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Contents

1 Introduction 7
1.1 Interference of massive particles . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Molecular electronics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Spintronics and spin-qubit applications . . . . . . . . . . . . . . . . . . 13
1.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 The Pariser-Parr-Pople (PPP) model for conjugated molecules 15
2.1 Derivation of the Pariser-Parr-Pople model . . . . . . . . . . . . . . . . 15
2.2 The parameters of HPPP . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Numerical diagonalization of HPPP . . . . . . . . . . . . . . . . . . . . 19

3 Transport through interacting quantum dots 23
3.1 Quantum dot physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Model Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Generalized master equation (GME) . . . . . . . . . . . . . . . . . . . 31
3.4 GME and current in the non-secular approximation . . . . . . . . . . . 35
3.5 Extension to fourth order . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 A benzene interference SET 39
4.1 The D6h point group . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Symmetry of the benzene eigenstates . . . . . . . . . . . . . . . . . . . 43
4.3 Transport calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.4 Reduced symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 All-electric spin control in interference single electron transistors 63
5.1 Effective Hamiltonian for the internal dynamics . . . . . . . . . . . . . 64
5.2 Interference blocking for excited states . . . . . . . . . . . . . . . . . . 72

6 Nonequilibrium cotunneling: an effective Kondo Hamiltonian
approach vs. exact results 77
6.1 Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.2 The Kondo Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.3 Different approximations/approaches . . . . . . . . . . . . . . . . . . . 82
6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.5 Gate-dependent tunneling-induced level shifts . . . . . . . . . . . . . . 89



6 | CONTENTS

7 Conclusions 93

References 97



Chapter 1

Introduction

1.1 Interference of massive particles

Self interference of massive particles is fascinating. In the 1960s, Richard Feynman [1]
described it as a phenomenon “which has in it the heart of quantum mechanics,” and
it didn’t lose any of its attraction up to the present day. In fact, when the journal
Physics World recently asked for suggestions for the most beautiful experiment ever in
science [2], Young’s original double-slit experiment to demonstrate interference with
light from 1804 [3] was ranked among the top 5, but its application to electrons in
vacuum [4] was cited more often than any other. In this experiment, a beam of
electrons is shot through an apparatus containing an electron biprism which acts as
an effective double slit and the electrons are detected at an observation plane. In later
experiments, only one electron was in the apparatus at a time [5, 6]. The beauty of
these experiments lies in the fact that one can actually observe the emergence of the
interference pattern in time as the electrons hit the observation screen one by one.
Every electron is detected before the next electron enters the apparatus, such that
interactions between the electrons can be excluded as a possible explanation. After 10
or even few 100 electrons, the observed pattern looks more or less random, but after
a few thousand electrons, a clear modulation in the intensity on the screen can be
seen as a manifestation of single particle interference (Figure 1.1). Since then, particle
interference has been demonstrated with neutrons, atoms [7, 8] and molecules as large
as carbon-60 [9] and carbon-70 [10]. Mesoscopic rings contacted to leads and threaded
by a magnetic flux provide the solid-state analogous of the experiment described above
[11, 12].

Interference of electrons in single molecule junctions is a novel effect and has some
analogies to interference on double slits. It manifests itself as perfect destructive in-
terference that causes complete blocking of the current through the junction and has
been predicted for molecules with discrete rotational symmetry such as benzene or an-
nulene rings. The symmetry assures the presence of degenerate states, to which clock-
wise and counter-clockwise angular momenta can be assigned, so that the two paths
around the molecule exhibit a certain phase difference depending on the arrangement
of the contacts. In the last years, this “intramolecular interference” has been inves-
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Figure 1.1: Single electron build up of interference pattern over 20 minutes. At the
beginning of the experiment, bright spots indicating electrons occur at random posi-
tions. When a larger number of electrons is observed, clear interference fringes can be
seen. Pattern after (a) 8 electrons; (b) 270 electrons; (c) 2000 electrons; (d) 60,000.
Images taken from [6].
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tigated by several groups in setups with strong lead molecule coupling, using models
[13, 14] or density functional theory [15, 16] to describe the molecule and a Green’s
functions scattering approach that premises strong lead molecule-coupling to calculate
transport properties. In the complementary situation of a molecule weakly coupled
to leads, a generalized master equation approach for the reduced density matrix turns
out to be more convenient to describe intra-molecular interference [17, 18, 19]. This
thesis provides an overview over our work on electron interference effects such as cur-
rent blocking and negative differential conductance in transport through benzene and
multiple quantum dots. The use of interference to obtain control over the molecules
(or quantum dots) spin degree of freedom by all-electrical means, a highly desirable
property for spintronics and spin based quantum computing applications, is proposed.

At this point, it is worth stating that this research on transport through molecules was
not driven by the beauty of interference effects. Instead, it was (and still is) motivated
by the quest for new electronic devices equipped with new functionalities and based
on new materials that provide potential alternatives for the conventional metal oxide
semiconductor field effect transistor (MOSFET) technology, which has opened new
fields in engineering, applied and fundamental science. One of the most prominent
and promising of these new fields is molecular electronics.

