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1. Introduction

In recent times, the calls for faster, cheaper and smaller electronic devices become more
and more louder while the chip industry already struggles keeping up with Moore's law.
However, halving the node size of transistors every two years will not be possible forever,
as at some point quantum mechanical e�ects will come into play.
This could be the starting point for the success of molecular electronics, as the size of
molecules is tipically in the sub-nanometer range. Further reasons for molecular devices to
supersede conventional transistors are their synthetical fabrication and the adjustability
of their electronic properties [Tou00]. At present, many di�erent candidates for molecular
electronic devices are subject to extensive research [PPL+00,KDH+03,PGAW11,LRM07].

The visionary talk �There's Plenty of Room at the Bottom�, given by Richard Feyn-
man [Fey60] at the annual meeting of the American Physical Society at the Californian
Institute of Technology in December 1959, is regarded by many as the beginning point
of nanotechnology. The �rst theoretical work that adressed the feasibility of molecular
electronic devices was authored by Aviram and Ratner in 1974 [AR74]. In this work the
possibility of using single molecules as electrical recti�ers has been proposed. However, the
physics community had to wait a long time for an experimental realization of contacting
and manipulating molecules or nano-scale devices, respectively. For sure, a breakthrough
in this respect has been the invention of scanning tunneling microscopy (STM): In 1981
Gerd Binning and Heinrich Rohrer presented a technique to image surfaces in atomic res-
olution [BR82]. Five years later they were awarded the Nobel Prize.

Figure 1.1.: �The Beginning�. Xenon atoms on nickel (110). Image originally created by IBM
Corporation. Source: http://www.almaden.ibm.com/vis/stm/atomo.html
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1. Introduction

Since then, STM has found an ever wider range of applications. Starting from surface
microscopy via spectroscopy and imaging of molecular orbitals through to the actual ma-
nipulation of individual atoms and molecules [ES90,RM05,GRM+05].
The subject of the present thesis is to develop a semi-quantitative transport theory that al-
lows us to reproduce two main applications of scanning tunneling microscopy: spectroscopy
and imaging of molecular orbitals. The spectral properties of molecules are strongly in�u-
encing the electronic transport through molecules in the Coulomb Blockade Regime [GD92].
The molecule we have chosen to investigate is hydrogen phthalocyanine. Due to its size, an
exact diagonalization is numerically intractable. Hence an important part of this thesis will
be to search for alternative approaches and to check to which extent these approximations
retain their validity.
The imaging of molecular orbitals allows the examination of the electronic structure of
molecules. To this end, molecules are placed on a thin insulating �lm, that sets them
apart from the substrate. This is important, since the electrons in the substrate are
wielding heavy in�uence on the electrons in the molecule [RM05]. As we will see later in
this work, the shape of the recorded images is also strongly related to the orbital structure
of the tip. By comparison with expected results we will be able to check the validity of
our mathematical description of the tip.

The present thesis is outlined as follows: In Chap. 2 we specify the Hamiltonian which
describes our system and derive the tunneling matrix elements for an organic molecule
in an STM tunneling junction. In the third chapter we evaluate the General Master
Equation for the reduced density matrix up to second order in the tunneling Hamiltonian.
Finally we obtain the stationary solution for the reduced density matrix and derive the
current operator. Its expectation value, evaluated using the stationary solution, will be
the fundament of our transport calculations. Eventually, in the fourth chapter we adress
phthalocyanine, to be precise hydrogen phthalocyanine and copper phthalocyanine. We
diagonalize their single particle Hamiltonians in order to obtain the molecular orbitals and
the corresponding eigenenergies. After setting up a reasonable many-body representation,
we �nally give the results of our transport calculations in Chap. 5 and compare these to
experimental data.
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2. STM setup and tunneling matrix

elements

At �rst, we specify the setup of our system and give the single particle Hamilton operators
which describe the dynamics of the di�erent subsystems. These are coupled amongst
themselves through a tunneling Hamiltonian. Finally, to mirror the functional principle
of a scanning tunneling microscope we have to derive so-called tunneling matrix elements.
These are determining the tunneling properties between the di�erent subsystems.

2.1. The model Hamiltonian

The Hamiltonian of our system consists of four terms:

Ĥ = Ĥmol + Ĥsub + Ĥtip + ĤT . (2.1)

Here Ĥmol is the Hamiltonian of the molecule, Ĥsub and Ĥtip describe the Hamiltonians
of the substrate or the tip respectively and ĤT is the tunneling term (see Fig. 2.1). The
single particle Hamiltonian of the molecule is given by:

Ĥmol =
∑
ν

εν d̂
†
ν d̂ν +

∑
〈ν, ν′〉

bνν′ d̂
†
ν d̂ν′ , (2.2)

where the indices ν = (α, lm, τ) and ν ′ = (α′, l′m′ , τ
′) are given in multi-index notation.

They include the index of the atomic site α, the quantum number lm of an atomic orbital

Figure 2.1.: Schematic sketch of a molecule underlying an STM setup.
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2. STM setup and tunneling matrix elements

at the speci�ed site and a spin index τ . The operators d̂
†
ν and d̂ν are the creation or anni-

hilation operators for an electron on the molecule, with quantum numbers ν = (α, lm, τ).
Due to the fact that there are no spin-dependent interactions in our system we will leave
out the spin index in our further notations, but will keep in mind that we are treating
fermionic particles. By diagonalizing the Hamiltonian of the molecule we get the single
particle molecular orbitals |i〉 and their corresponding energies εi:

Ĥmol =
∑
i

εi d̂
†
i d̂i . (2.3)

The operator d̂
†
i creates an electron in the molecular orbital speci�ed by the orbital quan-

tum number i. For further details about the diagonalization and the molecular orbitals
the reader is referred to Sec. 4.1.2. The Hamiltonians for the substrate and the tip are
single particle Hamiltonians of noninteracting electrons in a metal, where ĉ†k/â†k and ĉk/âk
create or annihilate an electron with momentum k in the substrate or the tip, respectively.
They read:

Ĥsub =
∑
k

εk ĉ†kĉk, (2.4)

Ĥtip =
∑
k

εk â†kâk. (2.5)

The tunneling Hamiltonian ĤT can be split into two parts. The �rst one, Ĥtip−mol, is
associated with tunneling between the tip and the molecule whereas the second term,
Ĥmol−sub, gives the tunneling between the molecule and the substrate:

ĤT = Ĥtip−mol + Ĥmol−sub. (2.6)

Explicitly the terms read:

Ĥtip−mol =
∑
k, i

(
tTki â†kd̂i +

(
tTki
)∗

d̂
†
i âk

)
, (2.7)

Ĥmol−sub =
∑
k, i

(
tSki ĉ†kd̂i +

(
tSki
)∗

d̂
†
i ĉk

)
. (2.8)

Tunneling is realized by creating an electron in the molecule and annihilating one electron
in the tip or the substrate, or by its inverse process. The coe�cients tTki and t

S
ki are called

tunneling matrix elements and depend on the momentum of the electron in the tip or the
substrate, respectively, and the orbital quantum number of the electron in the molecule.

2.2. STM tunneling matrix elements

The tunneling matrix elements (TMEs) tηki, with η denoting either substrate or tip, are
of great importance to describe the transport properties of the STM setup. They are
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2.2. STM tunneling matrix elements

Figure 2.2.: Potential for the STM setup.

obtained by calculating the matrix elements of the underlying single particle Hamiltonians
ĥη between the eigenstates of the molecule and those of the substrate or tip, respectively.
In both cases we have matrix elements of the form

tηki = 〈ηk| ĥη |i〉 = 〈ηk| T̂ + V̂mol + V̂η |i〉 . (2.9)

Here |ηk〉 and |i〉 are the eigenstates of the contact and molecule single particle Hamilto-
nians, T̂ is the kinetic term, V̂mol denotes the potential in the molecule and V̂η describes
the potential in the region near the contact η. The form of the potential is shown in Fig.
2.2. On the one hand the wavefunctions of the molecule are decaying exponentially with
the distance perpendicular to the molecular plane. On the other hand we assume, that V̂η

is equal to zero in the regions between the molecule and the substrate and tip. Hence we
are allowed to neglect the contribution of the last term 〈k| V̂η |i〉 and arrive at:

tηki = 〈ηk| T̂ + V̂mol |i〉 = 〈ηk| ĥmol |i〉 . (2.10)

Since |i〉 is an eigenstate of the single particle Hamilton operator of the molecule with
eigenenergy εi, Eq. (2.10) simpli�es to:

tηki = εi 〈ηk|i〉 . (2.11)

By using the fact that the molecular orbitals |i〉 are linear combinations of the atomic pz
orbitals |α〉 with coe�cients cαi (see Sec. 4.1.1), the tunneling matrix elements are given
by:

tηki = εi
∑
α

cαi 〈ηk|α〉 . (2.12)

In the following we will calculate the TMEs for the two di�erent tunneling regions.
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2. STM setup and tunneling matrix elements

2.2.1. The substrate-molecule tunneling matrix elements

In a �rst step we calculate the wavefunctions of the electrons in the conduction band of the
substrate. According to Fig. 2.2, in z-direction the electrons are bound to a �nite potential
well with energy at the bottom ε0 < 0. In x- and y-direction they behave like Bloch states
with wavevectors kx and ky. In Fig. 2.2 we see that the Fermi energy of the electrons and
the workfunction, which is the energy needed to remove an electron from the Fermi level of
the conduction band, are connected to ε0 via ε0 + εF +φ0 = 0. The associated Schrödinger
equation for an electron with energy εk = εx + εy + εz + ε0 then reads:

[
p̂2

2m
+ V (z)

]
Ψ(~r) = εkΨ(~r)

= (ε0 + εx + εy + εz)Ψ(~r), (2.13)

where V (z) is given by

V (z) =


0, z < z0

ε0, z0 < z < 0

0, z > 0

. (2.14)

Using the separation ansatz Ψ(~r) = Ψ(x)Ψ(y)Ψ(z), we can solve the Schrödinger equation
to obtain the eigenstates of the substrate in x- and y-direction:

Ψ(x) =
1√
L
e−ikxx (2.15)

Ψ(y) =
1√
L
e−ikyy, (2.16)

Here 1√
L
with L2 = S being the surface area of the substrate is the normalization factor

for the wavefunctions. With the abbreviation ξ = 1 + i κkz , the solution of the Schrödinger
equation in the z-direction reads:

Ψ(z) = Ω


− sin(kzz0) κ

2+k2z
2κkz

eκ(z−z0) z < z0

1
2

(
ξeikzz + ξ∗e−ikzz

)
z0 < z < 0

e−κz z > 0

. (2.17)

For the wavevectors we have the relations

kj =

√
2m

~2
εj with j = x, y, z (2.18)

κ =

√
2m

~2
(εF + φ0 − εz). (2.19)
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2.2. STM tunneling matrix elements

Finally, the normalization factor Ω is given by:

Ω =
√

2κ

(
1− κz0

(
1 +

κ2

k2
z

)
+

1

2
sin2(kzz0)

(
1 +

k2
z

κ2

)(
1 +

κ2

k2
z

)2
)− 1

2

. (2.20)

After calculating the eigenstates of the substrate, we have to specify the atomic orbitals of
the molecule. We consider the pz-orbitals for hydrogen-like atoms

pz(r− rα) =
1

4
√

2π

(
Qα
a0

)5/2

|r− rα| cos(ϑ) e
−Qα2a0

|r−rα|, (2.21)

where Qα is the atomic number of the atom α located at rα = (xα, yα, d)T and a0 '
0.53Å is the Bohr radius. Then the overlap integral we have to calculate is:

〈k|α〉 = S
−1/2

∫
d3r e−ikxxe−ikyy Ψ(z)pz(r− rα). (2.22)

The resulting tunneling matrix elements for the substrate region are ultimately given by:

tSki = εi
∑
α

cαi 〈k|α〉 = εi
∑
α

cαiVα(kz, k‖, κ) e−i(kxxα+kyyα), (2.23)

where the function Vα(kz, k‖, κ) condenses the results of the integration in Eq. (2.22).
It depends on the type of atom α and on the k-vectors of the substrate wavefunction in
z-direction, in the plane and in the region outside the substrate, respectively. As tunneling
into the substrate represents a delocalized process, we have in Eq. (2.23) an exponential,
whose phase contains the in-plane wavevectors. For the interested reader, an explicit
derivation of Eq. (2.23) is given in App. A.2.

2.2.2. The tip-molecule tunneling matrix elements

Now we calculate the tunneling elements in the tip region. For sure, the easiest way to
model the tip wavefunction would be the use of a delta function

〈r | k〉 = Nkδ(r− rtip), (2.24)

where rtip is the position of the apex of the tip and Nk is a k-dependent prefactor. Calcu-
lating the overlap integral with a pz orbital of the molecule yields:

〈k|α〉 = Nk pz(rtip − rα). (2.25)

Thus the tunneling matrix elements for delta-like tip wavefunctions read:

tTki = εiNk

∑
α

cαi pz(rtip − rα) = εiNkψi(rtip). (2.26)

Despite its simplicity, we will not use this approach, as it gives no information about the
explicit form of the prefactor Nk. However, up to the prefactor, Eq. (2.26) coincides with
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2. STM setup and tunneling matrix elements

Figure 2.3.: Geometrical situation for the calculation of the TMEs of the tip. Taken from [Che90].

the result proposed by C. Julian Chen in [Che90], where Bessel functions are used to model
the �tail� of the tip wavefunctions in the vacuum between the molecule and the tip. This
approach does not care about the explicit form of the wavefunctions inside the tip but
rather distinguishes between their di�erent spatial orientations. For spherical symmetric,
thus s-type tip wavefunctions the tunneling coe�cients are predicted to be proportional to
the wavefunctions of the sample evaluated at the position of the tip. In the following we will
adapt this approach to our formalism. It is based on Bardeen's tunneling theory [Bar61],
which assumes that a tunneling matrix element between two wavefunctions χ and ψ living
in di�erent regions can be represented by the following surface integral:

M =
~2

2m

∫
Σ

dS (χ∇ψ − ψ∇χ) . (2.27)

Here Σ denotes the separation surface that isolates the two regions.

