in the position
space is defined by the xy-axes as shown. (b) The first hexagonal Brillouin zone of the 2D graphene
with the coordinate system in momentum space. The Dirac cones are located at the Fermi points.
The reciprocal lattice vectors denoted by 51 and 52 are given.
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Brillouin zone (FBZ) is a hexagon resembling the original hexagons of the honeycomb
lattice, but rotated by 7/2 as depicted in Fig. 5.1(b). In addition, the six points at the
corners of the FBZ are reduced to two groups, each containing three points equivalent
under the lattice symmetry operations. We need therefore to consider only the two
inequivalent corners, labeled as Ko and Ko which are not connected by a reciprocal
lattice vector, as shown in Fig. 5.2. These two points at the corners of the graphene
Brillouin zone (BZ) play important role in the physics of graphene. They are named
Dirac points because at these points the electrons behave as Dirac fermions. The
position of the Dirac points in momentum space is

- 47 - 47
K - 17 0 s —K ==
0 3\/3@0 ( ) 0 3\/3@0

In order to derive the electronic band structure of graphene, we assume an infinitely
extended sheet of graphene and neglect the finite size effects which allows us to impose
periodic boundary conditions (PBC) for the graphene honeycomb lattice Lg. Employ-
ing Bloch’s theorem, we can solve the single particle Schrodinger equation for the wave
functions ¢_;(7) describing p.-electrons in the graphene lattice with a crystal momen-

(—1,0). (5.4)

tum k and band index o = = which characterizes the Bloch waves associated with
the two atoms per unit cell. To describe the p,.-electrons, we solve the single particle
Schrodinger equation [87,106]

He(Mear) = cailPait)s (5.5)

where ¢_r is the wave function of a p.-electron which can be expressed as a linear
combination of single p,-electron wave functions x(7) associated with sublattice p at
lattice site R + 7, as

f =) et (P = R=7), (5.6)
RELG p==

where o = + denotes the conduction and valence bands, respectively. The Hamiltonian
Hg(7) can be expressed in real space as

o) = "4 3 S u - - 7). (5.7

where v (F — R — 7,) describes the interaction of the p, electron with the ionized

carbon atom at position R+ 7p. The detailed solution and analysis can be found in
Refs. [87,110,111]. Here we present a short review only. The solution of Eq. (5.5) yields
the energy bands of graphene lattice in the form

- ks k ks
ex(k) = £704| 1 + 4 cos (ﬁ%) cos (%ﬁ) + 4 cos? <\/§%>, (5.8)
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Figure 5.2: (a) Schematic diagram for the band structure of graphene where the two bands (char-
acterized by o = %) touch at six Fermi points. The two inequivalent Fermi points are represented by
[?0 and —I?o. On the right: zoom in of the energy bands close to one of the Dirac points is shown.
Parts of this figure have been reproduced from [112].

where 7 is the transfer integral between nearest-neighbor carbon atoms. In Fig. 5.2,
we have shown the full band structure of graphene and a zoom in of the band structure
close to one of the Dirac points (at the [?0 or —[?0 point in the BZ) with linear dis-
persion, where the low energy theory is relevant. In the above equation, the plus sign
denotes the upper (7*) and the minus sign the lower (7) band. It is clear from Eq. (5.8)
that the spectrum is symmetric around zero energy meaning that electron-hole sym-
metry is retained. It is also obvious that 5i(K0) = ¢, (—K,) = 0. The expansion of
the above energy bands close to the Ky and — K, Fermi points reads

ex(k + Ko) = ex(k — Ko) = 74/ k3 + Kk, (5.9)

with
_ \/ga()%
2 b

for |/§]a0 < 1 and v = hvp with vp is the Fermi velocity. In neutral graphene, the
chemical potential crosses exactly the Dirac point. This linear dispersion in the vicinity
of the Fermi points Ky and — K, plays crucial role in various electronic and transport
properties of 2D graphene and carbon nanotubes. This particular dispersion, that is
only valid at low energies, mimics the physics of quantum electrodynamics (QED) for
massless fermions except for the fact that in graphene the Dirac fermions move with
Fermi velocity vg, which is 300 times smaller than the speed of light ¢ [108,109]. Thus
graphene exhibits many unusual properties like that of QED at much smaller speed
than light. Hence, one of the most interesting feature of the graphene structure is the

(5.10)
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fact that its low-energy excitations are similar to the ones of massless, chiral, Dirac
fermions [108,109]. It is also important to mention that the Dirac excitations near the
Fermi point I?o cannot be described as the antiparticles of those near the Fermi point
—l?o. However, the two possible combinations of the excitations near one Dirac point
on the sublattices A and B, with energies +hvp|K| respectively, are the antiparticles
of one another.

5.2 From graphene to carbon nanotube

A single-wall carbon nanotube is a graphene sheet wrapped into a cylindrical geometry
so that the resulting structure acquires an axial symmetry. Generally, the arrangement
of atoms in the nanotube exhibits a spiral structure which is characterized by the so-
called chiral vector. This feature plays an important role in determining the electronic
properties. Carbon nanotubes can mainly be classified into achiral and chiral types
on the basis of symmetry. An achiral carbon nanotube is the one with a spiral sym-
metry such that its mirror image reflects the original one. It turns out that in achiral
nanotubes, one side of the hexagons is parallel or perpendicular to the cylindrical
axis. This type of nanotubes is further classified into armchair and zigzag where the
nomenclature is associated with the cross-section of the tube as displayed in Fig. 5.3.
A chiral carbon nanotube is the one without the mirror symmetry. In order to proceed
and understand the different types of carbon nanotubes in a better way, we define the
chiral vector, which later on becomes the circumference of the tube. In terms of the
graphene lattice basis vectors in real space, the chiral vector can be written as [106]

—

Crm = ndy +mdy, n,m € 7", (5.11)
Hence, armchair nanotubes are characterized by the chiral vectors Cihm whereas the
chiral vectors C, o describe the zigzag tubes, while C,, ,, with m # 0,n represent

the chiral tubes, see Fig. 5.3. Thus folding of graphene sheet results in a tube with
axis perpendicular to the chiral vector C,, ,,. Due to the hexagonal symmetry of the

graphene honeycomb lattice, the set of chiral vectors {C,,,,} with 0 < |m| < n can
describe all possible helical arrangements of SWCNTSs. In real space, the unit cell of
the carbon nanotube is characterized by a rectangular structure constructed by the
chiral vector C’n m and translational vector T. The latter represents the unit vector of
carbon nanotube which is directed along the tube axis and is given by [106]

T = tyd@y + tods. (5.12)

Since the translational vector is perpendicular to the chiral vector, therefore, the in-
tegers t; and ty can be determined using the condition C), ,, - T" = 0 which yields

2m +n b — 2n+m
ged(2n +m,n+2m) :Fgcd(2n +m,n+2m)

th=+ (5.13)

In the above equation, the division by the greatest common divisor shows that the
translational vector T represents an axial vector with minimum length. We can also
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Figure 5.3: Different geometries of SWCNTSs originate from different chiral vectors.
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find the tube diameter d as follows
|6n,m

(e

d =

= 20 /32 + m2 + nm). (5.14)
T

5.3 Low energy theory of armchair metallic
SWCNT's

In a graphene sheet, the conduction and valence bands touch at the Fermi points K,
and — K. First-principle calculations show that electronic properties can be altered for
tubes with an extremely small diameter because of a hybridization of 7 states with o
bands which lie well below the Fermi level in 2D graphite [113]. However, for SWCNT
with a large diameter, the effects arising from finite curvature of the graphene sheet
can safely be ignored and therefore electronic states in the vicinity of the Fermi level
are determined by the states near the I?o and —K’O points. In this section, a theoretical
description of SWCNTs appropriate in the linear dispersion regime above half-filling
is presented. The detail can be found in Ref. [87]. In order to derive the low energy
many body Hamiltonian of armchair tubes, we start with the graphene Bloch waves
associated with carbon honeycomb lattice described by Eq. (5.6), and using the zone
folding we obtain the proper SWCN'T wave functions for periodic boundary conditions
(PBCs) along the tube axis. However, for a finite size system, it is more convenient
to use open boundary conditions (OBCs) rather than PBCs to obtain standing waves
instead of traveling waves description for electrons.