1.2 Molecular electronics

The central idea in molecular electronics is to establish electronic devices based on
molecular films, groups of molecules or even single molecules. One of the major themes
in electronics is therefore to build up electronic circuits in which molecular systems act
as conducting elements and to understand or even design the current voltage charac-
teristics of such junctions. These novel molecular building blocks can for example act
as switches, gates, rectifiers or memory elements or provide new functions that need
to be characterized and understood [20].

Aviram and Ratner were the first to propose a molecular rectifier based on a single
organic molecule back in 1974 [21]. However, the field of molecular electronics emerged
only after modern nanoscale fabrication techniques made it possible to construct single
molecule junctions. In 1997, Reed et al. [22] attributed a current voltage curve
measured in a break junction experiment to a single 1,4 benzene dithiol molecule.
Since then, huge experimental and theoretical efforts have been made and created a
diverse and rapidly growing research field.

1.2.1 Measurements of single molecules

Many experimental techniques are available to measure and control current through
molecules. On one hand, there are experiments in which current through a large
number of molecules organized in self-assembled, highly ordered films is measured.
These films are placed on one electrode and then another electrode is placed on top
of it. On the other hand, there are a number of techniques that allow to contact and
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to measure the conductance of a single molecule. Since the latter are more related to
the subject of this thesis, we will describe some of them here in more detail.

Scanning tunneling microscopy (STM) [23] has played a unique role in the field of
molecular electronics. First, it allows to image single molecules lying on conducting
substrates or different orbitals of the very same molecule with submolecular resolution.
In the same setup, one can measure the current through the molecule as a function of
the molecular position. The STM tip can also be used to place metal atoms in contact
with a single molecule on the substrate with atomic precision. An open challenge
in this approach is to reliably contact the metal atoms and to exclude effects on the
conductance coming from the molecule substrate coupling [24]. In other approaches,
one end of the molecule is lifted from the substrate by the tip of the STM and current
through the molecule from the tip to the substrate can be directly measured. The tip
can be pulled away until the contact on one end of the molecule breaks away. After-
wards the tip is lowered again until a new single molecule junction forms. Breaking
and forming of contacts is observed in the current as steplike features. The repeating
of this cycle (see Figure 1.2) allows the statistical analysis of many single molecule
junction measurements in short times. If the STM tip and the substrate are coated
with an insulating layer, the sample can be placed in an electrolyte whose surface
potential can be controlled with a third electrode, acting as a gate. Metal ions can be
introduced to the electrolyte, so that the current through the molecule is controlled by
gate induced reversible chemical binding reactions to the metal ions [25]. Also without
metal ions, potential control of the electrolyte enables to change the charge state of the
molecule [26]. A gate electrode in molecular junctions is in general highly desirable,
since it allows to oxidize or reduce the molecule, and three terminal devices can act
as spectroscopic tools that allow to determine excitation and addition energies of the
molecule.

Therefore, different techniques to fabricate molecular three terminal devices have been
delveloped [27] in addition to STM. The electromigration technique consists in break-
ing a narrow and thin metalwire by a large current density to form two physically
separated electrodes. The formation of the gap can be imaged using transmission elec-
tron spectroscopy. Although some control over the breaking process could be achieved
by a feedback mechanism, the resulting geometry or size remains uncontrollable. Ad-
vantages of devices made by electromigration on top of Al/Al2O3 gate electrodes is
the large gate coupling and the planar geometry (see Figure 1.3 (a)) that offers a large
stability for systematic studies of effects as functions of gate voltage, magnetic field
or temperature. Molecules can be deposited on the sample from solution either before
the gap formation or afterwards. If the gap has about the same size as the molecule,
the molecules can form chemical bonds to both electrodes. However, in general only
few of the prepared samples show signatures of single molecule conductance.

A shadow mask technique can be used to evaporate two gold electrodes on top of a
gate electrode as illustrated in Figure 1.3(b). If the tilt angle of evaporation is high
there is no overlap between the source and drain shadows. Reducing the tilt angle
decreases the source drain gap. The advantages of this technique include the ones of
the electromigration techniques, in addition one has precise control over the gap size
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[28].
Recently, it has been possible to include a gate voltage also in mechanically controlable