Modeling the tip states

Consider a tip wavefunction χk(r) which is the solution of a Schrödinger equation for an
electron with wavevector κ in the vacuum:(

∇2 − κ2
)
χk(r) = 0. (2.28)

Here κ =
√
κ2 is, in analogy to the calculations we have done for the substrate, given by

κ =

√
2m

~2

(
εtipF + φtip0 − εk

)
. (2.29)

Note that Eq. (2.28) is only valid for χk(r) in the region that is lying to the left of the
separation surface and on the separation surface itself, as depicted in Fig. 2.3. However,
the chosen approach disregards the behavior of χk(r) inside the separation surface Σ.
One further assumption we have to make is that Eq. (2.28) is also valid for the sample
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2.2. STM tunneling matrix elements

wavefunction on the separation surface and to the right of it. In the words of Julian Chen,
the latter assumption is �valid by de�nition�. The next step is to do a separation ansatz
and to write χk(r) in terms of an angular part given by spherical harmonics Ylm(θ, ϕ) and
a radial part Rlm(κρ) with ρ = |r− rtip|, where rtip is the position of the apex of the tip:

χk(r) =
∑
l,m

χlmk (r) =
∑
l,m

ClmRlm(κρ)Ylm(θ, ϕ). (2.30)

The functions Ylm(θ, ϕ) are solutions of the angular part of Eq. (2.28) per se, so we only
have to care about its radial part. This reads:

∂

∂ρ
ρ2 ∂

∂ρ
− l(l + 1)Rlm(κρ) = κ2ρ2Rlm(κρ). (2.31)

We see that Rlm(kρ) does not depend on m and with the substitution x = κρ we arrive
at:

∂

∂x
x2 ∂

∂x
Rl(x)−

[
x2 + l(l + 1)

]
Rl(x) = 0, (2.32)

whose solutions are the modi�ed spherical Bessel functions. Here we use the de�nition
given in [Arf85], which is basically the same as in [AS72] up to the prefactor. As we
are interested in solutions that do not diverge for large x, our functions of choice are the
modi�ed spherical Bessel functions of the third kind,

kl(x) =

√
2

πx
Kl+ 1

2
(x). (2.33)

They are de�ned by:

k0(x) =
e−x

x
, (2.34)

kl+1(x) = −xl d

dx
x−lkl(x), (2.35)

and are subject to the following useful recurrence relations:

2l + 1

x
kl(x) = kl+1(x)− kl−1(x) (2.36)

(2l + 1)
dkl(x)

dx
= −(l + 1)kl+1(x)− l kl−1(x). (2.37)

For completeness we give k1/2(x) explicitly:

k1(x) =

(
1

x
+

1

x2

)
e−x, (2.38)

k2(x) =

(
1

x
+

3

x2
+

3

x3

)
e−x. (2.39)
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2. STM setup and tunneling matrix elements

l|m| Orientation Wavefunction

00 s Cs k0(κρ)
10 pz Cz k1(κρ) cos(θ)
11 px Cx k1(κρ) sin(θ) cos(ϕ)
11 py Cy k1(κρ) sin(θ) sin(ϕ)
20 dz2 Cz2 k2(κρ)(cos2(θ)− 1

3)
21 dxz Cxz k2(κρ) sin(2θ) cos(ϕ)
21 dyz Cyz k2(κρ) sin(2θ) sin(ϕ)
22 dxy Cxy k2(κρ) sin2(θ) sin(2ϕ)
22 dx2−y2 Cx2−y2 k2(κρ) sin2(θ) cos(2ϕ)

Table 2.1.: The di�erent tip states, depending on their orientations.

Inserting Eq. (2.33) into Eq. (2.30) yields:

χk(r) =
∑
l,m

χlmk (r) =
∑
l,m

Clmkl(κρ)Ylm(θ, ϕ). (2.40)

The factors Clm, depending on the electronic con�guration of the tip material, have to be
chosen in a way that χk(r) is normalized. In Tab. 2.1 all tip states up to l = 2 are listed,
where we put the spherical harmonics for m 6= 0 in their real representation by taking
linear combinations of the following form:

1√
2

(Ylm + (−1)mYl,−m) for m > 0, (2.41)

1

i
√

2
(Yl,−m − (−1)mYlm) for m < 0. (2.42)

From now on we will label our functions by their spatial orientations instead of the two
indices l and m. For example χzk is equivalent to χ10

k . As more convenient for the later cal-
culations, we now calculate the Green's function for the problem. The di�erential equation
the Green's function reads:(

∇2 − κ2
)
G(r− rtip) = −δ(r− rtip). (2.43)

After transforming Eq. (2.43) into momentum space, we are directly able to write down
G(q):

G(q) =
1

q2 + κ2
. (2.44)

Now we only have to do one more Fourier transform to obtain G(r−rtip). We immediately
see that it is proportional to k0(κ|r− rtip|):

G(r− rtip) =
e−κ|r−rtip|

4π|r− rtip|
=

κ

4π
k0(κ|r− rtip|). (2.45)
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2.2. STM tunneling matrix elements

This means the s-wave tip state χsk can be represented through the Green's function:

χsk(r) =
4πCs
κ

G(r− rtip). (2.46)

However, not only the s-wave tip wavefunction, but all other tip wavefunctions can be
related to the Green's function G(r− rtip). This we will demonstrate �rst for the pz-type
tip state. We start by di�erentiating Eq. (2.45) with respect to ztip:

∂

∂ztip
G(r− rtip) =

κ

4π

∂

∂ztip
k0(κρ) =

κ2

4π

∂k0(κρ)

∂(κρ)

∂ρ

∂ztip
. (2.47)

If we exploit the fact that dk0(x)
dx = −k1(x) and, according to Fig. 2.3, notice that

∂ρ

∂ztip
= −z − ztip

ρ
= − cos(θ), (2.48)

we get for the derivative of G(r− rtip) with respect to ztip:

∂

∂ztip
G(r− rtip) =

κ2

4π
cos(θ)k1(κρ), (2.49)

which is proportional to the pz tip wavefunction χzk. As it holds that

∂ρ

∂xtip
= − sin(θ) cos(ϕ) and

∂ρ

∂ytip
= − sin(θ) sin(ϕ), (2.50)

we are immediately able give the tip states for l = 1 in terms of derivatives of the Greens's
function:

χxk(r) =
4πCx
κ2

∂

∂xtip
G(r− rtip) (2.51)

χyk(r) =
4πCy
κ2

∂

∂ytip
G(r− rtip) (2.52)

χzk(r) =
4πCz
κ2

∂

∂ztip
G(r− rtip). (2.53)

The tip wavefunctions for l = 2 can be generated by further di�erentiating the above
equations with respect to other components of rtip. As an example, if we want to calculate
the tip state χz

2

k (r), in a �rst step we have to pick up Eq. (2.49) and take the derivative
with respect to ztip on both sides of it:

∂2

∂z2
tip

G(r− rtip) =
κ2

4π

∂

∂ztip
(cos(θ)k1(κρ)) . (2.54)

Notice that cos(θ) also depends on ztip. Using Eq. (2.48), we get for the derivative of the
cosine:
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2. STM setup and tunneling matrix elements

∂

∂ztip
cos(θ) =

1

ρ

(
cos2(θ)− 1

)
. (2.55)

The chain rule and Eq. (2.37) tells us that

∂

∂ztip
k1(κρ) =

1

3
κ cos(θ) (2k2(κρ) + k0(κρ)) . (2.56)

Collecting the results, we obtain

∂2

∂z2
tip

G(r− rtip) =
κ3

4π

[(
cos2(θ)− 1

) k1(κρ)

κρ
+

1

3
cos2(θ) (2k2(κρ) + k0(κρ))

]
. (2.57)

Now we only have to use the recurrence relation Eq. (2.37) and to remind the de�nition
of the Green's function Eq. (2.45) and the form of the dz2 tip wavefunction (see Tab. 2.1)
to �nally relate χz

2

k (r) to G(r− rtip) and its second derivative:

χz
2

k (r) =
4πCz2

κ3

(
∂2

∂z2
tip

G(r− rtip)−
1

3
κ2G(r− rtip)

)
. (2.58)

In the next part of this section we will see why we put such great e�ort to model the
various tip states by using the Green's function and its derivatives.

Calculation of the tunneling matrix elements

To actually calculate the tunneling matrix elements, we have to evaluate Eq. (2.27). As a
�rst example we will do this for a s-wave tip state. Consequently, the according tunneling
matrix element M s

ki reads:

M s
ki =

~2

2m

∫
Σ

dS (χsk(r)∇ψi(r)− ψi(r)∇χsk(r)) . (2.59)

Inserting Eq. (2.46) we get:

M s
ki =

2π~2Cs
mκ

∫
Σ

dS (G(r− rtip)∇ψi(r)− ψi(r)∇G(r− rtip)) . (2.60)

Using one of Green's theorems, ∫
∂Ω

dSF =

∫
Ω

dV ∇F, (2.61)

we can convert our integral into a volume integral over Ωtip that is enclosed by the sepa-
ration surface:

M s
ki =

2π~2Cs
mκ

∫
Ωtip

d3r
(
G(r− rtip)∇2ψi(r)− ψi(r)∇2G(r− rtip)

)
. (2.62)
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2.2. STM tunneling matrix elements

tip state t. matrix element tip state t. matrix element

s
2π~2Cs

mκ
ψ(rtip) dz2

2π~2Cz2

mκ3

(
∂2

∂z2tip
− 1

3
κ2

)
ψ(rtip)

pz
2π~2Cz

mκ2
∂

∂ztip
ψ(rtip) dxz

2π~2Cxz

mκ3
∂2

∂xtip∂ztip
ψ(rtip)

px
2π~2Cx

mκ2
∂

∂xtip
ψ(rtip) dyz

2π~2Cyz

mκ3
∂2

∂ytip∂ztip
ψ(rtip)

py
2π~2Cy

mκ2
∂

∂ytip
ψ(rtip) dx2−y2

2π~2Cx2−y2

mκ3

(
∂2

∂x2tip
− ∂2

∂y2tip

)
ψ(rtip)

Table 2.2.: Tunneling matrix elements for the tip up to second order in l.

Now we have to make use of Eq. (2.43) and claim that ψi ful�lls Eq. (2.28) to obtain:

M s
ki =

2π~2Cs
mκ

∫
Ωtip

d3r
(
G(r− rtip)κ

2ψi(r)−ψi(r)
[
−δ(r− rtip) +κ2G(r− rtip)

])
. (2.63)

This integral can be solved easily, yielding:

M s
ki =

2π~2Cs
mκ

ψi(rtip) =
2π~2Cs
mκ

∑
α

cαi pz(rtip − rα), (2.64)

where we already inserted the explicit form of the sample wavefunction. The tunneling
matrix element for a pz-oriented tip state can be gained with a similar calculation. As
above, we obtain for M z

ki:

M z
ki =

2π~2Cz
mκ2

∫
Σ

dS

(
∂

∂ztip
G(r− rtip)∇ψi(r)− ψi(r)∇ ∂

∂ztip
G(r− rtip)

)
. (2.65)

Only the Green's function depends on ztip, so we can put the partial derivative out of it.
After applying Green's theorem, we are left with the same integral as in the s-wave case:

M z
ki =

2π~2Cz
mκ2

∂

∂ztip

∫
Ωtip

d3r
(
G(r− rtip)∇2ψi(r)− ψi(r)∇2G(r− rtip)

)
(2.66)

=
2π~2Cz
mκ2

∂

∂ztip
ψi(rtip). (2.67)

In the same way, we get for the TME of a dz2-oriented tip state:

M z2

ki =
2π~2Cz
mκ3

∫
Σ

dS
([ ∂2

∂z2
tip

− 1

3
κ2

]
G∇ψi − ψi∇

[
∂2

∂z2
tip

− 1

3
κ2

]
G
)
. (2.68)
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2. STM setup and tunneling matrix elements

For brevity, we left out the arguments of the functions. Notice that, still, the only term
that depends on ztip is the Green's function. Performing the same steps as before it takes
minimal e�ort to arrive at

M z2

ki =
2π~2Cz
mκ3

(
∂2

∂z2
tip

∫
Ωtip

d3r ψi(r)δ(r− rtip)−
1

3
κ2

∫
Ωtip

d3r ψi(r)δ(r− rtip)

)
, (2.69)

which yields for the tunneling matrix element of a dz2-oriented tip state:

M z2

ki =
2π~2Cz
mκ3

(
∂2

∂z2
tip

ψi(rtip)−
1

3
κ2ψi(rtip)

)
. (2.70)

With this result we can construct the tunneling matrix element tTki for the tip by summing
up the various matrix elements M ξ

ki with ξ ∈ {s, x, y, z, z
2, xz, yz, x2 − y2}:

tTki =
∑
ξ

M ξ
ki. (2.71)

A complete list of them up to second order of l is given in Tab. (2.2). The composition
of the tip state regarding its di�erent spatial orientations is then determined through the
choice of the prefactors Cξ. A proof for the consistency of this approach with Eq. (2.12)
is given in [Rei95].
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3. Transport in an STM setup

In order to calculate the current through our system, we have to evaluate the expectation
value of the current operator Î. This is related to the time derivative of the expectation
value of the total charge in the system:

〈Î〉 =
d

dt
〈Q̂〉 = e

d

dt
〈N̂〉 = e

d

dt
trmol

{
N̂ ρ̂Sred

}
. (3.1)

Here N̂ is the particle number operator in the sample and trmol denotes the trace over the
eigenstates of the molecule. The quantity ρ̂Sred is the reduced density matrix of our system

in the Schrödinger picture. As N̂ =
∑

i d̂
†
i d̂i does not depend on time, we can write Eq.

(3.1) as:

〈Î〉 = e trmol

{
N̂ ˙̂ρSred

}
= trmol

{
Î ρ̂Sred

}
. (3.2)

We can write the expectation value 〈Î〉 as a sum of the currents through the substrate and
the tip,

〈Î〉 = 〈Îsub + Îtip〉 , (3.3)

and use the convention that the current is positive when increasing the number of particles.
Therefore, the net current through the sample is zero in the stationary limit t→∞. The
stationary current in the substrate or in the tip is then given by:

Istatη = trmol

{
Îηρ

stat
red

}
= −Istatη̄ , (3.4)

with η = sub, tip. Hence we have to �nd an expression for the time evolution of the reduced
density matrix of the system and evaluate it in the stationary limit. On the other hand
we need also an expression for the current operator Îη.

3.1. The Generalized Master Equation for the reduced

density matrix

In this section we express the time evolution of the reduced density matrix of our system
in terms of a generalized master equation (GME), following [Blu96,DBDG09]. The cal-
culations are performed in the interaction picture. Here we treat ĤT as a perturbation,
while the intrinsic time dependence of the system comes from Ĥ0 ≡ Ĥmol + Ĥtip + Ĥsub.
States and operators are transformed into the interaction picture by:
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3. Transport in an STM setup

|ψI(t)〉 = e
i
~ Ĥ0t |ψ(t)〉 , (3.5)

ÔI(t) = e
i
~ Ĥ0t Ô e−

i
~ Ĥ0t. (3.6)

We start with the density matrix ρ̂I(t) of the whole system in the interaction picture. To
evolve ρ̂I(t) from t0 to t we need to evaluate

ρ̂I(t) = ÛI(t, t0) ρ̂I(t0) Û †I (t, t0). (3.7)

The time evolution operator in the interaction picture for our problem is de�ned by the
following equation:

ÛI(t, t0) = Û †0(t, t0) Û(t, t0)

= e
i
~ Ĥ0(t−t0) e−

i
~(Ĥ0+ĤT )(t−t0). (3.8)

For the time derivative of ÛI(t, t0) we get:

i~
∂

∂t
ÛI(t, t0) = ĤIT (t)ÛI(t, t0). (3.9)

This yields the following di�erential equation describing the time evolution of the density
matrix in the interaction picture:

i~
dρ̂I(t)

dt
= [ĤIT (t), ρ̂I(t)]. (3.10)

The formal solution of Eq. (3.10) is:

ρ̂I(t) = ρ̂I(t0)− i

~

∫ t

t0

dt1 [ĤIT (t1), ρ̂I(t1)]. (3.11)

Reinserting Eq. (3.11) into Eq. (3.10) we obtain:

˙̂ρI(t) = − i
~

[ĤIT (t), ρ̂I(t0)] +

(
i

~

)2 ∫ t

t0

dt1

[
ĤIT (t), [ĤIT (t1), ρ̂I(t1)]

]
. (3.12)

We trace out the substrate and tip degrees of freedom to obtain the reduced density matrix
(RDM) that describes only the dynamics of the molecule:

ρ̂Ired(t) = trsub, tip

{
ρ̂I(t)

}
, (3.13)

˙̂ρIred(t) =− i

~
trsub, tip

{
[ĤIT (t), ρ̂I(t0)]

}
+

(
i

~

)2 ∫ t

t0

dt1 trsub, tip

{[
ĤIT (t), [ĤIT (t1), ρ̂I(t1)]

]}
. (3.14)

20



3.1. The Generalized Master Equation for the reduced density matrix

If we assume the molecule to be uncorrelated with the contacts initially (t = t0) we can
factorize the density matrix at t = t0:

ρ̂I(t0) = ρ̂Ired(t0)ρ̂tip(t0)ρ̂sub(t0), (3.15)

Assuming that the substrate and the tip subsystems behave like large thermal reservoirs,
their density matrices at time t0 are described by equilibrium density operators:

ρ̂sub/tip(t0) ≡ ρ̂sub/tip =
e−β(Ĥsub/tip−µsub/tipN̂sub/tip)

Zsub/tip
. (3.16)

If we now consider the coupling between the molecule and the contacts to be weak, the
interaction between the subsystems will only have very small in�uence on the contacts, so
that they stay in thermal equilibrium. Therefore the total density matrix at time t can be
approximated by

ρ̂I(t) = ρ̂Ired(t)ρ̂tipρ̂sub + ∆ρ, (3.17)

with ∆ρ = O(ĤT ). Inserting it into Eq. (3.14) yields:

˙̂ρIred(t) =− i

~
trsub, tip

{
[ĤIT (t), ρ̂Ired(t0)ρ̂tipρ̂sub]

}
− 1

~2

∫ t

t0

dt1 trsub, tip

{[
ĤIT (t), [ĤIT (t1), ρ̂Ired(t1)ρ̂tipρ̂sub]

]}
, (3.18)

where we performed a Born-approximation and dropped the ∆ρ terms as they contribute
in O(Ĥ3

T ). The �rst term in this equation vanishes because it contains matrix elements of
single annihilation and creation operators. As the trace implies that

trsub/tip

{
ρ̂sub/tipÔ

}
= 〈Ô〉 , (3.19)

for any arbitrary quantum mechanical operator Ô, the matrix elements that stem from the
�rst term are zero because they do not conserve the particle number:

trsub

{
ρsub ĉ†k

}
= trsub

{
ρ̂sub ĉk

}
= 0, (3.20)

trtip

{
ρtip â†k

}
= trtip

{
ρ̂tip âk

}
= 0. (3.21)

The equation for ˙̂ρIred then reduces to:

˙̂ρIred(t) = − 1

~2

∫ t

t0

dt1 trsub, tip

{[
ĤIT (t), [ĤIT (t1), ρ̂Ired(t1)ρ̂tipρ̂sub]

]}
. (3.22)

As ˙̂ρIred(t) depends on time t1 with t0 ≤ t1 ≤ t in the above equation, the latter is nonlocal
in time and thus very di�cult to calculate. However, products of ĤIT (t) and ĤIT (t1)
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3. Transport in an STM setup

imply expectation values of creation and annihilation operators of the tip and substrate at
di�erent times. They decay much faster than the characteristic timescale of the subsystem
of the molecule, thus the latter will not notice such rapid changes [Blu96]. This means we
can change ρ̂Ired(t1) to ρ̂Ired(t) in Eq. (3.22):

˙̂ρIred(t) = − 1

~2

∫ t

t0

dt1 trsub, tip

{[
ĤIT (t), [ĤIT (t1), ρ̂Ired(t)ρ̂tipρ̂sub]

]}
. (3.23)

Notice that even within this approximation, in the stationary limit, where t goes to in�nity,
we regain an exact solution. The next step is to perform a variable transformation t1 =
t− t2. As we are interested in the dynamics of the system for t� t0, we set t0 →∞.
Execution of the traces and resolving the time dependence of ĤIT (t) in Eq. (3.23) yields:

˙̂ρIred(t) =− 1

~2

∫ ∞
0

dt2
∑
k

∑
i, j

∑
η

[
+ tηki(t

η
kj)
∗ f+

η (εk) d̂i (t)d̂
†
j(t− t2) ρ̂Ired(t) e

i
~ εkt2

+ (tηki)
∗tηkj f

−
η (εk) d̂

†
i (t)d̂j(t− t2) ρ̂Ired(t) e

− i
~ εkt2

+ tηki(t
η
kj)
∗ ρ̂Ired(t) f

+
η (εk) d̂i (t− t2)d̂

†
j(t) e

− i
~ εkt2

+ (tηki)
∗tηkj ρ̂

I
red(t) f

−
η (εk) d̂

†
i (t− t2)d̂j(t) e

i
~ εkt2

− tηki(t
η
kj)
∗ f−η (εk) d̂i (t)ρ̂

I
red(t)d̂

†
j(t− t2) e

i
~ εkt2

− (tηki)
∗tηkj f

+
η (εk) d̂

†
i (t)ρ̂

I
red(t)d̂j(t− t2) e−

i
~ εkt2

− tηki(t
η
kj)
∗ f−η (εk) d̂i (t− t2)ρ̂Ired(t− t2)d̂

†
j(t) e

− i
~ εkt2

− (tηki)
∗tηkj f

+
η (εk) d̂

†
i (t− t2)ρ̂Ired(t− t2)d̂j(t) e

i
~ εkt2

]
. (3.24)

Here f+
η (εk), with η denoting either sub or tip, is the Fermi distribution of an electron

with chemical potential µη in the substrate or tip respectively:

f+
η (εk) = f(εk − µη), (3.25)

f−η (εk) = 1− f+
η (εk) , (3.26)

with

f(E) =
1

1 + exp
(

E
kBT

) . (3.27)

For the calculations that we have left out, see App. A.1.1 and App. A.1.2. Now we
transform Eq. (3.24) back into the Schrödinger picture (see App. A.1.3). After that, we
project the reduced density matrix onto the subspace of particle number N and energy
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3.1. The Generalized Master Equation for the reduced density matrix

E, in which it has block-diagonal form. This is done by using the projection operator
P̂NE =

∑
l |N E l〉 〈N E l|, where the index l denotes orbitally degenerate states. For a more

detailed description of the properties and the application of the operator P̂NE see App.
(A.1.4). Having the GME in the basis of the energy and the particle number, we are able to
perform the time integrations. They are all of the form

∫∞
0 dt e

i
~Xt and can be calculated

rather easily by including a small convergence factor λ to avoid divergences at t→∞:

∫ ∞
0

dt e
i
~Xt = lim

λ→0

∫ ∞
0

dt e
i
~ (X+iλ)t (3.28)

= lim
λ→0

(
~λ

X2 + λ2
+

i~X
X2 + λ2

)
. (3.29)

This result is, in accordance to the Sokhatsky�Weierstrass theorem and the de�nition of
the delta distribution, equivalent to∫ ∞

0
dt e

i
~Xt = π~ δ(X) + i~ p.v.

(
1

X

)
, (3.30)

where p.v. denotes the principal value. Note that

δ(−x) = δ(x) and p.v.

(
1

−X

)
= −p.v.

(
1

X

)
. (3.31)
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3. Transport in an STM setup

Collecting the results, we �nally obtain:

ρ̇N
EE′ = − i

~
(E− E′)ρN

EE′ −
1

~
∑
k

∑
i, j

∑
F

∑
η

{
(3.32)

P̂NE d̂i

[
tηki(t

η
kj)
∗ f+

η (εk)

(
π δ(F− Ĥmol + εk) + i p.v.

(
1

F− Ĥmol + εk

))]
d̂
†
j ρ

N
FE′

+P̂NE d̂
†
i

[
(tηki)

∗tηkj f
−
η (εk)

(
π δ(F− Ĥmol − εk) + ip.v.

(
1

F− Ĥmol − εk

))]
d̂j ρ

N
FE′

+ρN
EF d̂i

[
tηki(t

η
kj)
∗ f+

η (εk)

(
π δ(Ĥmol − F− εk) + i p.v.

(
1

Ĥmol − F− εk

))]
d̂
†
j P̂NE′

+ρN
EF d̂

†
i

[
(tηki)

∗tηkj f
−
η (εk)

(
π δ(Ĥmol − F + εk) + i p.v.

(
1

Ĥmol − F + εk

))]
d̂j P̂NE′

−P̂NE d̂i
∑
F′

ρN+1
FF′

[
tηki(t

η
kj)
∗ f−η (εk)

(
π δ(E′ − F′ + εk) + ip.v.

(
1

E′ − F′ + εk

))]
d̂
†
j P̂NE′

−P̂NE d̂
†
i

∑
F′

ρN−1
FF′

[
(tηki)

∗tηkj f
+
η (εk)

(
π δ(E′ − F′ − εk) + ip.v.

(
1

E′ − F′ − εk

))]
d̂j P̂NE′

−P̂NE d̂i
∑
F′

ρN+1
FF′

[
tηki(t

η
kj)
∗ f−η (εk)

(
π δ(F− E− εk) + ip.v.

(
1

F− E− εk

))]
d̂
†
j P̂NE′

−P̂NE d̂
†
i

∑
F′

ρN−1
FF′

[
(tηki)

∗tηkj f
+
η (εk)

(
π δ(F− E + εk) + ip.v.

(
1

F− E + εk

))]
d̂j P̂NE′

}
.

Eq. (3.32) is the so-called non-secular part of the GME. It contains coherences between
states with di�erent energies but the same particle number. The secular part, which does
not contain these coherences, can be gained analogously. We only have to sandwich Eq.
(3.24) between two projection operators with the same index for the energy, yielding:

ρ̇N
E =− 1

~
∑
k

∑
i, j

∑
E′

∑
η

{
(3.33)

P̂NE d̂i P̂(N+1)E′ d̂
†
j ρ

N
E

[
tηki(t

η
kj)
∗ f+

η (εk)

(
π δ(E− E′ + εk) + i p.v.

(
1

E− E′ + εk

))]
+h.c.

+P̂NE d̂
†
i P̂(N−1)E′ d̂j ρ

N
E

[
(tηki)

∗tηkj f
−
η (εk)

(
π δ(E− E′ − εk) + i p.v.

(
1

E− E′ − εk

))]
+h.c.

−2π P̂NE d̂i ρ
N+1
E′ d̂

†
j P̂NE t

η
ki(t

η
kj)
∗ f−η (εk) δ(E− E′ + εk)

−2π P̂NE d̂
†
i ρ

N−1
E′ d̂j P̂NE (tηki)

∗tηkj f
+
η (εk) δ(E− E′ − εk)

}
.
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3.1. The Generalized Master Equation for the reduced density matrix

In our further calculations we will focus on the secular part of the GME. Now we are able
to perform the sum over k in Eq. (3.33). As the substrate and the tip are considered to
be macroscopic objects, we use a continuum limit and let the sums go over into integrals:

∑
k

→
∫

dεkD(εk). (3.34)

Here D(εk) is the density of states in the tip or the substrate, respectively. As the tip
states and the substrate states have di�erent symmetries respective to their dependence
on k, we have to treat each contribution on its own.
We start with the tip part of the GME. Inserting Eq. (3.34) we get:

(
ρ̇N

E

)
tip

= −1

~
∑
i, j

∑
E′

∫ −εtip0

0
dεkD(εk)

{
(3.35)

P̂NE d̂i P̂(N+1)E′ d̂
†
j ρ

N
E

[
tTki(t

T
kj)
∗ f+

η (εk)

(
π δ(E− E′ + εk) + ip.v.

(
1

E− E′ + εk

))]
+h.c.

+P̂NE d̂
†
i P̂(N−1)E′ d̂j ρ

N
E

[
(tTki)

∗tTkj f
−
η (εk)

(
π δ(E− E′ − εk) + ip.v.

(
1

E− E′ − εk

))]
+h.c.

−2π P̂NE d̂i ρ
N+1
E′ d̂

†
j P̂NE t

T
ki(t

T
kj)
∗ f−η (εk) δ(E− E′ + εk)

−2π P̂NE d̂
†
i ρ

N−1
E′ d̂j P̂NE (tTki)

∗tTkj f
+
η (εk) δ(E− E′ − εk)

}
.

Note that tTki = (tTki)
∗, as they are real numbers. Hence the terms which are containing

the principal parts are vanishing. For the borders of the integral see Fig. 2.2. Evaluating
Eq. (3.35) yields:

(
ρ̇N

E

)
tip

= −
∑
i, j

∑
E′

{
T Tij (E′ − E) P̂NE d̂i P̂(N+1)E′ d̂

†
j ρ

N
E f

+
T

(
E′ − E

)
+T Tij (E− E′) P̂NE d̂

†
i P̂(N−1)E′ d̂j ρ

N
E f
−
T

(
E− E′

)
−T Tij (E′ − E) P̂NE d̂i ρ

N+1
E′ d̂

†
j P̂NE f

−
T

(
E′ − E

)
−T Tij (E− E′) P̂NE d̂

†
i ρ

N−1
E′ d̂j P̂NE f

+
T

(
E− E′

)}
. (3.36)

The function T Tij (E) stems from the product of two tunneling matrix elements, whose
energy dependence results from their κ(k) dependent prefactors. The exact form of T Tij (E)
depends on the type of the tip wavefunction. In the simplest case of an s-type tip state it
takes the form:
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3. Transport in an STM setup

T Tij (E) =
(2π~)3C2

sD(E)

m2κ2(E)
ψi(rtip)ψj(rtip) (3.37)

=
(2π~)3C2

sD(E)

m2κ2(E)

∑
α, β

cαicβj pz(rtip − rα)pz(rtip − rβ), (3.38)

with

κ(E) =

√
2m

~2
(εtipF + φtip0 − E) and D(E) =

(2m)
3
2V

2π2~3

√
E. (3.39)

The calculation of the substrate part of the GME will be more complicated. Hence, in a
�rst step we have a look at the product tSki(t

S
kj)
∗:

tSki(t
S
kj)
∗ = εiεj

∑
α, β

cαic
∗
βjVα(kz, k‖, κ)Vβ(kz, k‖, κ) e−ik‖·rα‖e+ik‖·rβ‖

= εiεj
∑
α, β

cαicβjVα(kz, k‖, κ)Vβ(kz, k‖, κ) e−ik‖·(rα‖−rβ‖), (3.40)

We see that we do best if we split the sum over k into two sums over kz and k‖ and then
replace the sums with energy integrals. This yields cylindrical integrations in energy. The
associated densities of states are:

D(1D)(ε) =

√
mL

π~
√

2ε
and D(2D) =

mS

π~2
. (3.41)

Now we are able to apply Eq. (3.34). In Fig. 2.2 we see that we have to integrate εz from
0 to −εsub0 , because εz is de�ned positive. Therefore we set

∑
k

=
∑
k‖

∑
kz

→

√
1
2m

3

π2~3

∫ ∞
0

dε‖

∫ −εsub0

0
dεz

1
√
εz
. (3.42)

We once again recall the de�nitions given in section 2.1 for the energies,

εk = ε‖ + εz + εsub0 ,

kz(εz) =

√
2m

~2
εz,

k‖(ε‖) =

√
2m

~2
ε‖,

κ(εz) =

√
2m

~2
(εsubF + φsub0 − εz).
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3.1. The Generalized Master Equation for the reduced density matrix

The substrate part of the GME in energy-dependent form reads:

(
ρ̇N

E

)
sub

= −
√

2m3

π~4

∑
i, j

∑
E′

∫ ∞
0

dε‖

∫ −εsub0

0
dεz

1
√
εz

{
P̂NE d̂i P̂(N+1)E′ d̂

†
j ρ

N
E t

S
ki(t

S
kj)
∗ f+

S

(
ε‖ + εz + εsub0

)
δ(E− E′ + ε‖ + εz + εsub0 )

+P̂NE d̂
†
i P̂(N−1)E′ d̂j ρ

N
E t

S
ki(t

S
kj)
∗ f−S

(
ε‖ + εz + εsub0

)
δ(E− E′ − (ε‖ + εz + εsub0 ))

−P̂NE d̂i ρ
N+1
E′ d̂

†
j P̂NE t

S
ki(t

S
kj)
∗ f−S

(
ε‖ + εz + εsub0

)
δ(E− E′ + ε‖ + εz + εsub0 )

−P̂NE d̂
†
i ρ

N−1
E′ d̂j P̂NE t

S
ki(t

S
kj)
∗ f+

S

(
ε‖ + εz + εsub0

)
δ(E− E′ − (ε‖ + εz + εsub0 ))

}
.