5.3.1 Armchair metallic SWCNTSs at low energies

In armchair SWCNTs at low energies and under periodic boundary conditions only
the gapless energy subbands with linear dispersion touching at the Fermi points F' =
+Koé,, where é, is directed along the tube axis, are relevant [114,115]. In order to
derive a wave function for the description of electrons in the SWCNT quantum dot,
we consider an armchair tube of finite length L4q. According to the coordinate system
introduced in Fig. 5.1, the axial direction is along zr—axis. At the two ends of the
tube, x = 0 and © = Lq, open boundary conditions are appropriate such that the
wave function must vanish at the tube end points. The boundary conditions can be
satisfied only if the wave functions belonging to the two inequivalent Fermi points K,
and — Ko, Eq. (5.6), of the first Brillouin zone of graphene are mixed. The appropriate
linear combination of the Bloch waves is [87,116]

ot 1 isgn(F)kx
o) = > sen(F)e™ e " f oy (7), (5.15)
F P
where the prefactors f,, are

(5.16)

1 |1, for p=+,
—sgn(r), for p=—.
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Figure 5.4: Schematic representation of the open boundary conditions (OBCs) which map the low
energy dispersion in the vicinity of the two Fermi-points onto two linear branches, » = 4, with slopes
+hvp. The factors €p and ea denote the level spacing and the orbital mismatch energy, respectively.
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The function ¢,r (7) describes fast oscillating Bloch waves on the graphene sublattice
p = *+ at the Fermi point F' = iKoéx which is given by

iFR > D=

r et —R—17)), 5.17
PpF (_> \/N_ - X(T Tp) ( )

ReLg
where Np, specifies the total number of sites in the carbon nanotube Bravais lattice.
The allowed values for the quasi-momentum are given by
K = 2 (e + A), ne € Z, |A] < 1/2, (5.18)
d

where L4 is the length of the tube and A accounts for a small offset that may be
necessary if Ky is not an integer multiple of 7/Lq. The linear dispersion relation is
shown in Fig. 5.4, where the two linear branches r = 4 correspond to right and left
moving waves with slopes +hvp, where vg is the Fermi velocity.
The 3D field operator for an electron with spin ¢ at position 7 inside the SWCNT

can be described as R
lI]O’ (7?) = Z @Tﬁ(f")éram (519)

where ¢,,, annihilates an electron in the nanotube with momentum x and spin ¢ in
branch r. Equivalently, one can express the above relation as

0 (7) = v/Ta S 580(F) fyror (P (), (5.20)

where a slowly varying 1D electron operator is defined as

'Lsgn (F)kz 4

Uy po(z) Crom- (5.21)

-y

5.3.2 Hamiltonian of metallic armchair SWCNTs

At low energies, the Hamiltonian describing p. electrons in metallic armchair SWCNT's
can be readily determined from the dispersion relation of the standing waves ¢, (7)
shown in Fig. 5.4. Hence, taking into account the spin and pseudo spin degrees of
freedom, the Hamiltonian of the noninteracting electrons can be described as [87,116]

Hy = hop Z TEE Cron, (5.22)

TOK
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where ¢,,, is the fermionic operator which annihilates an electron in the state |¢,..)|0).
Note that the summation over x corresponds to the states in the vicinity of the Fermi
points. Using the quantized form of x from Eq. (5.18), the above Hamiltonian acquires

the form
Hy = &0 Z r Z nnéignérg,i +en Z rNoo, (5.23)

ro

where €9 = hvpm/Lq is the level spacing of the noninteracting SWCNTs, whereas
ea = €0 accounts for the possible band mismatch between the left (r = —) and right
(r = +) moving states. N, is the number operator that counts the total number of
electrons in branch r with spin o. Note that the four different electron species can be
specified by: ro =+ 1T, + |, — T, — |.

5.4 Vibrational modes in SWCNTs

As we pointed out in Chapter 2, quantum dots are very sensitive to the influence of vi-
brational modes in nanoscale systems. In many experiments on suspended graphene [117]
and carbon nanotubes [118-124], electromechanical oscillations have been observed. On
the other hand, well-pronounced vibrational signatures in electronic transport have
been studied in several other experiments on suspended SWCNT quantum dots [43—
45]. The results of these experiments imply that the transport properties of carbon nan-
otubes are strongly affected by vibrations. Indeed, several vibrational modes can occur
in suspended SWCNTs. However, only radial breathing modes [125] and longitudinal
stretching modes [43-45,126] have been observed in transport experiments. To explain
the vibrational effects in SWCNT's, many theoretical approaches [43,93,127] considered
the electron-vibron coupling as a mechanical deformation of the nanotube produced
by the electrostatic interaction between the charge on the tube and some external
potential source, e.g., nearby gate electrode or disorder. However, the electron-vibron
coupling achieved in these approaches is not large enough to explain the experimental
results. In another approach, the low-energy vibrational excitations of the nanotube
are described in terms of low-energy acoustic modes [128-133|. These modes are cou-
pled to the electronic degrees of freedom via a deformation potential (associated with
local variations in area) combined with bond length modifications. However, the latter
coupling mechanism has a coupling constant an order of magnitude smaller than the
one associated with the deformation potential [130]. Taking into account the symmetry
arguments, one can find which modes couple strongly to the electronic degrees of free-
dom. Here we highlight a few vibrational modes associated with suspended SWCNTs
that can significantly influence the transport properties of these systems.

5.4.1 Longitudinal stretching mode

Longitudinal stretching mode (LSM) involves a deformation potential (local area vari-
ations) together with bond length modifications which can lead to a strong electron-
vibron coupling. The coupling constant associated with LSM is very sensitive to the rel-
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Figure 5.5: Acoustic vibron modes in SWCNT. (a) Unperturbed carbon nanotube with coordinate
system such that z-axis points in the axial direction of the tube and y-axis in the circumferential
direction. (b) Longitudinal stretching mode. (¢) Radial breathing mode. (d) Twist mode. (e) Bending
mode with gapless dispersion, and (f) bending mode with finite gap dispersion. This figure is taken
from [128].

ative size and relative position of the quantum dot and its associated vibron. Schemat-
ically, LSM is shown in Fig. 5.5(b). The energies of different vibrational modes and
electronic excitations as a function of the tube length have been shown in Fig. 5.6,
where it is clear that the energy of the longitudinal stretching mode is next in mag-
nitude to the electronic excitation energy and also depends on the length of the tube.
Thus in doubly clamped SWCNTSs, stretching modes can be retained in transport
calculations, in agreement with experimental conclusions [43].

5.4.2 Radial breathing mode

Similar to longitudinal stretching modes, radial breathing modes also involve local area
variations and thus couple strongly via the deformation potential to the electronic de-
grees of freedom. The dispersion relation of the breathing mode is well described in
terms of a finite frequency wg in the long wavelength limit. Using the parameters of
bulk graphites, the vibronic excitation energy hwg for (10,10) armchair SWCNT has
value of fiwg ~ 2 x 1072 eV [128,130], which is larger than that of the low-energy
electrons in the vicinity of Fermi energy. Such a mode is schematically depicted in
Fig. 5.5(c). Fig. 5.6 reveals that the energy of the breathing mode is higher than the
electronic excitation energy and does not depend on the length of the tube. Hence,
breathing modes lie too high in energy to be excited in low-bias transport experi-
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Figure 5.6: Log scale plot of energy scales for different vibrational modes and electronic excitations
for a (10,10) nanotube. The red curve denotes the excitations of bending modes, blue refers to the
stretching mode, black to the electronic excitation and green to the excitations associated with radial
breathing modes. Note that breathing mode does not depend on the length of the tube. This figure
is taken from [43].

ments. It implies that radial breathing modes can be neglected in low bias transport
calculations since they cannot get populated in this energy limit.

5.4.3 Twist mode

Twist modes are associated with pure shear, see Fig. 5.5(d), and thus couple to elec-
tronic degrees of freedom only via a bond length modification [128,130]. The linear
dispersion of the twist modes produces a coupling constant that depends only on the
circumference of the nanotube. Hence, these modes are weakly coupled to electrons
and cannot cause well pronounced vibrational signatures to be observed in transport
experiments. It means that they do not play a significant role and can be neglected.

5.4.4 Bending mode

Bending mode, though coupling via the dominant deformation potential, does not play
a significant role [128,130]. In fact, these modes couple only quadratically to the elec-
tronic degrees of freedom and cannot produce a significant electron-vibron coupling.
Hence, bending modes also cannot generate well pronounced Franck-Condon block-
ade nor vibrational sidebands at large bias in transport measurements on suspended
SWCNT. As an example, bending modes are sketched in Fig. 5.5(e-f) in the form of
two different configurations. Fig. 5.6 shows that the energy of the bending mode is very
small compared to the other modes and strongly depends on the length of the tube.
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Hence, these modes can also be excluded in the transport calculations of suspended
SWCNTs.