break junctions (MCBJ) experiments [29]. In an MCBJ setup, a thin metallic wire with
predefined break points is placed on a substrate. The hole geometry is now bended
with a pushing rod so that the wire breaks, see Figure 1.3(c) . The huge advantage of
this approach is that the distance of the emerging gap can be controlled with picometer
(!) resolution by the pushing rod. The gate coupling, however, is typically orders of
magnitude smaller than in the techniques with planar configuration, which makes it
difficult to access several charge states of the molecule.
In Figure 1.3(d) a sketch of the dimer contacting scheme reported by Dadosh et al.
[30] is depicted. In this approach, a dimer structure consisting of two colloidal gold
particles connected by a dithiolated molecule is synthesized in solution. This dimer
structure can be trapped electrostatically between two gold electrodes (with a gap
much larger than the actual size of the molecule) on top of a gate electrode. The
advantage of this approach is that it allows to fabricate single molecule devices with
high certainty and well defined contacts to the molecule. However, the gold particles
screen the gate potential efficiently, and spectroscopic features of the gold particles are
sometimes superimposed on the conduction characteristics of the molecule.
With all these methods, molecular junctions have been realized and current-voltage
characteristics could be assigned to a single or very few molecules. However, there
are a number of problems that have to be overcome to assure future success of the
whole field. First of all, the placement of the molecule inside the nanogap between the
contacts is basically uncontrolled. A large number of samples have to be prepared to
obtain at least a few where the formation of a molecular junction can be identified.
Related to this is the problem that the conductance of a molecule depends crucially
on its local environment. Still, there is a lack of a technique that can provide reliable
and well defined molecule-electrode contacts. Although the molecules themselves can
be produced identically in large numbers, visions of building millions of atomically
identical electronic devices seem to be doomed because they cannot be fabricated in
a controlled way. In this sense there is still a long way to go, or as Fang Chen put it
in the summary of her recent review article [24]:

Future techniques that can fabricate molecular junctions with molecule-
electrode contacts that are well defined on the atomic scale and that can
characterize the atomic-scale structures of the molecule-electrodes contacts
will contribute enormously to the field of molecular electronics.

1.2.2 Theoretical approaches

Similar to the variety of experimental techniques, also a number of theoretical concepts
to describe transport through molecular devices have been developed. One one hand,
numerical approaches to transport based on the combination of ab initio methods
like density functional theory (DFT) with nonequilibrium Green’s function techniques
have become standard to study transport at the nanoscale [31, 32]. These methods
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Figure 1.2: Forming and breaking of a molecular junction with an STM tip. The tip
is pushed into contact with molecules adsorbed on an electrode. Pulling away the
tip subsequently breaks molecular bridges which can be seen as steps in the current.
Image taken from [24].

Figure 1.3: Schematic images of different molecular three-terminal device techniques
(see text). (a) Electromigrated thin metal wire. (b) Angle evaporation technique. (c)
Gate mechanical break junction. (d) The dimer contacting scheme. Image taken from
[27].
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take into account not only the molecule itself, but also the atomistic structure of lead-
molecule interfaces. They are appropriate to investigate quantum transport through
molecular bridges strongly coupled to leads. Complex structures with a large number of
atoms can be described. However, they fail to describe transport through a molecule
weakly coupled to leads, since they are not able to account for effects arising from
Coulomb interaction properly. In nanoscale objects with a small number of electrons,
this interaction provides the dominant energy scale and therefore plays a crucial role.
That is why, on the other hand, approaches to transport are used that explicitly incor-
porate the Coulomb interaction in the molecule. Powerful many-body techniques such
as the numerical renormalization group (NRG) or the density matrix renormalization
group (DMRG) scheme have been developed and applied to the problem of quantum
transport. They can treat a broad parameter regime ranging from weak and to lead-
molecule coupling. However, only very simple models with a limited number of degrees
of freedom can be investigated with these techniques because of the complexity and
the rather large computational costs of these methods.
In semi-quantitative approaches, a realistic model for the molecule that includes the
degrees of freedom relevant for a particular molecule and transport situation is consid-
ered. Specific features in the current voltage characteristics such as Coulomb blockade,
spin blockade, the Franck-Condon effect or negative differential conductance are re-
lated to very different excitations, that can be of electronic or vibrational nature. In
the weak lead-molecule tunneling limit, one calculates the eigenstates of the model for
the isolated molecule and essentially considers them unperturbed by the contact to
the leads. With this approach, one tries to cope with the complexity of real molecules
as well as with the Coulomb interaction, at the cost of a limited ability to describe
intermediate or strong lead-molecule coupling. At the simplest level, transport is de-
scribed in terms of transition rates between molecular states, where the lead-molecule
coupling is treated perturbatively, yielding so called Pauli rate equations. In more
general approaches, also coherences between molecular states are taken into account.
In chapter 3, we provide a technical derivation of the equations for the latter case. The
application to molecular systems includes e.g. the works [33, 34, 35, 36, 37]. Draw-
backs of such approaches are that details of the lead-molecule interface can usually
not be taken into account and these models can have a large number of parameters,
which in general is not desirable.
Thus, the main challenges in molecular electronics are on the experimental side to
provide well defined molecule-electrode contacts, and on the theoretical side to im-
prove the limited correspondence between experimental and theoretical studies. Of
course, the support of new ideas to drive the design of molecular junctions with novel
functionalities is a main task for all scientists working in the field.