(3.43)

Assuming non-degenerate states and using the properties of the projection operators P̂NE

(see Eq. (A.19)) one can easily check, that also for the substrate part of the GME the
terms containing the principal parts are canceling. After performing the integration over
ε‖ we arrive at:

(
ρ̇N

E

)
sub

= −
∑
i, j

∑
E′

{
P̂NE d̂i P̂(N+1)E′ d̂

†
j ρ

N
E T

S
ij (E

′ − E) f+
S

(
E′ − E

)
+P̂NE d̂

†
i P̂(N−1)E′ d̂j ρ

N
E T

S
ij (E− E′) f−S

(
E− E′

)
−P̂NE d̂i ρ

N+1
E′ d̂

†
j P̂NE T

S
ij (E

′ − E) f−S
(
E′ − E

)
−P̂NE d̂

†
i ρ

N−1
E′ d̂j P̂NE T

S
ij (E− E′) f+

S

(
E− E′

)}
. (3.44)

The function TSij (ξ) is given by:

TSij (ξ) = εiεj

√
2m3

π~4

∑
α, β

cαicβj

∫ −εsub0

0
dεz

1
√
εz
Wαβ(εz, ξ), (3.45)

where we introduced Wαβ(εz, ξ) for brevity. It is de�ned by:

Wαβ(εz, ξ) =Vα
(
kz(εz), k‖(εz, ξ), κ(εz)

)
Vβ
(
kz(εz), k‖(εz, ξ), κ(εz)

)
× 1

2π

∫ 2π

0
dθk exp

(
−ik‖(εz, ξ) · rαβ

)
. (3.46)

Note that k‖(εz, ξ) is given by:

k‖(εz, ξ) =

√
2m

~2
(ξ − εz − εsub0 ). (3.47)
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3. Transport in an STM setup

Although not mentioned, in the derivation of the two-dimensional density of states we
already evaluated the integral over the angle θk in the k space. But as the scalar product

k‖ ·
(
rα‖ − rβ‖

)
= k‖rαβ cos(θk) (3.48)

in Eq. (3.46) depends on this angle, we have to repeat the integration here and divide by
2π. It is ∫ 2π

0
dθ e−ix cos(θ) = 2πJ0(x), (3.49)

where J0 is the zeroth Bessel function of the �rst kind. In series representation it reads:

J0(x) =
∞∑
n

(−1)n
(

1
4x

2
)n

(n!)2
. (3.50)

Thus we get for Wαβ :

Wαβ(εz, ξ) =Vα
(
kz, k‖, κ

)
Vβ
(
kz, k‖, κ

)
J0

(
k‖rαβ

)
. (3.51)

Because of the nontrivial structure of this function we have to integrate it numerically to
obtain the tunneling matrix elements for the substrate. After evaluating the tunneling
matrix elements, we are able to write down the �nal secular GME:

ρ̇N
E = −

∑
η

∑
i, j

∑
E′

{
P̂NE d̂i P̂(N+1)E′ d̂

†
j ρ

N
E T

η
ij(E

′ − E) f+
η

(
E′ − E

)
+P̂NE d̂

†
i P̂(N−1)E′ d̂j ρ

N
E T

η
ij(E− E′) f−η

(
E− E′

)
−P̂NE d̂i ρ

N+1
E′ d̂

†
j P̂NE T

η
ij(E

′ − E) f−η
(
E′ − E

)
−P̂NE d̂

†
i ρ

N−1
E′ d̂j P̂NE T

η
ij(E− E′) f+

η

(
E− E′

)}
. (3.52)

We can also write Eq. (3.52) as a linear di�erential equation in matrix form:

ρ̇red = Lρred, (3.53)

where L is called the Liouvillian of the system. To obtain the stationary solution ρstatred , we
evaluate Eq. (3.52) under the condition that the time derivative of the RDM is equal to
zero for t→∞:

lim
t→∞

ρ̇red = 0. (3.54)

Considering Eq. (3.53), this implies:

0 = Lρstatred , (3.55)

⇒ ρstatred = ker(L), (3.56)

where ker(L) denotes the kernel of the Liouvillian L.
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3.2. Calculating the current

3.2. Calculating the current

We will now calculate an expression for the current operator Î. Its expectation value is
given by:

〈Î〉 = e trmol

{
N̂ ˙̂ρSred

}
. (3.57)

After projecting the right hand side of Eq. (3.57) onto the subspace with particle number
N and energy E using Eq. (A.19), we get for the current:

〈Î〉 = e
∑
N,E

trmol

{
Nρ̇N

E

}
. (3.58)

If we insert Eq. (3.52), the expression for the current reads:

〈Î〉 = −e
∑
η

∑
i, j

∑
N

∑
E,E′

N trmol

{
P̂NE d̂i P̂(N+1)E′ d̂

†
j ρ

N
E T

η
ij(E

′ − E) f+
η

(
E′ − E

)
+P̂NE d̂

†
i P̂(N−1)E′ d̂j ρ

N
E T

η
ij(E− E′) f−η

(
E− E′

)
−P̂NE d̂i ρ

N+1
E′ d̂

†
j P̂NE T

η
ij(E

′ − E) f−η
(
E′ − E

)
−P̂NE d̂

†
i ρ

N−1
E′ d̂j P̂NE T

η
ij(E− E′) f+

η

(
E− E′

)}
. (3.59)

Now we use the fact that the tunneling matrix elements T ηij(ij) are invariant under inter-
changing i and j. Then exchanging N by N ± 1 and E by E′ in the third and fourth line
of Eq. 3.59 yields:

〈Î〉 = −e
∑
η

∑
i, j

∑
N

∑
E,E′

trmol

{
NP̂NE d̂i P̂(N+1)E′ d̂

†
j ρ

N
E T

η
ij(E

′ − E) f+
η

(
E′ − E

)
+NP̂NE d̂

†
i P̂(N−1)E′ d̂j ρ

N
E T

η
ij(E− E′) f−η

(
E− E′

)
−(N− 1)P̂(N−1)E′ d̂j ρ

N
E d̂
†
i P̂(N−1)E′ T

η
ij(E− E′) f−η

(
E− E′

)
−(N + 1)P̂(N+1)E′ d̂

†
j ρ

N
E d̂i P̂(N+1)E′ T

η
ij(E

′ − E) f+
η

(
E′ − E

)}
.

(3.60)

Furthermore we can use the cyclic properties of the trace and the fact that the projection
operators are idempotent to obtain:

〈Î〉 = e
∑
η

∑
i, j

∑
N

∑
E,E′

trmol

{
P̂NE d̂i P̂(N+1)E′ d̂

†
j ρ

N
E T

η
ij(E

′ − E) f+
η

(
E′ − E

)
−P̂NE d̂

†
i P̂(N−1)E′ d̂j ρ

N
E T

η
ij(E− E′) f−η

(
E− E′

)}
. (3.61)
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3. Transport in an STM setup

In Eq. (3.61) we are able to identify the desired current operator Îη with η = tip, sub:

Îη = e
∑
i, j

∑
N

∑
E,E′

P̂NE

{
d̂i P̂(N+1)E′ d̂

†
j T

η
ij(E

′ − E) f+
η

(
E′ − E

)
− d̂
†
i P̂(N−1)E′ d̂j T

η
ij(E− E′) f−η

(
E− E′

)}
P̂NE. (3.62)

Now that we have �nally built up the formalism, enabling us to compute the tunneling
onto and out of the molecule, we will turn our attention towards the latter to investigate
its quantum mechanical properties.
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4. Phthalocyanine

In this work we wish to study the properties of electronic transport through phthalocya-
nine molecules on a thin insulating layer. To this end, we �rst have to understand their
geometrical and physical properties.
Phthalocyanines (Pc's) are organic macrocycles built of an inner ring of alternating carbon
and nitrogen atoms to which four benzene rings are bonded, so that the whole molecule
has a cross-shaped appearance. Two of the inner nitrogen atoms of the inner ring are
each bonded to a hydrogen atom. Although this constellation is named phthalocyanine
in most literature, for reasons of clearness we will refer to it from now on as hydrogen
phthalocyanine (H2Pc). The central hydrogen atoms can be substituted by a huge variety
of metals, including Fe, Cu, Ni, Co, Zn and Mg.

Figure 4.1.: Hydrogen Phthalocyanine and its geometrical parameters.
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4. Phthalocyanine

Parameter Value Taken from Value used in thesis

dCH 1.09 Å [LS01] 1.09 Å
dNH 1.00 Å [DWP98] 1.00 Å
a 1.40 Å [DH03] 1.40 Å
b 1.50 Å [DH03] 1.50 Å
c 1.40 Å [DH03] 1.40 Å
d 1.35 Å [DH03] 1.35 Å
e 3.65 Å - 4.50 Å [DH03] 4.03 Å
f 2.60 Å - 2.85 Å [DH03] 2.85 Å
α 120◦ [DH03] 120◦

β 105◦ [DH03] 105◦

γ 110◦ [DH03] 110◦

δ 120◦ - 130◦ [DH03] 130◦

ε 115◦ - 125◦ [DH03] 120◦

φ 100◦ - 110◦ [DH03] 110◦

Table 4.1.: Parameters for H
2
Pc.

In the unsubstituted (Pc) case, where the two central hydrogen atoms are not taken into
account, the molecule can be split into four rotational unit cells, so that it can be described
by only a small number of parameters. For some of them, de�nite values are given in the
literature, whereas other parameters have to be matched to reproduce the geometry of the
phthalocyanine ring. These parameters are listed in Tab. 4.1. In the case of naked Pc,
each unit cell consists of two nitrogen, eight carbon and four hydrogen atoms. Like in
benzene, the carbon and nitrogen atoms in Pc have a sp2 hybridization built up by their
2s, 2px and 2py orbitals, so the structure of the molecule is planar. The remaining 2pz
orbitals are pointing out of that plane.

4.1. Hydrogen phthalocyanine

4.1.1. Extended Hückel Hamiltonian and Slater-Koster tight-binding
method

In a �rst step we set up the single particle Hamiltonian for the H2Pc molecule. The
approximation used in this thesis is based on an extended Hückel [Hof63] approach on
the one hand and an approach proposed by Slater and Koster [SK54] on the other hand.
The goal of our approach is to set up molecular orbitals (MOs) from the localized atomic
orbitals. Unlike e.g. for benzene, where the molecule consists of the same type of atoms
with identical angles and distances between each other, for H2Pc we have to take into
account the contribution of the σ-system. The σ-system consists of MOs that are built
of atomic orbitals lying in the molecular plane. At the end of the day, the σ-system
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4.1. Hydrogen phthalocyanine

in hydrogen phthalocyanine contributes in a shifting of the onsite energies in the H2Pc
molecule. However, in benzene this contribution can be neglected. The π-system is made
up of pz orbitals pointing out of the molecular plane. Note that these de�nitions are a
bit misleading and have not to be confused with the de�nition of π- and σ-bonds, since a
bond between two atoms that is lying in plane can also be of π-type actually.
The extended Hückel Hamiltonian we have to set up for H2Pc has the form:

H =
∑
ν

εν d̂
†
ν d̂ν +

∑
〈ν, ν′〉

bνν′ d̂
†
ν d̂ν′ , (4.1)

where ν = (α, lm, τ) and ν ′ = (α′, l′m′ , τ
′) are multi-indices consisting of the site number,

e.g. in the case of H2Pc α ∈ {1, 2, . . . 58}, the orbital quantum number lm and a spin index
τ , which again will be omitted in the following. To specify an atomic orbital it su�ces
to have only the indices l, denoting its angular momentum, and their magnetic quantum
number m, as we only take into account the valence electrons of each atom. Hence the
corresponding atomic orbitals are clearly de�ned l ∈ {0, 1, 2, . . .} and m ∈ {−l, . . . , l}. For
carbon and nitrogen it is clear that their valence electrons are in 2s and 2p orbitals, while
for hydrogen the electron would be in a 1s orbital. However, we will use the common
notation l ∈ {s, p, d, f, . . .} and, by using the real representation of the atomic orbitals as
shown in Eq. (2.41), let m ∈ {x, y, z, z2, . . .} depict their spatial orientation.

ν = (α, lm) (H, s) (C, s) (C, p) (N, s) (N, p)

εν [eV] -13.6 -19.38 -11.07 -26.22 -13.84

Table 4.2.: Relevant orbital energies, taken from [Har99]. Here α depicts the type of atom at the
corresponding site.

The parameter εν = 〈ν|H|ν〉 is the onsite energy of an electron with a set of quantum
numbers ν. The di�erent εν are listed in Tab. 4.2. The hopping parameter bνν′ = 〈ν|H|ν ′〉
describes the interaction between atomic orbitals of neighbouring atoms and is calculated
by using the approach proposed by Slater and Koster. Here the overlap integrals 〈ν|H|ν ′〉
are expressed in terms of two-center integrals Vll′ς and several geometrical factors, which
depend on the direction cosines of the bond vector towards the coordinate axes and the
spatial orientation of the contributing orbitals. The type of the overlapping orbitals is
denoted by l and l′. The index ς labels the type of bonding (π, σ or δ).
Hence, a general expression for the matrix element 〈ν|H|ν ′〉 between two states with quan-
tum numbers ν and ν ′ is given by:

〈ν|H|ν ′〉 = bνν′ =
∑
ς

Vνν′ςfς(α, β, γ), (4.2)

where fς(α, β, γ) is a function of the direction cosines α, β and γ calculated between the
x-, y- and z-axis and the bond vector of two neighbouring atoms. The function fς(α, β, γ)
cannot be given universally but has to be worked out for di�erent orientations of the par-
ticipating orbitals; either by following the rules given by Harrison [Har99] and decomposing
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4. Phthalocyanine

Figure 4.2.: Several interatomic matrix elements for s- and p-orbitals. By decomposing p-orbitals
in components parallel and perpendicular to the bond, one can set up the matrix elements for
orbitals which are orientated in a di�erent way. If the con�guration is di�erent from the above
ones respective to the ± orientation of the involved p orbitals, the sign of the overlap integral
changes. Picture taken from [Har99].

the orbitals into components parallel and perpendicular to their bond as seen in Fig. 4.2
or by using the relations derived by Slater and Koster (see Tab. 4.4). The overlap integrals
Vνν′ς are given by [Har99]:

Vνν′ς = ηll′ς
~2

med2
αα′

, (4.3)

where me is the mass of the electron and dαα′ is the distance between the corresponding
atomic sites α and α′. The ηll′ς have been calculated by W. A. Harrison and are considered
to be universal parameters [Har81]. In App. A.3 we show how the matrix elements are
computed considering the orbitals of the nitrogen atom at site 1 and the carbon atom at
site 2 (see Fig. 4.3).

ηssσ ηspσ ηppσ ηppπ

-1.32 1.42 2.22 -0.63

Table 4.3.: Overlap integral coe�cients, taken from [Har99].
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4.1. Hydrogen phthalocyanine

Figure 4.3.: Numbering scheme for H2Pc.
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4. Phthalocyanine

Orientations lm, l′m′ bνν′

s, s Vssσ
s, px αVspσ
px, px α2 Vppσ + (1− α2)Vppπ
px, py αβ Vppσ − αβ Vppπ
px, pz αγ Vppσ − αγ Vppπ
s, dxy

√
3αβ Vsdσ

s, dx2−y2
1
2

√
3 (α2 − β2)Vsdσ

s, dz2 (γ2 − 1
2(α2 + β2))Vsdσ

px, dxy
√

3α2β Vpdσ + β(1− 2α2)Vpdπ
px, dyz

√
3αβγ Vpdσ − 2αβγ Vpdπ

px, dzx
√

3α2γ Vpdσ + γ(1− 2α2)Vpdπ
px, dx2−y2

1
2

√
3α(α2 − β2)Vpdσ + α(1− α2 + β2)Vpdπ

py, dx2−y2
1
2

√
3β(α2 − β2)Vpdσ − β(1 + α2 − β2)Vpdπ

pz, dx2−y2
1
2

√
3 γ(α2 − β2)Vpdσ − γ(α2 − β2)Vpdπ

px, dz2 α(γ2 − 1
2(α2 + β2))Vpdσ −

√
3αγ2 Vpdπ

py, dz2 β(γ2 − 1
2(α2 + β2))Vpdσ −

√
3βγ2 Vpdπ

pz, dz2 γ(γ2 − 1
2(α2 + β2))Vpdσ −

√
3 γ(α2 + β2)Vpdπ

Table 4.4.: Some overlap integrals in terms of two-center integrals as derived by Slater and Koster
[SK54]. Here symbols α, β, and γ are the direction cosines of the bond vector respective to the x-,
the y- and the z-axis. Other matrix elements can be obtained by cyclically permuting the indices
and cosines.
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4.1. Hydrogen phthalocyanine

Figure 4.4.: Calculated single particle spectrum of H2Pc before Mulliken correction of the energies.
Red and black dots depict energies corresponding to π or σ molecular orbitals respectively.