It turns out that longitudinal stretching modes and radial breathing modes are the
natural candidates that couple strongly to electronic degrees of freedom, in agreement
with experimental conclusions [43-45,125,126]. However, in the next chapter we take
into account only longitudinal stretching modes since the focus will be on the low
energy theory of suspended armchair metallic SWCNTs.
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Chapter 6

Spectrum and Franck-Condon

factors of interacting suspended
SWCNT's

The spectrum and Franck-Condon factors of suspended single wall carbon nanotubes
strongly depend on the geometric configuration of the junction in the presence of sev-
eral vibronic modes. The relative size and relative position of the SWCNT quantum
dot and the associated vibrons significantly influence the electromechanical properties
of the system as already pointed out in many theoretical works [89,128]. In this chap-
ter, we extend their ideas and identify a parameters space where the dependence of
the spectrum and the Franck-Condon couplings on the geometry of the system is ad-
dressed, see Fig. 6.1. We calculate the spectrum and the tunneling amplitudes over the
entire parameters space varying the relative length and relative position of the vibron
with respect to the quantum dot including the effect of higher vibronic modes. The
treatment of a wide parameters space is relevant since it allows for a unified picture of
different results presented in the literature [89,93]. In this approach, we can identify a
region in the parameters space where strong FC couplings are expected to be achieved.

6.1 Suspended SWCNTs at low-energy

The low energy spectrum of finite-size, interacting metallic armchair single-wall car-
bon nanotubes (SWCNTSs) has been discussed in [134] within a mean-field approach
and in [71,116] within a bosonization framework going beyond the mean-field results.
Bosonization is also the natural approach to include the effects of the coupling to the
longitudinal stretching modes [89,93]. Here, following [71,89, 93], we derive and dis-
cuss the spectrum and many body states of suspended metallic SWCNTs. Particular
emphasis will be given to the dependence of the electron-vibron coupling on the geo-
metrical configuration of the system. An analytical expression for the electron-vibron
coupling constants in terms of the relevant geometrical parameters is derived and plays
a crucial role in the analysis of the spectrum and the matrix elements conducted in



104 | 6.1 Suspended SWCNTs at low-energy

A
P |
X

OV ——
%
3

Lg l ]

Figure 6.1: Different realizations of a nanojunction with a suspended SWCNT. The lengths Lg of
the quantum dot and L of the vibrons are also indicated together with their position. The length and
position of the vibrons is assumed to coincide with the suspended part of the tube. The length and
position of the dot depend instead on many factors like for example the weak or strong hybridization
of the SWCNT and the metallic leads and the presence of impurities or of side gates. The labeling of
the different configurations is given according to the general one used in Fig. 6.2.

the following sections. We thus consider a Hamiltonian of the form
Flsys = FIO + ‘7ee + -HV + ﬁe—va (61)

where Hj is the noninteracting Hamiltonian of a finite-size, metallic SWCNT described
explicitly by Eq. (5.23), V.. characterizes the electron- clectron interaction, H, is associ-
ated with the longitudinal stretching modes, whereas H, ., describes the electron-vibron
coupling.

6.1.1 Coulomb interaction in SWCNTs

In this section, the electron-electron interaction in metallic armchair SWCNTs is dis-
cussed. We briefly analyze the consequences of the Coulomb interaction inducing differ-
ent types of scattering processes. The Coulomb interaction between electron-electron
assumes the standard form in second quantization as

1 Y R, T U S VN
§Z/dT/dT/\IJL(7:>\IJZ,(T,)U(T—T/)\I/U/(T/)\I/,,(T), (6.2)

where U(7 — 7') is the screened Coulomb potential which takes into account the lo-
calized character of the p, orbitals. For the actual calculations we model it by the
so-called Ohno potential [116]

~1/2

UF—7)=Upy |1+ (U‘)E'T - |> : (6.3)

«
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where a reasonable choice of the onsite energy is Uy = 15V [116], the dielectric con-
stant is € &~ 1.4 — 2.4 and @ = 14.397eVA.
The Coulomb interaction causes Umklapp, backward and forward scattering processes
among the electrons. Away from half filling it is reasonable to neglect Umklapp scat-
tering. We also disregard backscattering processes, which is a valid approximation for
nanotubes with not too small radii [116]. The forward scattering processes can be fully
included within a Tomonaga-Luttinger (TL) model for SWCNTs [93,114], yielding the
TL Hamiltonian R X R A A

Hy+ Vi~ Hry = Hy + > Hj, (6.4)

J

where Hy describes the fermionic configuration of the nanotube and ﬁj represents
the bosonic excitations with the index j = ¢+, s+, c—, s— labeling the four excitation
sectors for total charge, total spin, and relative (with respect to the two electronic
subbands) charge and relative spin, respectively. The fermionic component of Eq. (6.4)
can be casted into the form

- ey N7 . N2,
Hy = — — N._+ E )
N A Z 9 +éea c + c 2 ) (6 5)

J

where the particle number operators for the different charge and spin sectors are de-
fined by NC+A: Yoo Nigy Neo = ng sgn(r)Nyg, Noy = >, sgn(0)N,; and N,_ =
> o sgn(ro)N,,, and the operator N,, counts the particles with spin ¢ and pseu-
dospin r. The electron-electron interaction is parametrized, in the fermionic part of
the Hamiltonian, by E., i.e. the charging energy of the SWCNT quantum dot. Finally,

flj describes the bosonic excitation of the sector j. In the long wavelength limit, it

reads X e -
Hj==Y nbl b (6.6)

9 n>1

where the sum runs over the mode number n. Due to the Coulomb interaction the
factor g; < 1 for the sector c+, whereas g; = 1 for the other cases. For unscreened
interaction g., =~ 0.2 [114,116].

6.1.2 Vibron Hamiltonian

The low-energy vibrational excitations of the nanotube can be described in terms of
low-energy acoustic modes and only longitudinal stretching modes can be retained
as we explained in Chapter 5. The stretching mode Hamiltonian is expressed in a
continuum model as [93]

T
ao-y [ EPQ(@HU; @)’ 6.7)

v

where ( = 2rRM, with R being the tube radius, M the carbon mass per unit area
and vy is the velocity of the longitudinal stretching mode. Moreover, z, and L, are
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the position of the centre and the length of the vibron, respectively. Typical SWCNT
parameters are: vg = 2.4 x 10* m/s, M = 3.80 x 1077 kg/m?.

Note that the positions and the lengths of the dot and of the vibron do not necessarily
coincide. The length of the vibron (L,) is readily estimated as the distance between the
electrodes that clamp the nanotube and it is defined as the length of the free-standing
portion of the tube. Instead, the relation between the size L4 of the quantum dot and
the geometrical properties of the junction is much more complex. The best way of
estimating L4 is to extract it from transport measurements, which give the mean-level
spacing and the charging energy of the system. The position of the centre of the dot
xq can be taken as a free parameter.

In Fig. 6.1, we sketch four possible physical realizations of different configurations. In
panels A and A’ the dot lies inside the vibrating part of the tube. The confinement
is obtained by a side gate (A) or by impurities located on the tube (A’), whereas the
rest of the tube is electrically absorbed into the leads due to the strong tube-lead
hybridization (extended lead configuration). In panel C, the dot coincides with the
entire tube length due to the weak hybridization between the SWCNT and the metallic
leads and fully contains the vibrating fraction of the tube. Finally, a somehow mixed

scenario is illustrated in panel B. The displacement and momentum field operators
read [135]

. h ) L r .. .
)=\ Gz, e e (2= 5 )| 7 s o)
P(:U):i /hgft Zsin {km (x—xv+%)} \/E(din—&m),

m>1

with k,, = mm/L, the wave number. Here a,,(al ) are the annihilation (creation)
operators associated with the mth vibron mode obeying the commutation relation
af | = 0m.ms. Using the above field operators, we obtain

[dm7am’
. 1
H,=> E,la an+-], 6.9
> b (a4 5 ) (6:9)

m>1

with E,, = mhugm/L, = mhw.