1.3 Spintronics and spin-qubit applications

Until recently, the spin of the electrons was ignored in mainstream charge-based elec-
tronics. In spintronics, the spin degree of freedom is either brought into play in com-
bination with the charge of the electrons or used exclusively in new devices, that have
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many potential advantages such as nonvolatility, increased data processing speed, de-
creased electric power consumption and increased integration densities. To realize
such devices, technical issues such as spin injection or the control, manipulation and
detection of spin polarization and spin currents have to be resolved [38, 39]. Within
this work, we address possible solutions of some of these tasks.
In particular, quantum dots can be used for spin-based quantum computation. The
unit of information in quantum computing, a quantum bit (qubit) can be formed in
principle by any quantum mechanical two level system. In analogy to the classical bit,
two states, denoted as |0〉 and |1〉 are required. The possibility to form coherent su-
perpositions of these basis states allows the application of new algorithms that exceed
classical algorithms in performance by far (polynomial instead of exponential scaling)
for some problems [40]. In spin based qubits, the two possible values of the Sz compo-
nent of the electron spin form the basis. In quantum dots (based on single molecule
junctions or made from other materials), the electron number can be precisely con-
trolled and, more important, they provide the possibility of coherent manipulation of
single spins, the essential mechanism in spin based quantum bits. Electric control of
the spin is particularly appealing, because electric fields are easy to generate locally in
contrast to magnetic fields [41]. It can be realized either via a mechanism that takes
advantage of the spin orbit-coupling [41, 42, 43, 44, 45] or of tunneling-induced spin
splitting in the Kondo regime [46].
In this thesis, we propose a new mechanism for all-electric spin control that relies on the
current blocking occurring in single molecule based quantum dots due to interference
between degenerate states [19].

1.4 Thesis outline

The outline of this thesis is as follows: In chapter 2, we introduce the Pariser-Parr-
Pople model for conjugated molecules and adopt it to the physics of benzene. The
numerical treatment of the model is described shortly. In chapter 3, we discuss elemen-
tary physics in quantum dots and we introduce the theoretical framework based on a
generalized master equation (GME) for the reduced density matrix to describe trans-
port through quantum dots or molecules weakly coupled to leads. In chapter 4, we
present the results of our transport calculations for benzene. The concept of interfer-
ence single electron transistors (ISETs) is introduced. We also discuss the robustness
of interference effects. In chapter 5, we propose the use of interference blockade in
ISETs to obtain control over the molecules (or quantum dots) spin degree of free-
dom by all-electrical means. In chapter 6, we leave the sequential tunneling regime
and develop a simple theory based on the T -matrix formalism to describe cotunneling
processes in quantum dots.



Chapter 2

The Pariser-Parr-Pople (PPP)
model for conjugated molecules

In transport through molecules, signatures in the current or differential conductance
are directly related to the electronic spectrum of the isolated molecule. The full Hamil-
tonian of such a molecule, however, is by far too complicated to deal with analytically,
and therefore simpler models have to be derived, reflecting the relevant properties of
the molecule.
In the 1950s, Pariser and Parr [47] and Pople [48] developed a model for the π-electron
system of hydrocarbon molecules. It was derived starting from the complete many-
body Hamiltonian and using a set of systematic approximations to separate the elec-
tronic from the nuclear motion and subsequently eliminate the σ-part of the electronic
system, which is considered to determine the backbone of the molecule and not to
participate in transport. Linderberg and Öhrn rederived this model in second quan-
tization in 1968 [49]. Recently [33], Hettler et al. were the first to use this model to
calculate the I-V -characteristics of a benzene junction.

2.1 Derivation of the Pariser-Parr-Pople model

In the following, we give a short overview of the derivation of the Pariser-Parr-Pople
(PPP) model for benzene.
The general Hamiltonian for a molecule is

H = T n({Rα}) + T e({ri}) + V n−n({Rα}) + V e−n({Rα}, {ri}) + V e−e({ri}), (2.1)

where {Rα}, {ri} denotes the set of coordinates for the nuclei and for the electrons,
respectively. T n, T e are the kinetic parts of the nuclei and electrons, and V n−n, V e−n

and V e−e are the potential terms due to the Coulomb interaction between the nuclei
and electrons. We separate the motion of the nuclei from the electronic problem (Born-
Oppenheimer approximation) by factorizing the wavefunction in an electronic and a
nuclear part:

Ψ({Rα}, {ri}) = χ({Rα})φ({Rα}, {ri}). (2.2)
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In particular, we assume that T n({Rα})φ({Rα}, {ri}) ≈ 0 and therefore an effective
(so called Born-Oppenheimer) Hamiltonian for the electronic problem can be derived
that does not contain T n. Moreover, we have to consider the specific form of the
molecular system to be investigated. Within the PPP-model, the focus is on molecules
which consist of carbon and hydrogen atoms. We consider the inner core electrons of
carbon as strongly bound to the nuclei. We thus forget about their dynamics and
concentrate on the four valence electrons of carbon. Three of them are in sp2-hybrid
orbitals in one plane, symmetrically arranged so that the angle between two orbitals
is 120 degrees. These orbitals point in the direction of the neighboring (either carbon
or hydrogen) atom and overlap with the corresponding orbital of this atom. Such
molecular bonds between s- and p-hybrid orbitals, where the orbitals point along the
connecting axis, are called σ-bonds, the electrons in the orbitals σ-electrons. The
one remaining valence electron is in a p-orbital perpendicular to the molecular plane.
Orbitals of neighboring atoms also overlap to form bonds, but the binding is different
and is called π-bond. Accordingly, we call these electrons π-electrons. In the PPP-
model, the σ-electrons together with the core electrons play the role of screening the
Coulomb interactions between the π-electrons and between the π-electrons and the
nuclei, which are dressed with the 1s core electrons and with the σ-electrons. The
electronic problem we are dealing with then reads

[T π + V π−ion + V π−π + V ion−ion] φ̃({Rα}, {ri}) = Eel φ̃({Rα}, {ri}), (2.3)

where V π−ion, V π−π and V ion−ion are effective potentials that model the interaction
between π-electrons and the ions, which consist of the nuclei plus the core and σ-
electrons. The positions of the nuclei {Rα} enter only as parameters in φ̃. The
Hamiltonian in equation (2.3) provides thus a model for the π-electron system of the
molecule in the limit of one pz-orbital per carbon atom, which can be occupied by
at most two electrons with opposite spins (see Figure 2.1). In general, the explicit
form of the effective potentials is not taken into account in π-electron models. Instead
they are parametrized to fit experiments (see section 2.2). In second quantization, this
Hamiltonian for the many-electron problem of the molecule can be written as

H =
M
∑

i,j=1

∑

σ

(

T π
ijσd

†
iσdjσ + V π−ion

ijσ d†iσdjσ

)

(2.4)

+
∑

ij

∑

σσ′

V π−π
ijklσσ′d

†
iσd

†
jσ′dkσ′dlσ + V ion−ion,

where d†iσ, djσ are creation or annihilation operators for π-electrons on site i or j and
σ =↑, ↓ is the spin degree of freedom. M is the number of carbon atoms or sites.
In the spirit of the jellium model, we now approximate each ion to be a hole with the
same spatial symmetry as the electron. More explicitly, we define the charge density
operator ρ(r) to be

ρ(r) =
M
∑

i,j=1

[

∑

σ

p∗z(r − Rj)pz(r − Ri)d
†
jσdiσ − |pz(r − Ri)|

2δij

]

, (2.5)
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Figure 2.1: The relevant orbitals for the PPP-model in benzene

where the second term describes holes at the positions Ri with the spatial structure
of pz-orbitals in carbon atoms. We can thus rewrite the Hamiltonian (2.4) in the
approximated form:

H = T + V,

where T is the kinetic term and

V =

∫ ∫

dr1 dr2ρ(r1)
e2

4πǫ0|r1 − r2|
ρ(r2). (2.6)

The definition of V includes in principle multicentered integrals. In the approximation
of two center integrals we obtain the Pariser-Parr-Pople (PPP) Hamiltonian for an
isolated molecule:

H = b
M
∑

i=1

∑

σ

(

d†iσdi+1σ + d†i+1σdiσ

)

+ U
M
∑

i=1

(

ni↑ −
1

2

)(

ni↓ −
1

2

)

(2.7)

+
1

2

∑

i6=j

Vij

(

ni↑ + ni↓ − 1
)(

nj↑ + nj↓ − 1
)

,

where we have introduced the parameters b, U and Vij. Additionally niσ = d†iσdiσ is
the electron number operator for the orbital on site i with spin σ. The single-particle
contribution b is defined as

b =

∫ ∫

dr1dr2
e2

4πǫ0

p∗z(r1)pz(r1 + d) (|pz(r2)|
2 + |pz(r2 + d)|2)

|r1 − r2|
(2.8)

+

∫

dr1p
∗
z(r1)

(−▽)2
~

2

2m
pz(r1 + d),

where d is the vector pointing to the next neighboring site. If two electrons are on the
same site, they must have different spin due to the Pauli principle. This is why the
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on-site Coulomb interaction (the U -term) only involves electrons with opposite spin.
It reads

U =

∫ ∫

dr1dr2
e2

4πǫ0

|pz(r1)|
2|pz(r2)|

2

|r1 − r2|
. (2.9)

Finally, the intersite Coulomb interaction (Vij-term) is between electrons on different
sites independent of the electron spin. It has the form

Vij =

∫ ∫

dr1dr2
e2

4πǫ0

|pz(r1)|
2|pz(r2 + dij)|

2

|r1 − r2|
, (2.10)

where |dij| is the distance of two carbon atoms and can be estimated by the C−C bond

length (1.4
o

A) and the geometry of the molecule. In this work, we want to calculate
transport properties of the molecule in a three terminal setup. Therefore, we include
the effect of a gate electrode into this model. The energy shift due to the gate is
assumed to be linear in the gate voltage and proportional to the number of electrons
N on the system:

Hgate = N (µ0 − eκVg) = ξ
M
∑

i=1

∑

σ

d†iσdiσ, (2.11)

where κ is a conversion factor, and the zero of ξ is defined as the point where the gate
voltage is equal to the equilibrium chemical potential µ0 of the leads. Eventually, we
arrive at the final definition for the PPP-Hamiltonian HPPP = H +Hgate:

HPPP = ξ
M
∑

i=1

∑

σ

d†iσdiσ + b
M
∑

i=1

∑

σ

(

d†iσdi+1σ + d†i+1σdiσ

)

(2.12)

+ U

M
∑

i=1

(

ni↑ −
1

2

)(

ni↓ −
1

2

)

+
1

2

∑

i6=j

Vij

(

ni↑ + ni↓ − 1
)(

nj↑ + nj↓ − 1
)

.

In solid state theory, a formally equivalent Hamiltonian with nearest neighbor hopping,
on-site and intersite Coulomb interaction is also known as the extended Hubbard
model.

2.2 The parameters of HPPP

Typically, the parameters b and U are not explicitly calculated. Instead, the parametriza-
tion of the PPP model is optimized by fitting its prediction to the known experimental
excitation energies of benzene in the gas phase. Bursill et al. [50] estimated U and b
to be 10.06eV and −2.539eV, respectively. Other groups find slightly different values
[51, 52], but in the same order of magnitude. For the intersite interaction, an inter-
polation between long range 1/r behavior and short range behavior which models the
shape of the atomic orbitals is made. One example of such an interpolation is the
Ohno parametrization [53]

Vij =
U

√

1 + α|dij|2
, (2.13)
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where α =
(

4πǫ0U
e2

)2
, thus ensuring that Vij →

e2

4πǫ0|d|ij
as |dij| → ∞.

Experiments on organic molecules have shown that the so-called addition energy, which
is the difference between the ionization potential and the electron affinity, is heavily
reduced in single-molecule junctions compared to its gas phase value [54, 55, 28]. This
observation is attributed to a screening of the Coulomb repulsion on the molecule
due to the polarizable environment, namely the metallic leads and also the dielectric
substrate that forms the base in many single-molecule junctions. Kaasbjerg et al.
gave a quantitative estimate of this effect for an OPV-5 molecule in a single molecule
junction, and showed that the reduction of the addition energy is not only due to this
effect, but also due to a closing of the HOMO-LUMO gap in polarizable environments
[56]. Accordingly, we expect a reduction of the parameters of HPPP compared to their
gas phase value, in particular of the on-site interaction U .

2.3 Numerical diagonalization of HPPP

Since for every site there are four different possible configurations (|0〉, | ↑〉, | ↓〉, | ↑↓〉),
the Fock space has the dimension 4M (= 4096 for benzene), which requires in general
a numerical treatment. In this section, we describe briefly how to represent both the
states and the operators in an organized and manageable way that allows book-keeping
of the states and can be implemented numerically. Any state in the localized basis can
be written as a series of creation operators acting on the vacuum state |0〉. The anti-
symmetry of this wave-function is assured by the fermionic commutation relations of
the operators. The ordering of the operators has to be established to define the states
uniquely. Conventionally, we order the operators first by their spin index and then by
their site index, so that for a generic state with three spin up and three spin down
electrons

d†i↑d
†
j↑d

†
k↑d

†
i′↓d

†
j′↓d

†
k′↓|0〉, (2.14)

i < j < k and i′ < j′ < k′. This state can be as well represented in occupation
number representation (see Table 2.1) as a vector with 2M entries viσ, where the first
M entries ni↑ correspond to the spin up orbitals at site 1 to M and the entries M + 1
to 2M to the spin down orbitals. niσ can either be 1, if there is an electron created in
this orbital, or 0 if there is no electron. The above state (let’s say for example M = 6,
{i, j, k} = {2, 3, 5} and {i′, j′, k′} = {1, 3, 5}), would have n2↑ = n3↑ = n5↑ = 1 and
n1↓ = n3↓ = n5↓ = 1. In Dirac notation it would read |011010101010〉. The states
can most easily be labeled with a unique key number by transforming the “binary”
number n1↑ . . . n6↑n1↓ . . . n6↓ = 011010101010 into an decimal number, in this case

0 · 20 +21 +0 · 22 +23 +0 · 24 +25 +0 · 26 +27 +0 · 28 +29 +210 +0 · 211 = 1706. (2.15)

In this way, every state in the localized basis can be encoded in an integer number from
0 to 4M −1 = 22M −1. This number can be used for book-keeping. The impact of any
operator that consists of combinations of creation and annihilation operators on these
states can easily be described, just by taking into account the fermionic commutation
relations, so that we obtain the matrix representation of these operators (e.g. HPPP,
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Slater determinant: d†2↑d
†
3↑d