4.1.2. E�ective Hamiltonian for hydrogen phthalocyanine

Considering �ve valence electrons for nitrogen, four for carbon and one valence electron for
hydrogen, the total number of valence electrons in H2Pc sums up to 186. If we are assuming
that the MOs, each containing two electrons (one with spin up and one with spin down),
are �lled ascending with their energies, a total number of 93 molecular orbitals will be
occupied. By construction, the numerical diagonalization of the Hamiltonians associated
with the π and the σ system can be performed separately. From this we get the eigenstates
|i〉 which are the molecular orbitals, together with the corresponding eigenenergies:

|i〉 =
∑
ν

cνi |ν〉 , (4.4)

H |i〉 = εi |i〉 . (4.5)

The lowest 93 eigenenergies are those from occupied MOs. In our numerical calculations,
we can sort the calculated eigenvalues from the π- together with those of the σ-system
energetically. If we keep track of which eigenvalue comes from either system, we see that,
on the one hand, 72 σ-type MOs are occupied. On the other hand, in a wide range around
the Fermi level the only occupied molecular orbitals are π-type MOs.
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4. Phthalocyanine

As for transport the states in this range are the most relevant ones, we want to focus only
on the π-system in our further calculations. Because the e�ects of the two hydrogen atoms
can only come into our model through the σ-system, we somehow have to transfer these
e�ects onto the π-system. This can be done by calculating the Mulliken charge for each
atomic site α [Rei06]:

QMα = 2e
∑
i, lm

|c(α,lm)i|2. (4.6)

The index i runs through all occupied σ molecular orbitals. The Mulliken charge re�ects
the delocalization of each atomic valence electron in the σ-system due to the forming of
molecular orbitals. Carbon for example has four valence electrons. Three of them occupy
orbitals in the σ-system, so one would expect that the remaining electron in the pz orbital
experiences a charge of 3e. For nitrogen, lending �ve valence electrons from which four
belong to the σ system, one consequently would expect a charge of 4e. However, due to
delocalization the Mulliken charge has a di�erent value which can be calculated using Eq.
(4.6). This di�erence then can be connected with an altering of the onsite energies of the
pz orbitals at the respective atomic sites. The energy di�erence is given by:

∆ε(α,pz) =
Q0
α −QMα
Q0
α

ε(α,pz). (4.7)

At a nitrogen atom, where a hydrogen is bonded to (e.g. site 1), the calculated Mulliken
charge is 3.4e, which is lower than the expected charge of 4e. In a simple electrostatic
picture this means an electron will experience less repulsion than expected. Therefore the
onsite energy of its pz orbital is e�ectively lowered. As the Mulliken charge represents
the average number of σ electrons localized at a speci�c atom, we can conclude, that at
this nitrogen atom approximately two electrons from the π system are occupying the pz
orbital. On the other hand, the e�ective charge of a nitrogen atom which is not coupled to
a hydrogen atom (e.g. site 11) is 4.13e, which results in a higher repulsion of an electron
populating its pz orbital. Because of this, the e�ective onsite energy of the pz orbital at this
atomic site is scaled up. With this in hand, we are able to set up an e�ective Hamiltonian
for the π-system which re�ects the contribution of the σ-system:

H =
∑
α

(ε(α,pz) + ∆ε(α,pz)) d̂
†
αd̂α +

∑
〈α, α′〉

b(α,pz)(α′,pz)π d̂
†
αd̂α′ . (4.8)

Diagonalizing this Hamiltonian gives us new molecular orbitals which are respecting the
geometrical and symmetrical properties of the molecule. From the eigenvalues of the
molecular orbitals we also see that the highest occupied molecular orbital (HOMO) in
H2Pc is the 21st orbital from the π-system. The lowest unoccupied molecular orbital
(LUMO) and the MO below the HOMO (HOMO-1), which are very important for transport
calculations, also stem from the π-system. So we can safely restrict our further calculations
to the π-system and thus to the 40 pz orbitals pointing out of the molecular plane.
In order to do transport calculations, we need a suitable many-body representation of our
system, that is, we have to introduce some sort of electron-electron interaction. However,
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4.1. Hydrogen phthalocyanine

Figure 4.5.: Comparison of calculated molecular orbital energies of H2Pc around the fermi level
before (squares) and after (diamonds) Mulliken correction. Again, red and black markers depict
energies corresponding to π and σ orbitals respectively. Orbital 93 is the highest occupied molecular
orbital.

(a) HOMO (b) LUMO (c) LUMO+1

Figure 4.6.: Depiction of the HOMO, LUMO and LUMO+1 molecular orbitals of H2Pc.
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4. Phthalocyanine

including full Coulomb interaction between all electrons occupying the di�erent molecular
orbitals of hydrogen phthalocyanine turns out to be a bad strategy: with 40 molecular
orbitals being available for occupation, the resulting Fock space would have dimension 440.
We therefore restrict to a much simpler constant-interaction model [KAT01].

4.1.3. Constant-interaction model

The constant-interaction model [KAT01] approximates the total energy EN of an N-particle
ground state of the molecule by the following equation:

EN =
∑
i, σ∑
niσ=N

εiniσ +
U

2
(N −N0)2 , (4.9)

where εi is the energy of the single particle molecular orbital i that is occupied by niσ
electrons with spin σ. N0 is the total number of π orbitals and U accounts for the Coulomb
interaction. The parameter U is related to a constant charging energy for an electron on
a capacitor with capacitance C:

U =
e2

C
. (4.10)

Thus, the corresponding Hamilton operator for the molecule including the constant inter-
action is given by:

Ĥ =
∑
i, σ

εid̂
†
iσd̂iσ +

U

2

(
N̂ −N0

)2
, (4.11)

with

N̂ =
∑
i, σ

d̂
†
iσd̂iσ. (4.12)

The two main assumptions of the constant-interaction model are that all electronic inter-
actions can be put into a constant capacitance C and that the single particle molecular
orbitals and eigenenergies are unsensible against changes arising due to the presence of
metallic contacts. Hence, we have to �nd a reasonable value for the parameter U , such
that the molecule is in its neutral state when there is no bias voltage applied.

Determining the parameter for the Coulomb interaction

We are considering a system with variable particle number which is capacitively coupled
to two reservoirs. At zero bias voltage, their chemical potentials are equal to −φsub0 or
−φtip0 , respectively, since we put the zero of the energy to the �vacuum� (see Fig. 2.2). As
an approximation we choose both workfunctions to be equal φsub0 = φtip0 ≡ φ0, meaning
that for the chemical potential at zero bias we have µG = −φ0. Thus we have to ensure
that the expectation value of the Hamilton operator ĤG, which corresponds to a grand
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4.1. Hydrogen phthalocyanine

canonical ensemble, is minimal at the particle number N that refers to the neutral state of
the molecule [LP80,BF04]. Hence in the case of H2Pc this minimum must lie at N = 42.
The Hamiltonian ĤG is given by:

ĤG = Ĥ − µGN̂ . (4.13)

The corresponding expectation value with an N-particle wavefunction is:

E′N = 〈N |ĤG|N〉 = EN − µGN. (4.14)

Work functions of common materials used in STM measurements are in the range of 4 to
5 eV. Thus, using µG = −4 eV we obtain a range 2.82 eV ≤ U ≤ 5.38 eV for which the
expectation value 〈N |ĤG|N〉 for the neutral state of H2Pc is minimal.

Comparison with experimental results

Based on results in STS (scanning tunneling spectroscopy) and photoemission spectroscopy
experiments on phthalocyanines (for example in [TT05] for CoPc, [ZGG06]), we expect that
the HOMO-LUMO gap ∆HL is about 1.5 eV to 2.5 eV. This is given by

∆HL = E43 − E42 − (E42 − E41). (4.15)

It is related to the distance of the resonant peaks corresponding to the frontier orbitals
(HOMO and LUMO) in STS spectra . However, with the empirical value found for the
Coulomb interaction U we obtain a rather big HOMO-LUMO gap. It ranges in the interval
2.82 eV ≤ ∆HL ≤ 5.38 eV. To �gure out which factors contribute to this deviation, we
will now decompose the occuring quantities. The electron a�nity (or EA) is the change
in energy when an electron is added to the neutral molecule. Thus, by exploiting the
de�nition of the total energy EN , we get:

EA = E43 − E42 = εL +
5

2
U, (4.16)

where εL is the single particle energy of the LUMO orbital. The ionization potential (IP)
is the change in energy when removing an electron from the neutral molecule. Again,

IP = E42 − E41 = εH +
3

2
U. (4.17)

Consequently, εH denotes the single particle energy of the HOMO orbital. By writing
δHL = εL − εH for the di�erence between the single particle HOMO and LUMO energies,
we get for the HOMO-LUMO gap:

∆HL = EA− IP = δHL + U. (4.18)

The quantity δHL is determined by the single particle spectrum of phthalocyanine calculated
in Sec. 4.1.2. Its value is δHL = 1.0 eV. So one contribution to the deviation is caused by
our emprical choice of U . If we want to make it smaller we have to renormalize the single
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4. Phthalocyanine

particle energies as they appear in both EA and IP. To this end we compare EA, IP and
∆HL with results from a combined VB-PES (valence band photoemission spectroscopy)
and IPES (inverse PES) experiment done for organic semiconductors including various
types of phthalocyanines [ZGG06]. They found a HOMO-LUMO gap ∆̃HL = 2.2 eV, an
electron a�nity ẼA = −2.74 eV and an ionization potential ĨP = −4.96 eV. With these
numbers we are now able to derive

Ũ = ∆̃HL − δHL = 1.2 eV, (4.19)

ε̃L = ẼA− 5

2
Ũ = −5.74 eV, (4.20)

ε̃H = ĨP− 3

2
Ũ = −6.76 eV. (4.21)

We notice that ε̃L − εL ≈ ε̃H − εH ≈ 5.3 eV. Thus, if we renormalize the single particle
energies by this energy, we can render our many-body spectrum more comparable to the
experimental situation. Also, if we check the expectation values 〈N |ĤG|N〉 of our system
using the new parameter Ũ for the Coulomb interaction and the renormalized energies we
�nd its minimum still at the neutral state. We have for the di�erences in E′:

E′41 − E′40 = −2.18 eV,

E′42 − E′41 = −0.98 eV,

E′43 − E′42 = 1.22 eV,

E′44 − E′43 = 2.42 eV.

In a recent publication [KF11] it has been proposed, that image charge e�ects play a large
role in single-molecule junctions. According to the authors, for benzene, they result in a
large shifting of the onsite energies and the Coulomb interaction. Referring to this, we
can justify the renormalization of our single-particle energies. However, an analytic proof
would require solving Poisson's equation for our system, which is out of the scope of the
present thesis.

4.2. Metal phthalocyanine

In metal phthalocyanine (MPc) one central metal atom instead of two hydrogen atoms is
bonded to the organic macrocycle. A prominent member in the family of metal phthalo-
cyanines is copper phthalocyanine (CuPc) which, as a dye, is very well known under the
name phthalo blue. Copper has 11 valence electrons: the 3d shell is completely �lled and
one unpaired electron is populating the 4s shell.

4.2.1. Single particle Hamiltonian for copper phthalocyanine

Again we use the Slater-Koster tight binding method to set up the single particle Hamil-
tonian for metal phthalocyanine. Considering the type of metal we will focus on copper;
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4.2. Metal phthalocyanine

ε(Cu,s) ε(Cu,d) rd rp ηsdσ ηpdσ ηpdπ

−7.72 eV −20.26 eV 0.688Å 5.29Å −3.16 −3
√

15
2π

3
√

5
2π

Table 4.5.: Parameters needed to set up the Hamiltonian for CuPc. Taken from [Har99,Har89].

Figure 4.7.: Interatomic matrix elements involving d orbitals. Taken from [Har99].

other metals can be included in a similar way, provided the resulting compound also has
a planar shape. This is the case for Be and Mg and metals in the periodic table between
Cr and Zn [DH03]. Due to the central position of the metal atom, the in-plane direction
cosines α and β needed for the matrix elements are either zero or one and the direction
cosine γ respective to the z-axis actually is always zero. This signi�cantly reduces the
amount of di�erent matrix elements. The general form of overlap integrals Vνν′ς involving
d orbitals is given by [Har99]:

V(i,s)(i′,d)σ = ηsdσ
~2r

3/2
d

med
7/2
ii′

, (4.22)

V(i,p)(i′,d)ς = ηpdς
~2
√
rpr3

d

med4
ii′

, (4.23)

where rp and rd are the element-speci�c p-state and d-state radii, here from nitrogen
and copper respectively. These and the other parameters needed to calculate the matrix
elements are given in Tab. 4.5.
Using Tab. 4.4 and Fig. 4.7 we now demonstrate the calculation of the matrix elements
regarding the copper orbitals at site 57 with the orbitals of the nitrogen atom at site 1. As
the bond vector of the two atoms lies on the x-axis, the �rst few matrix elements involving
s and p orbitals are rather easy to evaluate. The only nonvanishing are:

b(57,s)(1,s) = ηssσ
~2

med2
57,1

, (4.24)

b(57,s)(1,px) = ηspσ
~2

med2
57,1

. (4.25)
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4. Phthalocyanine

Again, only two of the matrix elements between the dz2 orbital and the orbitals of the
nitrogen atom are di�erent from zero:

b(57,dz2 )(1,s) = −1

2
ηsdσ

~2r
3/2
d

med
7/2
57,1

, (4.26)

b(57,dz2 )(1,px) =
1

2
ηpdσ

~2
√
rpr3

d

med4
57,1

. (4.27)

The matrix elements involving the dx2−y2 orbital are:

b(57,dx2−y2 )(1,s) =

√
3

2
ηsdσ

~2r
3/2
d

med
7/2
57,1

, (4.28)

b(57,dx2−y2 )(1,px) = −
√

3

2
ηpdσ

~2
√
rpr3

d

med4
57,1

. (4.29)

The last orbital that gives nonvanishing matrix elements with the in-plane orbitals is the
dxy orbital. Its contribution reads:

b(57,dxy)(1,py) = −ηpdπ
~2
√
rpr3

d

med4
57,1

. (4.30)
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4.2. Metal phthalocyanine

Figure 4.8.: Calculated molecular orbital eigenenergies of the CuPc molecule. Black and red dots
depict energies of orbitals from the σ and the π system, respectively.

There is only one nonvanishing matrix element for the pz orbital of the nitrogen atom at
site 1 . It results from an overlap with the dxz orbital of copper:

b(57,dxz)(1,pz) = −ηpdπ
~2
√
rpr3

d

med4
57,1

. (4.31)

After calculating all matrix elements, we are �nally able to write down the single particle
Hamiltonian for CuPc:

H =
∑
ν

εν d̂
†
ν d̂ν +

∑
〈ν, ν′〉

bνν′ d̂
†
ν d̂ν′ . (4.32)

Again, we use the multi-index notation ν = (i, lm, τ), where now the site index i can have
values i ∈ {1, 2, . . . 57}. For l and m we now have l ∈ {s, p, d} and m ∈ {x, y, z, z2, x2 −
y2, xy, yz, xz}. After the numerical diagonalization of this Hamiltonian we obtain the
molecular orbitals of CuPc; among those we have to distribute the 195 valence electrons,
meaning that the expected HOMO will be the 98st molecular orbital. Around this orbital
all other molecular orbitals stem from the π system. The lowest 75 molecular orbitals of
the σ system are occupied.