6.1.3 Electron-vibron interaction Hamiltonian

So far in most cases of the transport calculations, Anderson-Holstein (AH) model has
been considered in which the vibrational degree of freedom couples only to the total
charge of the quantum dot. This model generates position-independent Franck-Condon
(FC) factors [57,58,136-138] which have profound consequences on the transport prop-
erties of nanojunctions. However, in suspended SWCNT's vibrons couple both to the
total charge of the dot and to the spatial fluctuations of the electron density [89,128].
In this case, the size and location of the dot and of the vibron do not coincide in general
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and position-dependent FC factors can be produced which strongly affect the trans-
port properties of the system. Hence, the electron-vibron are microscopically coupled
via the Hamiltonian

~

Foy = / arFp(FV (7). (6.10)

where p(7) = 32 Wi (7T, (7) is the electron-density and V (7) = gd,a(z) is the defor-
mation potential for the stretching vibron mode. The coupling constant ¢ is estimated
to be g = 20—30 eV [130]. Substituting the values of the corresponding quantities and
integrating over the radial and azimuthal coordinates, the above equation acquires the
form

1/2 .
=g Z ((vth ) (&In + ) /dﬂiixﬁm(x) cos {km <x —x, + 7")} . (6.11)

where the integral is calculated over the overlap of the dot and vibron region and the
effective one-dimensional (1D) density operator pip(z) reads, in its bosonized form [71],

A

N, N 2
Lq4 vrh

Note that the bosonic field ¢C+( ) can be expressed in terms of the bosonic creation
and annihilation operators bc +.n and bc+ n as

[hg. L 1 . .
¢C+ g + Z sin |: ( xrq + 7d>:| \/_k_n(bl_'_’n + bc—i—,n), (613)

n>1

ﬁlD(x) = axqgc-&-(x) (6'12)

where k,, = nmw/Lq and we have imposed open boundary conditions p(xq — Lq/2) =
p(xq + La/2) = 0. It is useful, for the diagonalization procedure presented in the next
subsection, to introduce the dimensionless position and momentum operators for the
nth plasmon mode {X,,, P,} and the ones of the mth vibronic mode {#n, fm }

Xn _ bc+,n + bi—&-,n, ﬁjm _ &m + &In,
V2 V2
. - (6.14)
p o bc+,n - bc+,n N CAlm - &In
n 1\/§ I pm 1\/§ )
which satisfy the canonical commutation relations [Xn,ﬁn/] = 10 and [Ty, Prv] =

10, - In terms of these operators the electron-vibron Hamiltonian can be written as

H,., = I\/Gcr Z \/annm(A,5)2Xn:2m

nm>1

+ 1> /MLy (A 6) V2N,

m>1

(6.15)
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| hrm
I = — 1

is the fundamental coupling constant; it acquires the value I = 838 peV for a (10, 10)
SWCNT with Lg = 1 pum and assuming g = 30 eV.
The geometric part of the electron-vibron coupling is given by the dimensionless matrix

1 [mex m mm 1—A
Kpm (A, 0) :XL dz {COS [mc (n + X) - (5 + T)}

min

+cos[wm<n—?)+%(5+%>}}

for the plasmon-vibron component and by the vector

1 Tmax 1 —
L (A 0) = X/ dz cos [% (x —0— T)\)] (6.18)

for the charge-vibron component. The integration limits

where

(6.17)

Tmin = max[0,0 + (1 — \)/2],

Tmax = min[1,6 + (14 1)/2] (6.19)

ensure that the integral extends only on the overlap regions of the dot and vibron.
As one appreciates from Eqgs. (6.15)-(6.18), for a fixed Lq the electron-vibron Hamil-
tonian is completely determined by the relative position of the centres of the dot and
the vibron 0 = (2, — zq)/La, and the ratio between the length of the vibron and of
the dot A = L, /Lq.

Importantly, H., reveals that the electron-vibron interaction only involves the posi-
tion operator z,, of the m-vibron mode, the position operator X, of the nth charged
plasmon mode and the total electron number NC+. Moreover, the important energy
scales involved in the electron-vibron dynamics are the lowest vibron energy Aw, the
lowest charged plasmon energy €y/g.+ and the fundamental coupling constant /: their
values are 0.050 meV, 8.293 meV and 0.088 meV, respectively, for a (10,10) SWCNT
with Lq = Ly = 1 pm and the other parameters as the ones given in Fig. 6.4. Excluding
the extreme short vibron regime A < 1/100 and the strong screening, we can conclude
that fw, I < £¢/ges, thus implying a clear separation of the vibron and plasmon en-
ergy scales. Albeit these two degrees of freedom are consequently characterized, for
an isolated system, by an essentially independent dynamics, the tunneling event can
be substantially influenced by the mechanical motion of the nanotube under certain
geometrical conditions as will be discussed later.

6.2 Coupling mechanisms in suspended SWCNT's

In the above section, we analyzed that in suspended SWCN'TSs, the coupling mechanism
is not so simple as predicted by AH model and the effects of density fluctuations can
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Figure 6.2: Parameters space of the geometrical configurations of the electromechanical nanojunc-
tion. The relevant dimensionless parameters are the length ratio A = L, /L4 and the relative position
of the centres § = (zy — 2q)/Lq. Four qualitatively different regions are identified in the parameters
space and schematically shown on the right.

play a crucial role. Hence, in the following sections, we analyze the two coupling
mechanisms, plasmon-vibron and charge-vibron couplings, in suspended SWCNTSs in
some detail. The energy spectrum and the Franck-Condon couplings strongly depend
on the geometry of the junction via the coupling constants K, and L,,. The detailed
analysis of these coupling constants is thus the natural starting point to understand the
presence of geometrical-dependent trends and selection rules in the tunneling processes
of a suspended SWCNT. The geometrical parameters space {\,d} is divided into four
regions by the different conditions imposed by the integration limits z.,;, and Xyax
explicitly given in Eq. (6.19). In Fig. 6.2, we define these regions and give a schematic
representation of the corresponding geometrical configuration.

6.2.1 Plasmon-vibron couplings

The first line of the electron-vibron Hamiltonian Eq. (6.15) describes the plasmon-
vibron interaction. The plasmon-vibron couplings are parameterized by the dimen-
sionless matrix K,,,. The function K,,, has the following explicit form in the four
regions:

2m " 1—20+ A . 1+25— A
Kﬁﬁf@ﬁ) - _m {(—1) S111 (MWT) -+ sin (mﬂ'T)} ,

KB\, 6) = —;) [(—1)"m sin <mﬂﬂ) + Ansin ()\nﬂﬂ)} :
T

(A2n2 —m? 2\ 2\
2\n A+25+1 A—25—1
(©) — 27 (—1)"qi o i e
K, (X, 0) G ——y {( 1)™ sin ()\mr o > + sin ()\mr ) )] )
2 A+20+1 A—20—1
(D) - = (=1\™ ' o i e
K)o (N ) G R——y {( 1)™Ansin <)\n7r 7 ) + msin (mﬁ ) )] :

(6.20)
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Some symmetry relations for the function K, can be readily obtained from Eq. (6.20):

Ko\ 6) = LA Ko (1/X, —8 /),

Kun(A,6) = (=1)" " Ky (A, —0). (6.21)

The first equation in Eq. (6.21) quantifies the connection between the behaviour of
Kpm (A, 0) at small and large values of A: the roles of the vibron and of the plasmon
are simply exchanged in the plasmon-vibron Hamiltonian if we invert the ratio of their
lengths. The second equation in Eq. (6.21) states instead that if we invert the relative
position of the vibron and the dot, the plasmon-vibron Hamiltonian acquires at most
a minus sign, depending on the parity of the vibronic and plasmonic modes. The case
considered in [93] corresponds to the point A = 1, d = 0 of the parameters space where
the following limit holds:

lim K, (A, 0) = 0, (6.22)

A—1

and each vibronic mode is only coupled to the plasmonic mode of the same order
n = m. In all other regions of the parameters space, the coupling is not diagonal and
the dynamics of each vibronic mode is influenced by all plasmonic modes and vice
versa, making the system quite intricate. Nevertheless, from a detailed analysis of the
K function, one can estimate which modes are more relevant in the low-energy limit.
The function K has an upper bound K < 2, as can be easily proven from its definition
Eq. (6.17) by considering that the distance between the integration limits is at max-
imum A. Thus, K, does not diverge for A\ — m/n as one could expect from a first
sight. Instead, its maximum can be estimated by calculating the limit A\ — m/n. One
obtains

2cos [Z(n—m+2nd)], for n<m,

6.23
cos [5(n —m+2nd)], for n>m, (6.23)

lim K,n(A,6) = {

A=
where the first and the second case are calculated in regions A and C, respectively,
see Fig. 6.2. The absolute value |K,,,| of the coupling exhibits |m — n| 4+ 1 local
maxima as a function of the relative displacement 0, separated by nodes in which the
mth vibronic mode is decoupled from the nth plasmonic one. Note that in the limit
A — m/n, the wavelength of the mth vibronic mode coincides with that of the nth
plasmonic one, thus giving a physical interpretation to the resonance. One concludes
that each geometrical configuration optimizes the coupling between specific plasmonic
and vibronic modes. Moreover, the coupling between low vibronic modes and higher
plasmonic ones is reached for short vibrons and is more efficient than the coupling of
a low plasmonic mode with higher vibronic ones obtained, instead, for large vibrons.
Another interesting regime can be reached in the small vibron region when the centre
of the vibron lies in the vicinity of the border of the dot. Let us consider for this reason
the function K,,, in the region B and with A < m/n. The following relation holds:

Ko (A, % + aA> - %(—m sin [m (% - a)} | (6.24)

where |a| < 1/2. The absolute value |K,,,| of the coupling exhibits m local maxima
as a function of « in the region B which are independent of the plasmonic mode
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Figure 6.3: The plasmon-vibron K, and the charge-vibron L,, coupling constants are plotted in
the geometrical parameters space. Top row: On the left (right) the coupling between the first (fifth)
plasmonic and the fifth (first) vibronic modes. Bottom row: Examples of the charge-vibron coupling
L,, are given for the first (left) and the second (right) vibronic mode. Black solid lines indicate in all
figures the borders of the regions A, B, C, D indicated in Fig. 6.2 and explained in the text.

n. This specific configuration has been chosen in [89] to describe a system in which
the renormalization of the lowest vibronic mode due to the coupling to the plasmons
produces a strongly inhomogeneous Franck Condon coupling in the tunneling matrix
elements to the carbon nanotube. In order to illustrate the arguments presented so far,
we plot in Fig. 6.3 the plasmon-vibron couplings K5 and K5, as a function of A\ and
J. Clearly visible are the maxima of the coupling close to A = m/n and the fan-shape
structure of the coupling close to the points {0,41/2}, more visible in the case Kjs
due to the conditions given above.