†
5↑d

†
1↓d

†
3↓d

†
5↓|0〉

occupation numbers:
site i: 1 2 3 4 5 6
ni↑: 0 1 1 0 1 0
ni↓: 1 0 1 0 1 0

binary: 011010101010

key: 1706

Table 2.1: Different representations of a localized state

d†iσ, diσ) in the localized basis. Since the Hamiltonian conserves the particle number
and the z-component of the spin, it is convenient to sort the states according to
these quantum numbers, to obtain a block structure in the matrices. Afterwards, the
Hamiltonian can be diagonalized with the help of standard software packages (Matlab,
LAPACK, etc.) and all other operators are transformed to the eigenbasis.
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Figure 2.2: Spectrum of HPPP calculated for the parameters U = 10eV , b = −2.5eV .
Only nearest-neighbor intersite interaction is taken into account with the value V =
6eV . The states are sorted according to their particle number on the x-axis. For
N = 6, the π-electron system is filled and the molecule is neutral. Upper panel:
Spectrum for ξ = 0. Lower panel: Spectrum for ξ = −4.5eV . This demonstrates the
influence of a gate electrode on the spectrum of the molecule. The energies of states
with different particle numbers are shifted with respect to each other.





Chapter 3

Transport through interacting
quantum dots

Quantum dots are small electronic islands in which the motion of the electrons is
confined in all three spatial directions. Due to the small (nanometer) length scales,
the Coulomb interaction between the electrons becomes important and gives rise to
intricate effects in experiments where electron transport through the island is studied.
In this chapter, we introduce the physics of Coulomb-blockade in quantum dots, which
is needed to understand the results of this work discussed in later chapters.
Quantum dots have been realized in several different ways, for example in semicon-
ductor heterostructures, where metallic electrodes could be defined on top of a two
dimensional electron gas, or in other approaches, where carbon nanotubes or single
molecules were used to bridge the gap between two leads. Molecules are characterized
by a discrete vibrational spectrum, which can serve as a fingerprint of the molecule in
the current-voltage characteristics obtained in single-molecule junctions [55]. However,
the interplay between electronic and vibrational degrees of freedom is not the topic
of this thesis. Instead, we focus on transport through nanoscale objects with a rather
complex electronic spectrum (see e.g. Figure 2.2) that can be attributed either to a
molecule or for example to a complex multiple quantum dot structure, and discuss
effects arising from the electronic problem only.

Figure 3.1: Sketch of a quantum dot setup. The quantum dot (QD) is weakly contacted
to source and drain leads and capacitively coupled to a gate electrode.
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3.1 Quantum dot physics

3.1.1 Sequential tunneling - Coulomb blockade

In a typical setup, one has source and drain leads with a continuous density of states
weakly coupled to central conducting system with a discrete energy spectrum, usually
called “quantum dot,” the latter capacitively coupled to a gate electrode, see Fig-
ure 3.1. Weak coupling means that electrons can tunnel between leads and dot, but
it implies also that the time between two tunneling events is large compared to the
duration of a tunneling event, so that the number of electrons N on the dot is well
defined. This regime is called sequential tunneling regime. Quantum dot devices are
often called “single electron transistors”, because the underlying physics can be un-
derstood in terms of single electron tunneling events. This is not to say that quantum
dots can be described within a single-particle picture, because the Coulomb interac-
tion, which is an archetypal example of a many-body interaction, plays a crucial role
in these systems.
To understand if a tunneling process is possible, we have to take into account Pauli’s
exclusion principle and to analyze the energetics of the overall system before and after
the tunneling. Essentially, the energy is conserved by the tunneling.
We label the states in the spectrum of the dot with the particle number N and with
a running index i = 0, 1, 2... for each particle number, so that EN

0 is the N -particle
ground state, EN

1 is the first excited state, and so on. Consider now the situation
where the dot is in the N -electron ground state before the tunneling event. The
(non-interacting) leads are filled with electrons up to their Fermi energy EF

s/d which
coincides with the electrochemical potential µs/d at zero temperature. An electron
with energy ǫ ≤ EF

α from lead α can tunnel in the N + 1-particle ground state on the
dot, when the condition EN+1

0 − ǫ = EN
0 is fulfilled. It is now convenient to introduce

the N +1-particle chemical potential of the dot as µN+1 = EN+1
0 −EN

0 . The condition
for adding one more electron in a quantum dot with N -particles from a lead with
Fermi energy EF

α reads then
EF

α ≥ µN+1. (3.1)

To realize electron transport through a quantum dot, electrons must be able to tunnel
onto the dot from one lead (lets say source) and to tunnel out into some unoccupied
state in the other (drain) lead. Under the constrictions that the tunneling out process
requires unoccupied states above the Fermi energy in the leads, and that the tunneling
process is elastic, we find the condition to go from the N +1- to the N -particle ground
state by tunneling out in the drain as µN+1 ≥ EF

d . The leads will relax into the thermal
equilibrium configuration very fast, in any case before the next tunneling event will
take place. The condition to transport an electron from source to drain lead at zero
temperature therefore reads

EF
s ≥ µN+1 ≥ EF

d . (3.2)

If this condition is fullfilled, one can speak of a transport channel available in the bias
window. A sketch of the chemical potentials of leads and dot in a blockade situation
and at resonance where current can flow is given in Figure 3.2.
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Figure 3.2: Sketch of the electrochemical potentials of leads and dot. In a blockade
situation, the N -particle chemical potentials of the dot are not in the transport window
between µs and µd (panel a). This can be achieved by varying a gate voltage (panel
b). In this situation, current from the source to the drain lead can flow as a series of
sequential tunneling events where the electron number on the dot changes back and
forth between N and N − 1.