45



4. Phthalocyanine

4.2.2. Many-body representation for copper phthalocyanine

Also for copper phthalocyanine we have to set up a many-body representation. However,
if we proceed like in the case of H2Pc and consecutively �ll each molecular orbital with two
electrons, we end up with a HOMO orbital that is half �lled, due to the odd number of total
valence electrons in the molecule. With this situation, being greatly counterintuitive, the
question arises where to put this single electron, or, in other words, which molecular orbital
lying energetically below the HOMO should lend an electron to it to �ll the vacancy. There
are several papers [ECS+07,dOea10,CFN07] that predict the existence of a SOMO (singly
occupied molecular orbital) lying in the gap between HOMO and LUMO and revealing
dx2−y2 character, thus stemming from the σ-system. But if we look at our single particle
spectrum of CuPc (Fig. 4.8), we �nd no such orbital that could play the role of a SOMO.
By shifting the onsite energies of the central copper atom we can achieve that an orbital
from the σ-system rises energetically between HOMO and LUMO and we see that it has
the desired dx2−y2 character, too. How to justify this shifting and how to deal with the
degenerate HOMO-1 and LUMO orbitals needs further examination and is still work in
progress.
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5. Transport spectroscopy and imaging of

hydrogen phthalocyanine

Now we are �nally able to study the transport properties of single phthalocyanine molecules
underlying an STM setup. Di�erent from the typical setup of a lateral quantum dot, the
STM setup implicates an asymmetrical tunneling junction [vdML10]. This means that the
chemical potentials of the substrate µS and the tip µT , appearing in the Fermi functions,
do not change symmetrically with the applied bias voltage eVb = µT −µS . This asymmetry
is realized by de�ning the chemical potentials of the contacts as

µT = µG + c · eVb, (5.1)

µS = µG − (1− c) · eVb, (5.2)

where the factor c accounts for the drop of the electrostatic potential between the elec-
trodes. In a symmetrical junction c would be 0.5, in our case it can be estimated by
c = εr

1+εr
, with εr being the relative permittivity of the insulating layer lying atop of the

substrate. For NaCl we have εr = 5.9, thus yielding a factor c = 0.86.
In order to do transport calculations, we have to evaluate the GME to obtain the stationary
solution of the reduced density matrix. Thereby we restrict our calculations to molecular
orbitals around the HOMO orbital and, as pointed out in Sec. 4.1.3, neglect excited states
of our system. This means that we allow only transitions that result in a ground state
for the corresponding particle number. This approximation can be justi�ed by the fact
that we are doing the calculations in the low-bias regime, meaning that excited states are
energetically out of reach.
Finally, we get a set of coupled di�erential equations for the diagonal entries of the reduced
density matrix, called populations. As an example we give the di�erential equations for the
42- and 43-particle populations. In the 42-particle con�guration all molecular orbitals up
to the HOMO are doubly �lled, consequently in the 43-particle con�guration one additional
electron is occupying the LUMO orbital. The corresponding di�erential equations read:

ρ̇42 =
∑
σ

(
Γ+

21(µ42)ρ41σ −
(
Γ+

22(µ43) + Γ−21(µ42)
)
ρ42 + Γ−22(µ43)ρ43σ

)
, (5.3)

ρ̇43σ = Γ+
22(µ43)ρ42 −

(
Γ+

22(µ44) + Γ−22(µ43)
)
ρ43σ + Γ−22(µ44)ρ44, (5.4)

where we de�ned µN = EN − EN−1 as the chemical potential of the N -particle ground
state. Due to the fact that we focus only on the ground states of the system, energies are
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5. Transport spectroscopy and imaging of hydrogen phthalocyanine

uniquely identi�ed by the corresponding particle numbers. Thus we omit the index for the
energy in ρN

E . The factors Γ±i (µN ) are containing tunneling matrix elements and Fermi
functions. They are given by:

Γ±i (µN ) =
∑
η

T ηi,i(µN )f±η (µN ). (5.5)

With the set of di�erential equations at hand we are able to set up a Liouvillian matrix
and �nally calculate the stationary current through the molecule as already discussed in
Sec. 3.2.

5.1. Theoretical considerations

First of all we discuss when we expect transitions that enable transport. At zero bias, no
current is �owing and the molecule is in its neutral state (Fig. 5.1(a)). When increasing the
bias we do not see a current as long as the chemical potential of the tip reaches the chemical
potential of the 43-particle state (see Fig. 5.1(b)). The condition for the transition then
is:

µT = µG + c · eVb ≥ µ43. (5.6)

During this transition, often referred to as the LUMO transition, an electron from the
tip tunnels onto the molecule by occupying the LUMO orbital and then tunnels out into
the substrate. Given the many-body energies of H2Pc, we expect this transition to occur
at bias voltages of about 1.4 V and 3.7 V for the renormalized and the unrenormalized
spectrum, respectively. Consequently, for negative bias voltages the current is blocked
until the chemical potential of the tip hits the chemical potential of the 42-particle state
(see Fig. 5.1(c)):

µT = µG + c · eVb ≤ µ42. (5.7)

In this con�guration an electron from the HOMO orbital tunnels into the tip while the
substrate delivers an electron that reoccupies the half-�lled orbital. Due to the involvement
of the HOMO orbital, this transition is named HOMO transition. The expected bias
voltages for this transition are about −1.1 V for the renormalized and −2.2 V for the
unrenormalized spectrum.
One may ask why only the chemical potential of the tip and not the chemical potential of
the substrate is determining when tunneling of an electron is allowed. A reason for this is
the asymmetric adjustment of µT and µS with the applied bias due to the parameter c.
Consider a transition N → N + 1. Using Eq. (5.6) we get a condition for the bias voltage:

eVb,1 ≥
µN+1 − µG

c
, (5.8)

with the tip playing the role of the source. Analogously,
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(a) Vb = 0 (b) Vb > 0 (c) Vb < 0

Figure 5.1.: Arrangement of the chemical potentials depending on the applied bias voltage.

µS = µG − (1− c) · eVb ≥ µN+1, (5.9)

⇒ |eVb,2| ≥
µN+1 − µG

(1− c)
, (5.10)

if the event would be mediated by the substrate. Since tunneling from N to N+1 with the
substrate acting as a source would generally require negative bias voltage (Fig. 5.1(c)), we
put the absolute value of eVb,2 in Eq. (5.10). Using the de�nition of c, the ratio of these
two quantities is given by:

|eVb,2|
eVb,1

=
c

1− c
= εr. (5.11)

This means that we do expect transitions that are determined by the relative alignment
of the substrate's chemical potential. These will occur at much higher absolute values of
the bias voltage. There is also another point of view regarding the relative alignment of
the di�erent chemical potentials. In the con�guration depicted in Fig. (5.1), the chemical
potentials of the tip and the substrate are changing with the bias, while the chemical
potential of the molecule remains �xed. However, if we take a look at the Fermi functions
appearing in our formulas,

f+
T (µN ) = f (µN − [µG + c · eVb]) , (5.12)

f+
S (µN ) = f (µN − [µG − (1− c) · eVb]) , (5.13)

we can shift the order of terms of their arguments like:

f+
T (µN ) = f ([µN − c · eVb]− µG) , (5.14)

f+
S (µN ) = f ([µN − c · eVb]− [µG − eVb]) . (5.15)

We notice that from this point of view that the chemical potential of the tip remains �xed
at µG, while the potential of the molecule moves with −c · eVb. Due to the negative sign of
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(a) Vb = 0 (b) Vb > 0 (c) Vb < 0

Figure 5.2.: From the tip's point of view the chemical potentials of the molecule and the substrate
move contrary to the applied bias voltage.

−eVb, the chemical potential of the substrate moves in the same direction as the chemical
potential of the molecule, yet with the full bias voltage. Again, the chemical potential of
the tip determines when the �rst transition in either direction is occuring, altough it is not
moving with the bias. As we see in Fig. 5.2, the current is blocked as long as either µN
or µN+1 are passing the chemical potential of the tip, while again µS plays a subordinate
role as it moves faster than the chemical potential of the molecule.

Our model formally allows us to access con�gurations with even higher or lower particle
numbers, respectively, by increasing the range of the bias voltage (this applies only to the
case of the renormalized spectrum, as we will see later). Though, we have to be careful,
as for higher bias voltages we are not allowed anymore to neglect excited states. However,
we can make at least qualitative predictions about the transport properties of hydrogen
phthalocyanine, as long as we restrict to low bias voltages and keep these limitations in
mind. In the following sections we discuss the results of our numerical calculations.

5.2. I-V characteristics and di�erential conductance for

hydrogen phthalocyanine

The recording of the current-voltage characteristics and the di�erential conductance in
dependence of the applied bias voltage are two main applications of scanning tunneling
microscopy. They are generated by sweeping the bias voltage at a �xed position of the
tip. Current-voltage curves allow the inspection of the general behaviour of the molecule
when applying a bias voltage. Often, the di�erential conductance, which is a measure of
how the current changes with the bias is more interesting. As we will see, the plots of the
di�erential conductance give hints about the spectral properties of the examined molecule.
First, we show current-voltage curves for both renormalized (Fig. 5.3) and nonrenormalized
(Fig. 5.4) many-body energies. We see that until the bias voltage reaches a certain value,
the current is blocked, as no tunneling is allowed.
The current in Fig. (5.3) shows a staircase-like behaviour. Reminding the theoretical
considerations in the section before we can explain this easily: At positive bias the �rst
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step occurs when the LUMO-transition is allowed; one electron tunnels from the tip into
the system and out into the substrate again. Then, as long as the chemical potential of the
44-particle state lies above the chemical potential of the tip, the current stays constant. If
we further raise the bias voltage the 44-particle ground state becomes accessible, so that
the current increases, as another channel which allows tunneling into the system becomes
available.
At negative bias the current is negative since electrons tunnel out of the system. In analogy
to the case of positive bias voltage, the current is blocked until the applied bias voltage
surpasses a certain value which corresponds to the HOMO transition. At even lower bias
voltages there is another step of the current due to the possibility to access the 40-particle
ground state. Note that physical interpretations of these transitions have to be taken with
care, since for higher bias voltages excited states can not be excluded anymore.

In the case of the unrenormalized many-body spectrum in Fig. 5.4 we only see the HOMO
and LUMO transitions, because the next transitions lie outside of a range of reasonable
bias voltages: Considering Eq. (5.8), we see that the bias voltage needed for a transition
is proportional to a di�erence µN+1 − µG. However, in the unrenormalized case these
energy di�erences for states with higher particle number simply become too large. For
example regarding the 44- and the 43-particle states we already have µ44 − µG = 7.3 eV,
implying a bias voltage of Vb = 8.5 V. As we derived the tunneling matrix elements under
the condition that the energy of an electron which tunnels into the system is limited by the
energy window that is determined by the Fermi levels and workfunctions of the contacts
(see Fig. 2.2), such high energies are not consistent with the model. Thus, the bias voltage
can be varied only in a very limited range for the unrenormalized spectrum. Altough this
spectrum is obviously not physical, we still give it as an example, also to substantiate the
necessity for the renormalization of the single particle energies.

In Figs. 5.5 and 5.6 we show plots of the di�erential conductance for the renormalized or
the unrenormalized case, respectively. The peaks that appear in these curves correspond
to the bias voltages which are needed to enable transitions into the di�erent many-body
states. Again, there are less transitions visible in the unrenormalized case.
Hence, we will focus on the renormalized case in our further considerations. The two
peaks at positive bias voltage correspond to transitions between 42 and 43 particles at
Vb ≈ 1.4 V and to transitions between states with 43 and 44 particles at Vb = 2.8 V. At
negative bias voltages we have the transition between 41 and 42 particles at Vb = −1.1 V
and the transition between 40 and 41 electrons at Vb ≈ −2.6 V.
With Eq. (5.8) we are directly able to relate the positions of the peaks to the chemical
potentials of the corresponding ground states and �nd that they coincide. The voltage
di�erence between the peaks for the HOMO and the LUMO transition is related to the
HOMO-LUMO gap by:

eVb,LUMO − eVb,HOMO =
∆HL

c
= 2.55 eV. (5.16)

Thus we have a HOMO-LUMO gap of ∆HL = 2.2 eV. Another quantity we can read out
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Figure 5.3.: Current-voltage curve for renormalized spectrum.

from the distance of the peaks is the charging energy we used to describe the Coulomb
interaction in the constant-interaction model. Given

E44 − E43 = εL +
7

2
U, (5.17)

E43 − E42 = εL +
5

2
U, (5.18)

E42 − E41 = εH +
3

2
U, (5.19)

E41 − E41 = εH +
1

2
U, (5.20)

the voltage di�erence ∆V between two peaks in positive or negative direction of the bias
is:

∆V =
U

c · e
. (5.21)

Amongst other things these results allowed us to check whether our numerical results are
re�ecting the expected behaviour. Hence we can now proceed to spatially resolve the
properties of the current through the molecule.
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Figure 5.4.: Current-voltage curve for unrenormalized spectrum.

5.3. STM imaging

The main application of scanning tunneling microscopy is, as its name implies, the scanning
of samples and surfaces to investigate their structural properties. Most STM pictures are
in the constant-current mode. Here the microscope is adjusted to a certain value of the
tunneling current. Then, when scanning a surface or a sample, this current is held constant
by variing the relative distance of the tip towards the sample or surface. The outcome of
these measurements then reveals the topography of the surface.

However, our numerical calculations are done in constant-height mode, where the distance
between the tip and the sample is �xed. Thus, our plots re�ect the spatial change of the
tunneling current through the sample. They are recorded at a tip-sample distance of 4 Å.
If not stated otherwise, we use a dz2-oriented tip state, because for tungsten tips mainly
this state is contributing to tunneling [Che90]. For reasons of visibility all current plots
are showing the absolute value of the current measured at the tip. However, we keep in
mind that for negative bias voltages the measured current is negative (see Fig. 5.3).

The �rst image we present in Fig. 5.7 is recorded at the peak in the di�erential conductance
curve for Vb = −1.12 V (Fig. 5.5). At this bias voltage transport is happening via the
HOMO molecular orbital, whereby an electron from this orbital is tunneling into the tip.
Thus we expect that the shape of this orbital is re�ected in the current map. By checking
Fig. 5.7 we see that this is the case (for comparison, see Fig. 4.6(a) in section 4.1.2).
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Figure 5.5.: Di�erential conductance for renormalized spectrum.

Figure 5.6.: Di�erential conductance for unrenormalized spectrum
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In Fig. 5.8 we show the recorded current at Vb = 1.4 V, which is the �rst peak for positive
bias voltage in the conductance plot in Fig. 5.5. As already discussed in Sec. 5.1, we expect
that the image re�ects the shape of the LUMO orbital, since now this orbital receives an
electron which is tunneling out of the tip onto the molecule. Again, the image is in good
agreement with the calculated shape of the LUMO orbital shown in Fig. 4.6(b).