6.2.2 Charge-vibron couplings

The second line of the electron-vibron Hamiltonian Eq. (6.15) describes the charge-
vibron interaction and is proportional to the function L,, defined in Eq. (6.18). Also
the coupling L,, is defined on the parameters space {\, 0} by different functions in the
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four different regions already introduced for K,,,:

LA 8) = = [Sin (mﬂ) ©sin (mﬁﬂﬂ ,

mm 2\ 2\
1 1-2
LB\, 6) = —sin (mwﬁ) )
mm 2\ (6.25)
LY (A, 0) =0,
1 1420 — A
LN, §) = —si .
(A 0) —sin { mr——1
A symmetry relation can also be derived for this coupling, namely
Lyn(A,0) = (=1)" Ly, (N, —0). (6.26)

The function L, vanishes identically in the region C'; thus implying no charge-vibron
coupling for systems in which the vibron is entirely contained inside the dot. The finite
local coupling is in fact averaged away by the sinusoidal shape of the vibron. The form
of L,, in the region B is readily understood with the parametrization:

L, ()\, j:% + a)\) = % sin [mﬁ (% — a)] (6.27)
with |o| < 1/2. As shown in Fig. 6.3, |L,,| has indeed in the small vibron limit a
fan-shape with m maxima of magnitude 1/(mm) separated by m — 1 nodes. Thus, the
charge-vibron coupling decreases for higher vibron modes and is also very sensitive
to the geometry of the system. The geometry of the system even introduces selection
rules: for example, for a system with A = 0.1 and § = 1/2, (o = 0) only odd modes
(m =2a — 1, a € NT) exhibit charge-vibron coupling,.
The maximum charge-vibron coupling for the mode m is reached when |L,,| = 2/(m)
and is obtained only for vibrons larger than the dot (A region, A > 1) and centered with
respect to it (0 = 0). Only even vibronic modes couple to the charge if § = 0 and |L,,|
exhibits m/2 maxima in the positions A\ = m/(1+2r) where 0 < r < (m—1)/2, r € N.
In conclusion, the electron-vibron coupling is very sensitive to the geometry of the
junction, both its plasmon-vibron and charge-vibron components. In general, for more
symmetric systems (6 ~ 0) the plasmon-vibron component dominates the short vibron
limit (A < 1, region C), whereas the large vibron limit (A > 1, region A) is dominated
by the charge-vibron interaction. Only for a strongly asymmetric system (§ ~ +1/2)
in the short vibron limit (A < m/n) can the two components have the same strength.
Moreover, in general, the strength of the coupling decreases with the vibron mode.
Yet, the position of the nodes of the functions K,,, and L,, depends on the vibron and
plasmon mode numbers n and m, generating selection rules that depend sensitively
on the geometry of the system.

6.3 Diagonalization and spectrum

Because the electron-vibron coupling only involves the total charge operator NC+ and
the plasmon excitations, the part of the system Hamiltonian that is still to be diago-
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nalized is
e Yoy Az) hw o | o
Hsys—;n2 <Xn—|-Pn +mz>lm2 (xm—i—pm)

1 Ger Y VMK 2X,d + 1 /MLy V2Nei i,

n,m>1 m

(6.28)

where we have introduced the frequencies Q = 7wvp/(get La) and w = 7mvg/Ly. The
exact diagonalization of the Hamiltonian Eq. (6.28) can be achieved in two steps: (i)
a set of canonical transformations eliminates the plasmon-vibron component; (ii) a
polaron transformation eliminates the charge-vibron component. The final result is a
collection of shifted plasmon-vibron oscillators.

The first step in the diagonalization is better understood by setting the plasmon-vibron
part of the Hamiltonian into a quadratic form:

X\ [ Hyp Hy 0 0 X
it _ )A( va HVV 0 O 5\( -~
i, =} 0 H, 0 5|+ e (6.29)
b 0 0 0 Hy b

where the components of matrix Hyy defining the quadratic form are given by: (Hyy,),
nh$/2 0y, (Hyy) = Mhw/20pyy and (Hyy), = (Hyp),w = I/ v/ NI .
Moreover, we have introduced the vector of operators X = [XI,X2, ...]T and analo-
gously for x, P, and p. Finally, we have defined the charge-vibron Hamiltonian H.,.
The quadratic form in Eq. (6.29) is simplified via the following set of canonical trans-
formations: the first is the contraction

X!, =1/VnhQX,, &, =1/vVmhw iy,
P.=nhQP,, P, = mhwpm,

that transforms the momentum block of Hyy into the matrix 1/2. Note that the com-
mutation relations between position and momentum operators are conserved for each
mode: [X], P!)] =10, and [2],p),] = 10,y Afterwards we perform the rotation

mm/

(6.30)

NP Nv
3 T % T "
§ = Z U X, + Z UiNy+m s

n=1 m=1

. N (6.31)

A T A T A
T = Z Up, Py + Z UiN,ym Drm

n=1 m=1

that diagonalizes the position block of Hy; written in the primed variables. We have
also introduced the total number of vibron (plasmon) modes N, (N,). This can be
done without loss of generality due to the presence of physical cut-offs for both the
plasmonic and the vibronic mode numbers. This transformation is physically most
important since it generates the position and momentim operators él’ and 7; which
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identify N, + N, mixed plasmon-vibron modes. The matrix defining the quadratic
form reads, in this mixed basis,

Hy = ( ﬁ 1(}2 ) (6.32)

where A is a diagonal matrix whose diagonal element A; defines the energy of the
plasmon-vibron mode hw; = v/24;. This relation becomes clear after the last canonical
transformation, the expansion

& = Vhw &,

(6.33)
7= 1/7/hw, 7,
that brings the system Hamiltonian into the form
: B,

l

The effect of the transformations Eq. (6.30), Eq. (6.31) and Eq. (6.33) on the charge-
vibron Hamiltonian H., is readily obtained:

Hey = IVZY mLny | = Uit &N (6.35)
l
lm

The presence of H., requires a second step in the diagonalization procedure: the po-

laron transformation H] = e H/ e*% where

N ) I w o~
S=iv2) h—wlmLWM /EUNPWZ 71Ny, (6.36)
lm

yielding

: Fiw g ’

S 1,82 ~9 w o

Hyys = ; 5 (& + ) = ; o (; L, JIUNp+mJ> NZy . (6.37)
Thus, the low energy spectrum of the suspended SWCNT reads

1
Eyn=Eg+ El: huy (ml + 5) + %% nEYMn ;) (6.38)
n,j7#c

where N = [Nety Ne—y Ngi, Ns_| is the vector defining the electronic configuration and
E the associated energy as can be computed from Eq. (6.5) and Eq. (6.37). The
vector m, instead, contains the occupation numbers m; of the plasmon-vibron modes
and those (m, j, j # c¢+) of the other relative charge and spin bosonic modes.

The diagonalization procedure presented here reproduces known results in some lim-
iting cases. In the totally symmetric case (§ = 0, A = 1) where the length and centre
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of the dot and vibrons coincide, only the coupling between plasmons and vibrons with
the same number of modes is allowed (K, = dnm). One finds that the matrix to be
diagonalized by the rotation Eq. (6.31) is

n? o Il (6.39)
Th/wSge. o 5

yielding the spectrum [93]

02 4 w? 02 —w2\?  dg, 2w
he, = /20, = nh %i\/< 2“) + g+h2“ (6.40)
where | = {n,a} and a = =£. For this symmetric configuration, there is also no

polaron shift since the charge-vibron coupling vanishes identically (L,, = 0). Also the
case considered in [89] of a single vibron mode is reproduced by our general theory.
Under the only assumption that w < €2, one obtains

4] Ge+
W = w 0 Z (6.41)

which is always real for the parameters considered in the present work. Moreover, the
case of short asymmetric vibrons (A < 1,§ = 1/2) is particularly interesting since
by means of Eq. (6.24) one obtains also that the lowest plasmons (n < 1/)\) equally
contribute to soften the frequency of the lowest vibron mode.
In the generic case, however, only a numerical evaluation of the spectrum is viable. In
Fig. 6.4, we present the relative frequency shift (i.e. (w,, —mw)/mw) for the first (left
panel) and the fifth (right panel) plasmon-vibron mode. The calculation is performed
for a (10, 10) armchair nanotube of Lq = 1 um. The coupling of the vibrons to the plas-
mons softens the vibronic modes, yielding a negative shift for every configuration. The
renormalization is stronger and almost constant in the region C, where the coupling
between the low vibronic modes and the plasmonic ones is larger. An estimate of the
maximum renormalization can be obtained by its direct calculation in the symmetric
point (A =1, § =0):
W =MW 2ge 1?
mw 2w

(6.42)

where we made the expansion of Eq. (6.40) in powers of w/Q and I/(hS2). Interestingly,
as far as the bare vibron frequency w and the fundamental electron-vibron coupling
constant I /h are both much smaller than the bare plasmon frequency €2, the relative
frequency normalization, if present, is independent of the mode number m. It is also
clear that, in the absence of strong screening, (g.. ~ 0.2) the relative normalization is
very moderate and does not exceed 1%, independently of the geometry of the junction.
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Figure 6.4: Relative normalization of the first (left) and the fifth (right) vibron mode due to the
plasmon-vibron coupling. Note that the relative normalization is always negative; it reaches its maxi-
mum in the point A = 1, 6 = 0 and is essentially constant in the entire region C (defined in Fig. 6.2).
The parameters used are Lq = 1um, R = 6.68A, vp = 8 x 10°m/s, vy, = 2.4 x 10*m/s, M =
3.8 x 10~ "kg/m?, g = 30eV, g.. = 0.2.

6.4 Tunneling amplitudes and Franck-Condon
couplings

So far we studied the isolated nanotube. Our interest, however, is the transport of
electrons through a SWCNT in tunneling coupling with possibly extended source and
drain leads, see Fig. 6.1. The tunneling Hamiltonian Hr is given by:

Hr=) ) / dr [Ta (7) U (F) By (F) + Hee.| | (6.43)

a=s,d o

where U1, see Eq. (5.20), and &1 (7) = > 05(7) é}aa are electron creation operators
in the SWCNT and in the lead «, respectively, and T, (') describes the transparency
of the tunneling contact «.

The spatial dependence of the transparency T, (7) depends on the specific geometri-
cal configuration of the junction and on the tube-lead hybridization. For the sake of
simplicity, we refer again to the configurations introduced in Fig. 6.1. In both the A
and A’ cases we expect T, (F) to be strongly localized at the interface between the
extended lead and the dot, while in the case C the tunneling region extends over the
entire fraction of the tube, which is covered by the leads. For the case B, an interme-
diate situation is envisaged with an extended tunneling region (weak hybridization)
at the source and a localized one at the drain (strong hybridization).

In the weak tunneling limit, the dynamic of the system can be described as a series
of sequential tunneling events connecting different many-body eigenstates of the sys-
tem. For this reason, a central role is played in the theory by the spectrum that we
calculated in the previous section and by the tunneling amplitudes between the cor-
responding many-body energy eigenstates, which is the focus of the present one.
Following [116], the 3D electron annihilator in the quantum dot ‘ifU(F) can be expressed
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in terms of the slow varying 1D operators ), s, (x) which, in their bosonized form, read:
@;TFU (.CE) - ﬁraf(rFU (-T)eiqgiFU (I)eiérFG (@) (644)

vyhere Nro 18 the Klein factor which reduces by one the occupation of the branch ro,
K, ps(x) is the operator

~ 1 . -
K,po(x) = —2Ld el(m/La)sgn(F)(rNro+ M)z (6.45)

which essentially adds a phase proportional to the occupation number of the branch ro,
and ngST ro () is the bosonic field associated with the bosonic excitation of the SWCNT.
It is useful to express @ZJ,,‘FU(LU) in terms of the position and momentum operators of
the plasmonic modes X, and P,. After a lengthy but straightforward calculation, one
obtains

1/AJT'FU (‘T) X ﬁTUKrFU (fL’) H e—‘riPn(a:)Xn—an(:v)ﬁn (646)

n>1

where we have introduced the functions

Xn(z) = 2 cos [Z—W (x — zqa+ EH )

NGc+ d 2

29, ) L
P,(z) =4 /%sgn(Fr) sin {Z—Z (x —zq+ 7d>]

and the proportionality in Eq. (6.46) is due to the frozen ¢—, s+ and s— branches.
They only contribute in fact with an overall constant to the tunneling matrix elements
between the low energy eigenstates.

An explicit representation of these low energy eigenstates is readily obtained from
Egs. (6.5) and (6.37). Due to the already mentioned energy scale separation between
on one side the vibronic and on the other side the plasmonic and electronic excitations,
we can restrict ourselves, without loss of generality, to the case m,, ; = 0,j # c+ and
obtain

(6.47)

N, 11ty = 5| N, 1), (6.48)
where .
G . (& —im)™ =
N, =||—=—|N,0 6.49
%o = [T 52150 (6.49)

with N = [Net, Ney Ngy, Ny | being the vector defining the electronic configuration
and m representing here the occupation numbers of only the lowest vibron-plasmon
modes (with an excitation energy lower that £y). The low energy eigenstates of a
metallic suspended SWCNT are, thus, polaron shifted plasmon-vibron excitations over
its electronic ground state |]\7 ,0)p. We are now ready to evaluate the matrix element:

(N, 10|t po (@) N, 7Y = o(N, e 5t po(2)etS | N, 7). (6.50)
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Since the operator S defined in Eq. (6.36) commutes with K, py:

e_glﬁrFo (.7})6+§ X ﬁroKrFo H e+i7rl (m)él_i&(x)ﬁla (651)
l

where the proportionality accounts for the constant terms deriving by the application
of the Baker-Hausdorff theorem and we defined the functions:

V2I & [hw
G(z) =— = mZ::l ?lmLmUNerm,l

251 ™ Ld
— 6.52
Z nzgc+hQUnlCOS |:Ld (m Za+ 3 )] (6.52)

/2gc+hQ , [mr ( I@)}
U, sin T — g+ 7 .

By means of Eq. (6.51) it is now clear that the tunneling matrix element factorizes
into an electronic component and a product of Franck-Condon factors, one for each
plasmon-vibron mode:

(N 110 ()| N 1) 0 (Nliyo Koo | N') T T F (i, mi, ) (6.53)
l

where

G —im
n=—t (6.54)

is the effective coupling between the charge and the plasmon-vibron mode and

Flm, ', 3) = [B(m’ = m)X™= 4 8 — ) (~x7)m
Mnin! = (—|A[2) S (6.55)

X o .
mmax! i=0 Z!(l + Mmax — mmin)! (mmin - Z)'

is the explicit expression of the Franck-Condon factor. Egs. (6.52)-(6.55) together with
Eq. (6.31) for the definition of the transformation U represent the main analytical re-
sult of this work. They are a very general expression of the tunneling matrix elements
between the low energy eigenstates of a suspended SWCN'T in the presence of multiple
plasmon and vibron modes. Special limits of these formulae are already available in the
literature [89,93]. Particularly, interesting to our point of view is the contribution of
the geometrical configuration of the junction, which determines selection rules in the
tunneling processes and in turn the magnitude of the dimensionless electron-vibron
Franck-Condon couplings A;. In Fig. 6.5, we present |\, for the first (left) and the
second (right) plasmon-vibron modes.

The values in the figure correspond to a tunneling matrix element calculated at the
beginning of the tube (x = 24 — Lq/2). By a comparison with the corresponding
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Figure 6.5: The Franck-Condon couplings |\;| as a function of the length ratio A = L, /L4 and
relative centre position 6 = (xzy — xq)/La. The coupling for the first and second vibron-plasmon
modes are shown in the left and right panel, respectively. The parameters are the same as those
reported in Fig. 6.4. The couplings are calculated for a tunneling event at the beginning of the dot.

charge-vibron coupling constant L,, in the lower panels of Fig. 6.3, one can argue that
|Am| o< | Lin|- This observation is essentially correct, at least in the A, B and D regions
of the parameters space where the energy renormalization of the vibronic modes is
negligible and the same holds for the mixing introduced in Eq. (6.31) between the
vibronic and plasmonic modes. Consequently, we expect that |\;| does not depend on
the tunneling point, at least in the long vibron region (A > 1) for any geometrical
configuration. This result is illustrated in Fig. 6.6 where the Franck-Condon couplings
for the first and second plasmon-vibron modes are plotted as a function of the di-
mensionless tunneling point (§ = x/Lq) and relative position of the vibron (d) for the
configuration L,/Lgq = 2. Interestingly, the selection rules derived in the previous sec-
tion for L,, directly apply to the Franck-Condon couplings in the long vibron regime:
for example, for a symmetric junction (6 ~ 0) only even modes can be excited by a
tunneling event, whereas the odd ones will remain in their ground state. Finally, it is
also notable that max(|);|) &~ 1 in the long vibron regime even in the absence of strong
screening (g.4 =~ 0.2).