Up to now, we only considered pure tip states; more precisely, we used tunneling matrix
elements for a dz2 oriented tip state. However, since we put such e�ort in deriving the
tunneling matrix elements for the tip, we will now examine the e�ects resulting from a
change of the spatial orientation of the tip state. We try to reproduce the results of a
recently published work by L. Gross and his group [GMM+11], where a CO-functionalized
tip was used to image the molecular orbitals of pentacene and naphthalocyanine molecules.
Naphthalocyanine is closely related to phthalocyanine. The only di�erence is an additional
benzene ring attached to each �arm� of naphthalocyanine compared to H2Pc. Since also
their HOMO and LUMO orbitals have a similar shape (see Fig. 1(b) in [GMM+11]), we
can compare our results to those presented in [GMM+11].
The key result of [GMM+11] is, that one can enhance the lateral resolution of STM images
by using a CO tip. This enhancement is caused by the parallel alignment of the px and
py orbitals of CO with the sample and the di�erent phases of their lobes (see App. A.4).
Fig. 5.11 contains an excerpt of their paper, showing the main results. In [GMM+11]
the measurements were rechecked with numerical, in their case DFT, calculations. These
calculations showed excellent agreement with the experimental data when using a mixed
state (s, px and py contributions) for the tip and scanning in constant-height mode.
Implementing a mixed tip state in our model is not di�cult. It can be achieved by simply
using the relations given in Sec. 2.2.2.

The result of our calculations for the HOMO transition is given in Fig. 5.9. We see a good
agreement with both the experimental and numerical results presented in 5.11, where also
eight maxima can be seen in the middle of the molecule. These are lying at the positions of
the nodes of the HOMO orbital. Also in the outer part of the molecule our image resembles
both calculated and experimental images in Fig. 5.11 very well. The only di�erence is that
in Fig. 5.11 there are two additional bulbs at each arm of the molecule. However, this is
due to the fact that H2Pc is missing the extra benzene rings of naphthalocyanine. The
bulbs in Fig. 5.9 lie at the same positions as the lobes of the HOMO orbital, indicating
that here the s-wave character of the tip is dominating the tunneling transport. Also at
the crossing of two nodal planes of the HOMO orbital we see pronounced minima in Fig.
5.9.
In the case of the image of the LUMO orbital in Fig. 5.10, there are good agreements
with the images presented in [GMM+11]. In the upper and lower part of Fig. 5.10 we see
two prominent bulbs, lying at the positions of the lobes of the LUMO orbital and hence
revealing the s-wave contribution to the tip state. Comparing with Fig. 5.11 testi�es the
coincidences. Considering the inner part of the molecule, we see �ve tubular lobes connect-
ing the bulbs in the left and right arms of H2Pc in Fig. 5.10. These tube-shaped maxima

55



5. Transport spectroscopy and imaging of hydrogen phthalocyanine

Figure 5.7.: STM image of H2Pc, recorded at Vb = −1.12 V with a dz2 oriented tip. At this
transition, the HOMO orbital is involved. Spatial units in Å.

coincide with the nodal planes of the LUMO orbital. The two outer bulbs again correspond
to a predominant s-wave contribution at this position of the tip. The comparison with Fig.
5.11 shows good agreement, where additional bulbs can be seen in the upper and lower part
of the molecule, again atrributable to the given of a di�erent type of investigated molecule.
This reason also applies to the appearance of seven tube-shaped lobes in Fig. 5.11, which
however, in analogy to our result for H2Pc in Fig. 5.10, lie at the same positions where
the LUMO orbital of naphthalocyanine has nodal planes.
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5.3. STM imaging

Figure 5.8.: STM image of H2Pc, recorded at Vb = 1.4 V with a dz2 oriented tip. At this transition,
the LUMO orbital is involved. Spatial units in Å.
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5. Transport spectroscopy and imaging of hydrogen phthalocyanine

Figure 5.9.: STM image of the HOMO orbital of H2Pc with a mixed s-p-wave tip. Spatial units
in Å.
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5.3. STM imaging

Figure 5.10.: STM image of the LUMO orbital of H2Pc with a mixed s-p-wave tip. Spatial units
in Å.
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5. Transport spectroscopy and imaging of hydrogen phthalocyanine

Figure 5.11.: Excerpt from [GMM+11].
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6. Conclusion

We systematically developed a formalism to describe transport through organic moleculs
underlying an STM setup. For this purpose we derived tunneling matrix elements that
distinguish under which conditions tunneling between the molecule and the contacts takes
place. They depend on various quantities, such as energy and the quantum number denot-
ing the di�erent molecular orbitals. For the substrate, we started from a microscopic point
of view, using the solutions of a Schrödinger equation for a potential well in z-direction.
Plane waves are describing the behavior of the wavefunction of the substrate perpendic-
ular to the z-direction. For the tunneling matrix elements that describe the tunneling
between the molecule and the tip, however, we used a di�erent approach proposed by
Julian Chen [Che90]. This approach considers the shape of the tip wavefunction in the
vacuum between tip and sample. This did not only enable us to derive the tunneling matrix
elements for the tip with much less e�ort in comparison to the case of the substrate, but
also enriched our formalism with the possibility to include the e�ects of di�erent spatially
orientated tip states.
Finally, we derived the General Master Equation for the reduced density matrix in secular
approximation with the tunneling Hamiltonian treated in second order. A Markov approx-
imation was applied to render the resulting di�erential equation local in time. The current
through the system was calculated using the stationary solution of the reduced density
matrix
In order to model the investigated molecule we used the Slater-Koster LCAO approach
[SK54]. Based on this we set up a single particle Hamiltonian for both H2Pc and CuPc.
However, due to the decoupling of the π and the σ system induced by this approach, The
π orbitals of H2Pc did not show the symmetry properties of the molecule. To counteract
we performed a Mulliken population analysis for the σ orbitals of H2Pc and projected its
outcome onto the onsite energies of the pz orbitals. For the many-body representation
of H2Pc we used the constant-interaction model to calculate the energies of the many-
particle ground states of the molecule. Nevertheless, to re�ect experimental facts, we had
to renormalize the energies of the single particle molecular orbitals using experimental
data from photoemission spectroscopy. In the case of copper phthalocyanine the problem
arose that there is an odd number of total valence electrons, which led to the non-intuitive
situation of the HOMO orbital being singly �lled. At the time being, this problem is not
solved completely. In addition to that, also the implementation of the degenerate LUMO
and HOMO-1 orbitals could not be fully understood yet.
Finally, we presented our numerical calculations for the case of hydrogen phthalocyanine
and compared them to our theoretical expectations as well as to experimental results.
In both cases we achieved good agreement. Also the e�ect of a non-standard tip state
was examined. By comparison with a recent paper [GMM+11], which adressed the same
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6. Conclusion

question we found that di�erent tip states play a prominent role considering the lateral
resolution of STM images. All in all we showed, that our formalism is able to mirror
experimental �ndings quite well, keeping always in mind the limitations induced by our
applied approximations.

With regard to the general formalism, we expect that implementing excited electronic states
in our model could lead to many interesting features, as e.g interference e�ects and negative
di�erential conductance. Especially screening and image charge e�ects, induced by the
contacts, have recently been proven to be responsible for negative di�erential conductance
and the breaking of molecular symmetries [KF11]. Also the role of vibronic excitations
would be an interesting topic to adress. For the case of H2Pc a striking feature considering
its use in molecular electronics would be a current-induced switching of the positions of the
central hydrogen atoms, which already has been adressed for naphthalocyanine [LRM07].
Regarding copper phthalocyanine, the implementation of Coulomb and spin interactions
together with image charge e�ects could be a promising task for further investigations.

62



A. Appendix

A.1. Derivation of the Generalized Master Equation for the

reduced density matrix

A.1.1. Time dependence of the tunneling Hamiltonian

We start with Eq. (3.23). Expanding the double commutators in Eq. (3.23) yields:

˙̂ρIred(t) = − 1

~2

∫ ∞
0

dt2

[
trsub, tip

{
ĤIT (t) ĤIT (t− t2) ρ̂Ired(t)ρ̂tipρ̂sub

}
+ trsub, tip

{
ρ̂Ired(t)ρ̂tipρ̂sub ĤIT (t− t2) ĤIT (t)

}
− trsub, tip

{
ĤIT (t) ρ̂Ired(t)ρ̂tipρ̂sub ĤIT (t− t2)

}
− trsub, tip

{
ĤIT (t− t2) ρ̂Ired(t)ρ̂tipρ̂sub ĤIT (t)

} ]
. (A.1)

Now we �rst have to consider the time dependence of the various parts of Eq. (A.1).
Remember that ĤIT (t) is given by

ĤIT (t) =
∑
k, i

(
tTki â†k(t)d̂i (t) +

(
tTki
)∗

d̂
†
i (t)âk(t)

+ tSki ĉ†k(t)d̂i (t) +
(
tSki
)∗

d̂
†
i (t)ĉk(t)

)
. (A.2)

As an example, for the annihilation operator of the tip we have:

âk(t) = e
i
~ Ĥ0t âk e

− i
~ Ĥ0t. (A.3)

We now derive its explicit time dependence. The easiest way to do this is to �rst di�eren-
tiate the above equation,

˙̂ak(t) =
i

~
[Ĥ0, âk(t)]

=
i

~
e
i
~ Ĥ0t [Ĥ0, âk] e−

i
~ Ĥ0t, (A.4)

and then to compute the emerging commutator. As Ĥ0 consists of pairs of one creation
and one annihilation operator, the relation [ab, c] = a{b, c} − {a, c}b is very useful to
calculate commutators like:
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[â†k′ âk′ , âk] = â†k′ {âk′ , âk} − {â
†
k′ , âk} âk′

= 0− δk′kâk′ . (A.5)

With this we arrive at a di�erential equation for âk(t):

˙̂ak(t) = − i
~
εk âk(t), (A.6)

which is easily solved by:

âk(t) = âk e
− i

~ εkt. (A.7)

For its hermitian conjugate and the electron operators of the substrate it follows analo-
gously:

â†k(t) = âk e
+ i

~ εkt,

ĉk(t) = ĉk e
− i

~ εkt,

ĉ†k(t) = ĉ†k e
+ i

~ εkt. (A.8)

A.1.2. Applying the partial trace

Each term in Eq. (3.23) contains a product of two fermionic operators. For any operator
Ô it holds:

tr
{
ρ̂Ô
}

= 〈Ô〉 . (A.9)

Thus we can give the following relations for a product of two fermionic operators:

trsub

{
ρ̂subĉkĉk′

}
= trsub

{
ρ̂subĉ

†
kĉ†k′

}
= 0 (A.10)

trtip

{
ρ̂tipâkâk′

}
= trtip

{
ρ̂tipâ

†
kâ†k′

}
= 0 (A.11)

trsub

{
ρ̂subĉ

†
kĉk′

}
= δkk′f

+
sub(εk) (A.12)

trsub

{
ρ̂subĉkĉ†k′

}
= δkk′f

−
sub(εk) (A.13)

trtip

{
ρ̂tipâ

†
kâk′

}
= δkk′f

+
tip(εk) (A.14)

trtip

{
ρ̂tipâkâ†k′

}
= δkk′f

−
tip(εk). (A.15)

For a detailed calculation of the expectation value of two fermionic operators the reader
may be referred to [BF04]. Using the cyclic properties of the partial trace and the above
relations enables us to derive Eq. (3.24).
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A.1.3. Transformation of the GME into the Schrödinger picture

We can go back to the Schrödinger picture by performing the transformation

ρ̂Sred(t) = Û0(t)ρ̂Ired(t)Û
†
0(t). (A.16)

This yields for the time derivative of the RDM:

˙̂ρSred(t) = − i
~
Û0(t)[Ĥ0, ρ̂

I
red(t)]Û

†
0(t) + Û0(t) ˙̂ρIred(t)Û

†
0(t)

= − i
~

[Ĥ0, ρ̂
S
red(t)] + Û0(t) ˙̂ρIred(t)Û

†
0(t). (A.17)

Inserting into Eq. (3.24) gives:

˙̂ρSred(t) = − i
~

[Ĥmol, ρ̂Sred(t)]−
1

~2

∫ ∞
0

dt2
∑
k

∑
i, j

∑
η

[
+ tηki(t

η
kj)
∗ f+

η (εk) d̂i d̂
†
j(−t2) ρ̂Sred(t) e

i
~ εkt2

+ (tηki)
∗tηkj f

−
η (εk) d̂

†
i d̂j(−t2) ρ̂Sred(t) e

− i
~ εkt2

+ tηki(t
η
kj)
∗ f+

η (εk) ρ̂Sred(t) d̂i (−t2)d̂
†
j e
− i

~ εkt2

+ (tηki)
∗tηkj f

−
η (εk) ρ̂Sred(t) d̂

†
i (−t2)d̂j e

i
~ εkt2

− tηki(t
η
kj)
∗ f−η (εk) d̂i ρ̂

S
red(t)d̂

†
j(−t2) e

i
~ εkt2

− (tηki)
∗tηkj f

+
η (εk) d̂

†
i ρ̂
S
red(t)d̂j(−t2) e−

i
~ εkt2

− tηki(t
η
kj)
∗ f−η (εk) d̂i (−t2)ρ̂Sred(t)d̂

†
j e
− i

~ εkt2

− (tηki)
∗tηkj f

+
η (εk) d̂

†
i (−t2)ρ̂Sred(t)d̂j e

i
~ εkt2

]
. (A.18)

A.1.4. Application of the projection operators

The projection operators P̂NE have the following properties:

P̂NE =
∑
l

|N E l〉 〈N E l| (A.19)

1 =
∑
N,E

P̂NE (A.20)

ρN
EE′ = P̂NE ρ̂

S
red(t) P̂NE′ (A.21)

ρ̇N
EE′ = P̂NE

˙̂ρSred(t) P̂NE′ . (A.22)
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In the following we give two examples how the projection operators P̂NE have to be applied.
In the �rst example the RDM is e.g. to the right of a creation and annihilation operator
pair of the molecule. So we have to insert a unity between the pair of electron operators
and the RDM:

P̂NE d̂i d̂
†
j(−t2) ρ̂Sred(t) P̂NE′ =

∑
M,F

P̂NE d̂i d̂
†
j(−t2)P̂MF ρ̂

S
red(t) P̂NE′ . (A.23)

The pair d̂i d̂
†
j e�ectively conserves the number of particles and, as ρ̂Sred is considered to be

diagonal in particle number, the indices M and N have to be equal. In addition, we can

resolve the time dependence of the molecule electron operators d̂
†
i (t) = Û †0(t)d̂

†
i Û0(t) and

get:

P̂NE d̂i d̂
†
j(−t2) ρ̂Sred(t) P̂NE′ =

∑
F

P̂NE d̂i e
− i

~ Ĥ0t2 d̂
†
j e

i
~Ft2ρN

FE′ . (A.24)

In the second example, the position of the RDM is between two electron operators. Thus
we have to insert an additional unity in comparison to the previous example:

P̂NE d̂i ρ̂
S
red(t) d̂

†
j(−t2) P̂NE′ =

∑
M,F

∑
M′,F′

P̂NE d̂i P̂MFρ̂
S
red(t) P̂M′F′ d̂

†
j(−t2) P̂NE′ . (A.25)

We see from that M and M′ have to be equal to N + 1. According to this, the term takes
the following form:

P̂NE d̂i ρ̂
S
red(t) d̂

†
j(−t2) P̂NE′ =

∑
F,F′

P̂NE d̂iρ
N+1
FF′ e

− i
~F′t2 d̂

†
j e

i
~E′t2P̂NE′ . (A.26)

Applying these relations to Eq. (A.18) yields
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A.1. Derivation of the Generalized Master Equation for the reduced density matrix

ρ̇N
EE′ = − i

~
(E− E′)ρN

EE′ −
1

~2

∫ ∞
0

dt2
∑
k

∑
i, j

∑
F

∑
η

{
P̂NE d̂i

[
tηki(t

η
kj)
∗ f+

η (εk) e
i
~ (F−Ĥmol)t2+ i

~ εkt2
]
d̂
†
j ρ

N
FE′

+P̂NE d̂
†
i

[
(tηki)

∗tηkj f
−
η (εk) e

i
~ (F−Ĥmol)t2− i

~ εkt2
]
d̂j ρ

N
FE′

+ρN
EF d̂i

[
tηki(t

η
kj)
∗ f+

η (εk) e
i
~ (Ĥmol−F)t2− i

~ εkt2
]
d̂
†
j P̂NE′

+ρN
EF d̂

†
i

[
(tηki)

∗tηkj f
−
η (εk) e

i
~ (Ĥmol−F)t2+ i

~ εkt2
]
d̂j P̂NE′

−P̂NE d̂i
∑
F′

ρN+1
FF′

[
tηki(t

η
kj)
∗ f−η (εk) e

i
~ (E′−F′)t2+ i

~ εkt2
]
d̂
†
j P̂NE′

−P̂NE d̂
†
i

∑
F′

ρN−1
FF′

[
(tηki)

∗tηkj f
+
η (εk) e

i
~ (E′−F′)t2− i

~ εkt2
]
d̂j P̂NE′

−P̂NE d̂i
∑
F′

ρN+1
FF′

[
tηki(t

η
kj)
∗ f−η (εk) e

i
~ (F−E)t2− i

~ εkt2
]
d̂
†
j P̂NE′

−P̂NE d̂
†
i

∑
F′

ρN−1
FF′

[
(tηki)

∗tηkj f
+
η (εk) e

i
~ (F−E)t2+ i

~ εkt2
]
d̂j P̂NE′

}
, (A.27)

for the non-secular part of the GME, and

ρ̇N
E = − 1

~2

∫ ∞
0

dt2
∑
k

∑
i, j

∑
η

{
P̂NE d̂i

[
tηki(t

η
kj)
∗ f+

η (εk) e
i
~ (E−Ĥmol)t2+ i

~ εkt2
]
d̂
†
j ρ

N
E + h.c.