A different result characterizes the short vibron limit (A < 1). In the C region, the
charge-vibron coupling vanishes identically due to symmetry considerations. Even if
small, the vibron-plasmon mixing becomes there the dominant effect. In Fig. 6.7, we
present the Franck-Condon coupling of the lowest vibron-plasmon mode for the con-
figuration A = L, /Lq = 0.1. In particular, in the upper left panel we show |A;| and in
the remaining panels its components: i.e. in the upper right panel the charge-vibron
component (the first line of & in Eq. (6.52)), in the lower left panel the plasmon-vibron
component of & and m; in the lower right panel. The dashed white lines represent in
all panels the borders of the C region, i.e., the region in which the vibron is completely
inside the dot. Outside the C region the charge-vibron coupling is stronger and A;
does not depend on the tunneling point. Inside the C region, instead, the dominant
contribution is given (in the lower left panel) by the plasmon-vibron component of &;.
The latter follows the position of the vibron and mimics its shape. The last obser-
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Figure 6.6: The Franck-Condon couplings of the first (left) and second (right) vibron-plasmon mode
in the long vibron regime (A = 2) plotted against the dimensionless tunneling point { = 2/Lgq and
the relative position § of the dot and vibron centres. Dashed lines indicate the borders between the
B (top), A (center), and D (bottom) regions of the parameters space, see Fig. 6.2.

vation is also confirmed by the lower left panel of Fig. 6.8, where the corresponding
component of the Franck-Condon coupling for the fifth mode is plotted. Finally, for
higher modes in the short vibron limit, a position-dependent Franck-Condon coupling
is still appreciable also in the B and D regions, see Fig. 6.8.

The relevance of these results for the tunneling Hamiltonian and the associated tun-
neling rates between the many-body eigenstates depends by their interplay with the
spatially dependent transparency 7'(7) introduced in the beginning of this section. In
fact, we expect to detect a position-dependent Franck-Condon factor in the tunneling
rates only for the cases illustrated in Figs. 1A, 1A" and (B) where the vibron also
extends beyond the dot region, but not for the case in Fig. 1(C). This observation,
together with the results presented in Figs. 6.6-6.8, allows us to conclude that the
position-dependent rates can be observed, among the configurations considered in this
work, only in the asymmetric short vibron one (A < 1, § &~ +1/2), i.e. a configuration
of type B (or D), also in agreement with the results presented in [89]. In a recent
publication [139], an alternative setup has been proposed for the direct visualization
of the position-dependent Franck-Condon couplings in which one of the two metallic
electrodes is substituted by the tip of a scanning tunneling microscope.

In the absence of electron-vibron coupling, the frequency of the nth stretching mode
is an nth multiple of the frequency w of the fundamental mode. Hence, naturally,
there are several energetic degenerate vibronic configurations (involving two or more
modes) that may contribute to transport at finite bias. As we just proved, for realis-
tic values of the parameters, the softening of the stretching modes introduced by the
electron-vibron coupling does not really lift these degeneracies. This fact has profound
implications for the transport properties of the system. Interference effects have been,
in fact, predicted even for systems in the Coulomb blockade regime [72,85,91,92] in
the presence of quasi-degenerate states.

Technically, this degeneracy determines the method of choice for the description of
the dynamics of the system. At low biases, such that only the lowest vibronic mode
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Figure 6.7: Position dependence of the Franck-Condon coupling of the first vibron-plasmon mode in
the short vibron regime (A = 0.1). In the upper left panel, the full coupling |\ ] is plotted, while in the
remaining panels its different components are plotted: i.e. in the upper right panel, the charge-vibron
component (the first line of & in Eq. (6.52)), in the lower left panel, the plasmon-vibron component
of £ and m; in the lower right panel. The dashed white lines represent in all panels the borders of the
C region, i.e., the region in which the vibron is completely inside the dot.
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Figure 6.8: Position dependence of the Franck-Condon coupling of the fifth vibron-plasmon mode
in the short vibron regime (A = 0.1). In the upper left panel, the full coupling |A5| is plotted. As in
Fig. 6.7 the other panels represent its different components.
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is excited, a description of the dynamics only in terms of rate equations involv-
ing occupation probabilities of the many-body states of the quantum dots is appro-
priate. However, at higher bias, when several vibron modes are excited, a general-
ized master equation (GME) coupling diagonal (populations) and off-diagonal (co-
herences) elements of the quantum dot reduced density matrix should be used, see
e.g., [69,70,72,75,76,79,80,85,90,91].

The sensitive dependence of the tunneling matrix elements on the mode number for a
given geometry of the system also suggests the existence of symmetrically coupled slow
channels such as the ones described in [83] and consequently of similar NDC effects in
the stability diagrams of a suspended SWCNT junction.

In summary, energy spectrum and Franck-Condon couplings strongly depend on the
geometry of the junction of suspended SWCNT. In this system, two kinds of couplings
arise, plasmon-vibron and charge-vibron couplings. The analysis of the coupling con-
stants K, and L,, and of the Franck-Condon couplings ); on the entire geometrical
parameters space allowed us to identify different regimes.

In the short symmetric vibron regime (A < 1, § = 0), the charge-vibron component
vanishes and the Franck-Condon couplings are extremely small (|\,,| &~ 107%) due to
the energy scale separation between the plasmonic and vibronic modes (£2/w > 1 and
R /I > 1) that hinder the plasmon-vibron mixing. The Franck-Condon coupling is
position-dependent and is located around the position of the vibron.

In the long vibron regime (A > 1), the charge-vibron coupling dominates the scenario
giving substantially larger Franck-Condon couplings (|A,,| =~ 1) and independent of
the position as in the simple Anderson-Holstein model. The Franck-Condon couplings
are strongly dependent on the relative position of the vibron and the dot, leading to
selections rules: for example, only even vibron-plasmon modes can be excited by elec-
tron tunneling in a symmetric (6 = 0) long vibron junction, see Fig. 6.6.

In the asymmetric short vibron regime (A < 1, § ~ +1/2), the charge-vibron and
plasmon-vibron contribution are of the same order and correspondingly one can dis-
tinguish (at least in the higher modes, see Fig. 6.8) the position-dependent contribution
due to the plasmon-vibron mixing superimposed to the uniform polaron shift typical of
the charge-vibron component of the coupling. In the absence of screening (dimension-
less electron-electron interaction strength g., = 0.2), however, the absolute value of
the Franck-Condon coupling remains negligibly small compared to the one estimated
from the experiments [43-45]. Reasonable values have been obtained in this regime
by [89] assuming a very strong screening (g. ~ 1) that essentially removes the energy
scale separation between the plasmon modes and the much shorter vibron mode.
Finally, for reasonable values of the nanotube parameters the spectrum of the nan-
otube is only slightly modified by the electron-vibron coupling thus preserving the
high degeneracy of the different vibronic configurations. This, in combination with the
sensitive dependence of the tunneling matrix elements on the mode number and on
the geometry of the system, also suggests the existence of symmetrically coupled slow
channels such as the ones described in [83] and consequently of similar NDC effects in
the stability diagrams of a suspended nanotube junction.
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Chapter 7

Conclusions

In this thesis, we studied different characteristic properties of nanoelectromechanical
systems. Negative differential conductance (NDC) features, memory effects, and strong
Franck-Condon couplings were investigated. In more detail:

In Chapter 1, the general aspects and technological perspectives of nanoelectrome-
chanical systems were introduced. We discussed that due to their novel electronic and
mechanical properties, they can serve as ideal candidates for technological applications
and fundamental science.

The first part of the thesis has been dedicated to the investigation of electronic trans-
port properties mediated by vibrational modes for a quantum dot system. Specifically:
In Chapter 2, a transport theory of generic interacting quantum dots of nanoelectrome-
chanical systems has been put forward. We started with a short review of quantum
dots. The electron-vibron interaction effects on the quantum transport through nano-
junction were introduced because the low bias transport is significantly influenced by
the presence of strong electron-vibron interaction. In order to study the dynamics
of the system, we applied a density matrix approach which starts with the Liouville
equation for the total density operator and enables the treatment of degenerate and
quasidegenerate states. Afterwards the generalized master equation (GME) coupling
diagonal (populations) and off-diagonal (coherences) elements of the generic quantum
dot system in the weak tunnel coupling limit was solved. We derived in detail all the
essential dynamical factors like population of the many-body states or the current.
In Chapter 3, we analyzed the spectrum and transport properties of a nanostructure
where two degenerate or quasidegenerate levels are coupled to several vibronic modes.
Our model presented in this chapter can capture features of transport properties of sus-
pended carbon nanotubes and of molecules with a fourfold degenerate electronic level
coupled to many vibrational modes. The transport theory is based on vibron-assisted
tunneling. The generalized master equation approach was considered for the dynam-
ics of the system taking into account all the degeneracies arising from the electronic
level (spin and orbital degeneracies) and vibrational modes. However, the coherences
between vibronic degenerate states do not play a significant role in the transport ad-
dressed in this work. Despite the fact that we considered a fully symmetric setup, the
stability diagram for the differential conductance shows striking negative differential
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conductance (NDC) features which hints at peculiar features of our nanoelectrome-
chanical system. We showed that NDCs appear due to the slow channels originating
from spin and /or orbital degeneracies and the suppression of Franck-Condon channels.
With source-drain symmetry being preserved but an asymmetry between orbitally de-
generate states being allowed, we could explain the alternating PDC and NDC features
observed in Refs. [43] and [45]. Eventually, with the further introduction of the left and
right asymmetry suggested in Ref. [89], we confirmed the appearance, also in presence
of multimodes, of the NDC lines with the same slope for both positive and negative
biases. We also gave an analytical interpretation of the numerical results in the low-
bias regime.

In the second part (Chapter 4), the main focus was on the hysteretic switching dy-
namics of a simple Anderson-Holstein model system where a single level is weakly
coupled to two metallic leads with the latter being subject to an adiabatic periodic
change of the bias voltage. The quantum dot is also coupled to a vibrational mode.
We analyzed in some detail the quantum switching, bistability and memory effects.
We showed that the bistability arises if the quantum switching between neutral and
charged states involved is suppressed, e.g., due to Franck-Condon blockade. In the
case of an asymmetric junction, the neutral and charged states can be unstable at
one polarity but stable at the other polarity of bias voltage. Under an appropriate
choice of parameters, the stability regions of the two states overlap, which results in
a bistable region in a certain interval of bias voltage. Hence, asymmetric voltage drop
across the junction and strong enough electron-vibron interaction drives the system
to a bistable configuration which is a necessary situation for the hysteretic dynamics
of the system. The dynamics of the system was calculated within the framework of
a generalized master equation (GME) approach in the weak tunnel coupling limit.
The time-dependent solution of the GME was taken into account and important time-
scale relations, which essentially govern the switching dynamics, were derived. Taking
into account non-stationary effects, in particular the interplay between time scales
of variation of the external perturbation and the switching time of the system, we
demonstrated electrically controlled hysteretic behavior of the system. Furthermore,
we showed that vibronic states and vibron energies also exhibit hysteretic features like
the ones shown by the population-voltage and current-voltage curves. At the end, we
also discussed the case of a DC-bias. In this case, the population-voltage and current-
voltage curves get single valued. Interestingly, one can observe current peaks in the
[-V characteristics of the system when given vibronic channels contribute to transport.
Moreover, we found that in the AC-case the vibronic excited states can be highly pop-
ulated, whereas in the stationary case the population of the excited states is strongly
decreased.

In the third part of this thesis (Chapters 5 and 6), we analyzed the electronic prop-
erties of interacting metallic armchair single wall carbon nanotubes (SWCNTs) in
the low energy regime. We briefly presented the physics of noninteracting p. elec-
trons in SWCNTs. In particular, the finite size effects were properly treated by im-
posing open boundary conditions. The low energy eigenstates and the spectrum of
suspended SWCNTs quantum dots were analyzed in the presence of electron-electron
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and electron-vibron interactions. Particularly:

In Chapter 5, we discussed in detail the electronic band structure of graphene and
SWCNTs. The low-energy theory of metallic SWCN'T was briefly reviewed. We showed
that this theory is appropriate in the linear dispersion regime above half-filling where
the low-energy physics is most relevant in the “gapless” subband touching at the Fermi
Dirac points. The character of the tube, being armchair, zigzag or chiral is entirely
captured by the Bloch waves originating from the underlying graphene lattice, and
which satisfy boundary conditions appropriate for a given SWCN'T class. In particu-
lar, for armchair nanotubes the condition that the wave function vanishes at the tube
ends naturally requires a mixing of contributions from the two different Dirac points
+ K, (valley mixing), see Eq. (5.15). This yields the occurrence of pseudo-spin de-
grees of freedom which we associated with “left” and “right” moving electrons. On the
other hand, for zigzag nanotubes the wave function must vanish on one given graphene
sublattice at one nanotube end but on the opposite sublattice at the other hand. In
this case, not treated here, the valley degrees of freedom is a good quantum number
and can be associated again with a pseudo-spin degree of freedom. We also presented
the different vibrational modes that strongly influence the transport properties of sus-
pended SWCNTs. It was outlined that the low-energy vibrational excitations of the
nanotube can be described in terms of low-energy acoustic modes which are coupled
to the electronic degrees of freedom via a deformation potential.

In Chapter 6, We presented a low-energy theory of suspended SWCNTs including
several vibronic modes as well as different dot-vibron geometrical configurations. The
long-wavelength acoustic-vibron modes were described within an elastic continuum
model and the electron-vibron interaction in terms of a deformation potential. We
considered the longitudinal stretching mode as it is the most relevant candidate in
the low bias regime. Since the deformation potential does not depend on the tube’s
chirality, the electron-vibron interaction, Eq. (6.10), can safely be applied to non-
armchair carbon nanotubes as well. We derived an effective low-energy Hamiltonian
within the framework of a Tomonaga-Luttinger liquid description of the SWCNT
where the electron-vibron coupling was separated into a plasmon-vibron and a charge-
vibron interaction. The system Hamiltonian was diagonalized via a series of canonical
transformations including polaron unitary transformation to obtain the spectrum and
Frank-Condon couplings of the system. As a consequence, the low-energy description
of the suspended SWCNTSs reduced to a set of displaced plasmon-vibron excitations.
The tunneling matrix elements between the many-body eigenstates of the system are
the product of Franck-Condon factors, one for each plasmon-vibron mode. In the
asymmetric short vibron regime, the renormalization of the lowest vibronic mode due
to the coupling to the plasmons produces a strongly inhomogeneous Franck Condon
coupling in the tunneling matrix elements to the carbon nanotube. Interestingly, the
Franck-Condon coupling in suspended SWCNT can be position-dependent and is lo-
cated around the position of the vibron. Moreover, selection rules for the excitations of
different plasmon-vibron modes via electronic tunneling events were analyzed in detail.
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Perspectives

In this work, we resolved some issues in nanoelectromechanical systems but still there
are many open problems to be addressed in future research:

The exact description of vibrational effects for arbitrary strength of electron-
vibron interaction in determining the transport properties of nanoelectromechan-
ical systems is an open issue, specifically, in the intermediate coupling regime.

It will be interesting to study the vibrational effects on the dc-current through
a carbon nanotube and the switching between different stable modes addressed
in Ref. [15].

So far we have considered the electron-vibron coupling via longitudinal stretching
modes associated with the deformation potential, ignoring the one induced by the
bond length modifications in suspended SWCNTs. It will be interesting to take
into account both and find the electron-vibron interaction effects on transport.
This may lead to interesting novel physics.

In the transport theory of suspended SWCNTs, we have considered only the
longitudinal stretching modes. The transport calculations with all possible vi-
brational modes in suspended carbon nanotube will be a nice step towards con-
necting with real world experiments.

The investigation of vibrational effects on the transport properties in the Kondo
regime also needs to be addressed.

Strong enough electron-vibron interaction can drive a system into a supercon-
ducting state. This may also be a possible new direction of research.

One peculiarity of armchair SWCNTSs is that the pseudo-spin degrees of freedom
are expected to be equally coupled to the source or to the drain leads [71]. In other
words, the asymmetry involved in Ref. [85,89] and in Chapter 3 of this thesis to
explain some alternating negative-positive differential conductance features as
observed, e.g., in Ref. [43] is not present for armchair SWCNT quantum dots.
We expect, however, that other SWCNT families could perhaps lead to this
asymmetry of the tunnel coupling, whose existence has also been invoked in
Ref. [141]. This issue is a matter of future research.

We have explicitly calculated the Franck-Condon (FC) couplings of suspended
SWCNTs in the case of possibly extended source and drain leads. It would be
interesting to carry out also the transport calculations taking into account the
different geometries described in [140]. It may lead to uncovering new physics in
the transport properties of suspended SWCNTs quantum dot systems.
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