+P̂NE d̂
†
i

[
(tηki)

∗tηkj f
−
η (εk) e

i
~ (E−Ĥmol)t2− i

~ εkt2
]
d̂j ρ

N
E + h.c.

−P̂NE d̂i
∑
E′

ρN+1
E′

[
tηki(t

η
kj)
∗ f−η (εk) e

i
~ (E−E′)t2+ i

~ εkt2
]
d̂
†
j P̂NE

−P̂NE d̂
†
i

∑
E′

ρN−1
E′

[
(tηki)

∗tηkj f
+
η (εk) e

i
~ (E−E′)t2− i

~ εkt2
]
d̂j P̂NE

−P̂NE d̂i
∑
E′

ρN+1
E′

[
tηki(t

η
kj)
∗ f−η (εk) e

i
~ (E′−E)t2− i

~ εkt2
]
d̂
†
j P̂NE

−P̂NE d̂
†
i

∑
E′

ρN−1
E′

[
(tηki)

∗tηkj f
+
η (εk) e

i
~ (E′−E)t2+ i

~ εkt2
]
d̂j P̂NE

}
, (A.28)

for the secular part.
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A.2. The overlap between the substrate wavefunction and an

atomic p orbital

Here we show the evaluation of Eq. (2.22). The integral we have to solve is:

〈k|α〉 = S
−1/2

∫
d3r e−ikxxe−ikyy Ψ(z)pz(r− rα). (A.29)

As a �rst step, we use the identity

Ψ(z) =

∫
dz′Ψ(z′)δ(z′ − z). (A.30)

Inserting Eq. (A.30) in Eq. (A.29) yields:

〈k|α〉 = S
−1/2

∫
dz′Ψ(z′)

∫
d3r δ(z′ − z) e−ikxxe−ikyy pz(r− rα). (A.31)

After replacing the delta function by its Fourier transform,

δ(z′ − z) =
1

2π

∫ ∞
−∞

d`z e
i`z(z′−z), (A.32)

a variable transformation r −→ r + rα and choosing ` := (kx, ky, `z), we arrive at the
following equation for the overlap integral:

〈k|α〉 =
S−1/2

8
√

2π3

(
Qα
a0

) 5
2

∫
dz′
∫

d`z Ψ(z′) ei`zz
′
e−i`·rα

∫
d3r e−i`·r r cos(ϑ) e

−Qα2a0
r
.

(A.33)

To solve the last part of the integral we �rst have to expand the exponential e−i~̀·~r into
spherical harmonics:

ei`·r = 4π
∞∑
l=0

l∑
m=−l

iljl(`r)Ylm(ϑr, ϕr)Y
∗
lm(ϑ`, ϕ`). (A.34)

Here jl are the spherical Bessel function and (ϑ`, φ`) denote the angles in the space of the
wavevector `. Note that for our problem we have to use the complex conjugate of Eq.
(A.34). After applying the relation

cos(ϑr) = 2

√
π

3
Y10(ϑr, ϕr) (A.35)

and the orthonormality of the spherical harmonics, we can bring the last integral of Eq.
(A.33) into the form:
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∫
d3r e−i`·r r cos(ϑ) e

−Qα2a0
r

= −4πi 2

√
π

3
Y10(ϑ`, ϕ`)

∫ ∞
0

dr r3 e
−Qα2a0

r
j1(`r) (A.36)

= −4πi
`z
`

∫ ∞
0

dr r3 e
−Qα2a0

r
j1(`r) (A.37)

= −32πi
`z
`

Qα
2a0

`

[(
Qα
2a0

)2
+ `2

]−3

. (A.38)

Here we again used Eq. (A.35), but this time with argument ϑ` obeying cos(ϑ`) = `z
` .

After inserting the above solution into Eq. (A.33) and renaming z′ to z again, we obtain
the following equation:

〈k|α〉 =
−2πiS−1/2

√
2π3

(
Qα
a0

) 7
2

∫
dz d`z Ψ(z) ei`zze−i`·rα `z

[(
Qα
2a0

)2
+ `2

]−3

. (A.39)

The next integration we have to solve is the integral over `z which can be done by following
the standard procedure of applying the residue theorem. After splitting rα and ` into
components parallel to the x-y plane, rα‖ = (xα, yα, 0) and `‖ = (kx, ky, 0) ≡ k‖, and
components in z-direction, d and `z, the matrix element 〈k|α〉 is given by:

〈k|α〉 =
−2πiS−1/2

√
2π3

(
Qα
a0

) 7
2
e−ik‖·rα‖

∫ 0

z0

dzΨ(z)J(z), (A.40)

with

J(z) =

∫ ∞
−∞

d`z e
i`z(z−d) `z

[(`z + i`α)(`z − i`α)]3
. (A.41)

The integrand has two third order poles at `z = ±i`α, with

`α =
Qα
2a0

√
1 +

4a2
0k

2
‖

Q2
α

. (A.42)

Using the abbreviation `α greatly simpli�es the results. The sign of the di�erence (z − d)
in the exponential determines in which half-plane we have to close our contour to get the
correct results. Consequently, the integral splits into two parts: The �rst one, J−(z),
corresponds to z0 < z < d. Hence (z − d) < 0. meaning that we have to close the contour
in the lower half plane to hinder the integrand from diverging. The enclosed pole is −i`α
and we get the winding number ν = −1. The second part, J+(z), is associated with values
z > d, meaning that we have to close the contour in the upper half plane. Therefore the
enclosed pole is +i`α and the winding number ν is +1. Using

Res f(z)
∣∣∣
z=z0

=
1

(n− 1)!
lim
z→z0

∂n−1

∂zn−1
[(z − z0)nf(z)] . (A.43)

we get:
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J±(z) =
±`α(z − d)2 + (z − d)

32πi`3α
e∓`α(z−d). (A.44)

Now we are able to take the �nal integral. As we are not concerned with the behaviour
of the piecewise-de�ned Ψ(z) for z < z0, only two of its three regions of de�nition are of
interest. Ψ(z) then reads:

Ψ(z) =

{
Ψa(z) = Ω

2

(
ξeikzz + ξ∗e−ikzz

)
, z0 < z < 0

Ψb(z) = Ω e−κz, z > 0
. (A.45)

Nevertheless, the integration consists of three parts, as in one region the di�erence (z− d)
changes sign. Therefore, we have to split up 〈k|α〉 as follows:

z0 < z < 0 : 〈k|α〉1 = N e−ik‖·rα‖
∫ 0

z0

dzΨa(z)J
−(z)

0 < z < d : 〈k|α〉2 = N e−ik‖·rα‖
∫ d

0
dzΨb(z)J

−(z)

z > d : 〈k|α〉3 = N e−ik‖·rα‖
∫ ∞
d

dzΨb(z)J
+(z).

For brevity, here we introduced a temporary prefactor N . After introducing the abbrevi-
ations

A1 =
1

(`α + ikz)2

{
1− (`α + ikz)d− [1− (`α + ikz)(d− z0)] e(`α+ikz)z0

}
, (A.46)

A2 =
1

`α + ikz

{
d2 − (d− z0)2 e(`α+ikz)z0 − 2A1

}
, (A.47)

the �rst part of the overlap integral is given by:

〈k|α〉1 = Ω̃α e
−ik‖·rα‖ <{ξ (`αA2 −A1)} e−`αd. (A.48)

The prefactor Ω̃α (which also depends on kz, k‖ and κ) reads:

Ω̃α =
Ω

16
√

2π3S`3α

(
Qα
a0

) 7
2

= Ω̃α(kz, k‖, κ). (A.49)

For convenience, we rewrite 〈k|α〉1 as:

〈k|α〉1 = Ω̃α V
(1)
α (kz, k‖, κ) e−ik‖·rα‖ . (A.50)

The second part of the overlap integral, de�ned in the region 0 < z < d, is given by:
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〈k|α〉2 = Ω̃α e
−ik‖·rα‖

{
2`α

(`α − κ)3

[
1−

(
1 + (`α − κ)d+ (`α − κ)2d

2

2

)
e−(`α−κ)d

]

+
1

(`α − κ)2

[
1−

(
1 + (`α − κ)d

)
e−(`α−κ)d

]}
e−κd. (A.51)

Again in a shortened form:

〈k|α〉2 = Ω̃α V
(2)
α (kz, k‖, κ) e−ik‖·rα‖ . (A.52)

Finally, the third part reads:

〈k|α〉3 = Ω̃α e
−ik‖·rα‖

[
− 2`α

(`α + κ)3
− 1

(`α + κ)2

]
e−κd (A.53)

= Ω̃α V
(3)
α (kz, k‖, κ) e−i

~k‖·~rα‖ . (A.54)

Collecting the results and de�ning Vα(kz, k‖, κ) = Ω̃α(V
(1)
α +V

(2)
α +V

(3)
α ), we arrive at the

following expression for the tunneling matrix elements in the substrate region:

tSki = εi
∑
α

cαiVα(kz, k‖, κ) e−ik‖·rα‖ . (A.55)

A.3. Calculation of the overlap integrals for the Slater-Koster

LCAO method

First, we will show the computation of matrix elements involving the orbitals of the nitrogen
atom at site 1 and the carbon atom at site 2 for the σ-system (see Fig. 4.3). The bond
vector between site 1 and site 2 forms angles of 55◦ and 35◦ to the x- and y-axis, respectively.
In a �rst step we calculate the overlap between the 2s orbitals located at each of the two
sites. This is rather simple and after looking at Tab. 4.4 we obtain:

b(1,s)(2,s) = ηssσ
~2

med2
12

. (A.56)

Now we evaluate the matrix element between the s orbital at site 1 and the px orbital at
site 2. Again, after consulting Tab. 4.4, we get:

b(1,s)(2,px) = ηspσ
~2

med2
12

cos(55◦). (A.57)

A small di�erence occurs when we want to calculate the overlap between an s orbital at site
1 and a py orbital at site 2. If we look at Fig. 4.2, we see that, because of the respective
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(a) b(1,s)(2,s) (b) b(1,s)(2,px) (c) b(1,s)(2,py)

Figure A.1.: Sketch of overlaps between an s orbital at site 1 and the di�erent orbitals at site 2.

orientation of the two orbitals, we have a minus sign in front. In addition we now have to
use the direction cosine towards the y-axis:

b(1,s)(2,py) = −ηspσ
~2

med2
12

cos(35◦). (A.58)

Now we calculate the matrix elements between the px orbital at site 1 and the di�erent
orbitals at site 2. By looking at the picture and checking Fig. 4.2, we see that the overlap
with the s orbital is equivalent to b(1,s)(2,px) except for the sign:

(a) b(1,px)(2,s) (b) b(1,px)(2,px) (c) b(1,px)(2,py)

Figure A.2.: Sketch of overlaps between a px orbital at site 1 and the di�erent orbitals at site 2.

b(1,px)(2,s) = −b(1,s)(2,px) = −ηspσ
~2

med2
12

cos(55◦). (A.59)

The next matrix element b(1,px)(2,px) can be evaluated easily just by looking at Tab. 4.4:

b(1,px)(2,px) =
(
ηppσ cos2(55◦) + ηppπ sin2(55◦)

) ~2

med2
12

. (A.60)
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To calculate the overlap between the px orbital at site 1 and the py orbital at site 2,
we �rst have to decompose the py orbital in components parallel and perpendicular to
the bond. After consulting Fig. 4.2, we see that both overlap integrals V(1,px)(2,py)σ and
V(1,px)(2,py)π have a minus sign in front of them due to the respective orientations of the
orbitals. Checking Tab. 4.4 then �nally gives us the functions fς(α, β, γ):

b(1,px)(2,py) = − (ηppσ − ηppπ)
~2

med2
12

cos(55◦) cos(35◦). (A.61)

The next matrix element follows analogously:

b(1,py)(2,s) = ηspσ
~2

med2
12

cos(35◦). (A.62)

(a) b(1,py)(2,s) (b) b(1,py)(2,px) (c) b(1,py)(2,py)

Figure A.3.: Sketch of overlaps between a py orbital at site 1 and the di�erent orbitals at site 2.

For the matrix element b(1,py)(2,px) we again get a minus sign in front due to the orientations
of the participating orbitals:

b(1,py)(2,px) = − (ηppσ − ηppπ)
~2

med2
12

cos(55◦) cos(35◦). (A.63)

For the last matrix element b(1,py)(2,py) we get basically the same result as for b(1,px)(2,px),
but now we have to use the direction cosine respective to the y-axis. Thus the argument
of the cosine now is 35◦:

b(1,py)(2,py) =
(
ηppσ cos2(35◦) + ηppπ sin2(35◦)

) ~2

med2
12

. (A.64)

After calculating all matrix elements corresponding to the σ-orbitals of the �rst atom,
we only have to apply this recipe to the other 57 atoms to obtain the single particle
Hamiltonian for the σ-system. For the π-system it does not take as much e�ort as in the
σ case, since all pz orbitals are alligned parallel. Hence, we get
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b(i,pz)(i′,pz) = ηppπ
~2

med2
αα′

(A.65)

for each matrix element of two pz orbitals located at atom α and α′, respectively.

A.4. Basic explanation of the functionality of a p-wave tip

When the tip is placed directly above the center of a pz orbital (Fig. A.4(a)), we see that
the corresponding tunneling matrix element has contributions from both the positive and
the negative lobe of the p-wave orbital in the tip. If we would calculate the overlap between
these two orbitals using the Slater-Koster LCAO method (App. A.3) we would �nd the
result to vanish. Consequently, also the tunneling matrix element for this constellation and
thus the current evaluated at this position is zero, as the contributions from the positive
and the negative lobe of the tip orbital cancel out each other .

(a) I = 0 (b) I = 0 (c) Top view of (b) (d) I 6= 0

Figure A.4.: Sketch of the three most important con�gurations in the case of a p-wave tip.

Figs. A.4(b) and A.4(c) represent the placing of the tip above the crossing of two nodal
planes, e.g. in the center of the arms of the HOMO orbital of H2Pc. Again, the di�erent
phases of the lobes of the tip orbital cause a vanishing tunneling matrix element and zero
current. When the tip is placed above one single node of the molecular orbital (Fig. A.4(d))
we have a situation similar to Fig. A.2(b), allowing for a non-vanishing current at this
position of the tip.
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