As it can be seen from the definition of Hgate in equation (2.11), the chemical potential
of the dot is linear in the gate voltage Vg. The Fermi energy of the leads, on the other
hand, can be shifted by the bias voltage Vb. For convenience, we always split the bias
symmetrically, such that the Fermi energy of the source is by µ0 + Vb

2
, the one of the

drain by µ0−
Vb

2
. Thus, the conditions EF

s = µN+1 and µN+1 = EF
d can be represented

by two lines with slope ±2κVg that cross each other at the point

Vg =
EN+1

0 (ξ = 0) − EN
0 (ξ = 0)

eκ
, Vb = 0 (3.3)

in a Vb-Vg-plot. Together with similar conditions from situations where the dot is
filled with a different number of electrons, one gets a diamond-shaped pattern. Inside
the diamonds, transport is blocked and the electron number can not change. On the
outside, current can flow as a series of sequential tunneling events that change the
number of electrons on the dot by ±1. The current-voltage characteristics of quantum
dots are typically presented in such “charge stability diagrams,” where the current is
color-coded and plotted against both gate and bias voltage. Very often the differential
conductance dI/dV is plotted instead of the current. The resulting graph is called
“stability diagram.” The width of a diamond on the Vg-axis depends on the gate
coupling factor κ. However, since also the slope of the lines depends on this factor, the
height of the diamonds depends on the energy spectrum of the quantum dot only and
not on external coupling parameters. In particular, the N -particle addition energy UN

can be assigned to the height of theN -particle diamond divided by the charge quantum
e. UN is defined as the difference of the ionization potential IP = EN−1

0 −EN
0 = −µN

and the electron affinity EA = EN
0 − EN+1

0 = −µN+1 and can be expressed as

UN = IP − EA = EN+1
0 + EN−1

0 − 2EN
0 . (3.4)
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In this way, current measurements as a function of both gate and bias voltage act as
spectroscopic tool and provide detailed information about the central quantum dot
system. The fact that µN+1 > µN and that one therefore sees consecutive diamonds
in the stability diagram is a consequence of the Coulomb repulsion of the electrons.
That is why the diamond structures we discussed above are referred to as Coulomb
diamonds. The energy needed to fill the quantum dot with one more electron is called
addition energy.
Within the so-called “constant interaction model”, the addition energy is associated
with the charging of a capacitor and given by the classical expression

EC =
e2

2C
, (3.5)

where C is the capacitance of the device. As such EC is known as charging energy.
This model yields a diamond structure where all diamonds have the same height and
width, given that the single-particle level spacing ∆(N) is negligible compared to EC .
It works well for metallic and semiconducting quantum dots containing a large number
of electrons. Sometimes, e.g. for nanotubes, this model is extended to incorporate also
the discreteness of the single particle level spacing, which yields diamonds of different
sizes EC + ∆(N). In benzene however, the complicated interplay between electron
hopping, on-site and intersite electron interaction makes it impossible to estimate the
electronic spectrum just by taking into account the constant interaction model on top
of the single-particle spectrum. We find that apart from the particle-hole symmetry, no
regularities in the diamonds can be observed and that all the diamonds have different
sizes. We keep in mind though, that Coulomb interaction and charging of the molecule
leads to the characteristic diamond pattern.
At zero temperature, the chemical potential in the leads coincides with the energy
of the highest occupied state, the Fermi energy. At finite temperatures, this is no
longer true, since there are occupied states in the leads in an energy range of a few
kBT above the chemical potential and unoccupied states in the same range below the
chemical potential. To observe Coulomb blockade effects, the temperature must be so
small that the energy scale kBT associated with the temperature is much smaller than
the addition energies UN . If this is true, it is convenient to express the condition for
transport not in terms of the Fermi energy, but in terms of the chemical potential of
the leads:

µs & µN+1 & µd, (3.6)

where the & symbol indicates that the onset of transport is already a few kBT before
the actual resonance. At zero temperature, the current-voltage curve would increase
step-like (“Coulomb staircase”) when a new channel enters the bias window, resulting
in δ−like peaks in the differential conductance. At finite temperatures these steps are
smeared out (the peaks in the dI/dV are broadened) over an energy range of ∼ kBT .
So far, only ground state transitions have been considered. Of course, a sequential
tunneling process can as well involve one or more excited states. Again, one has
to compare the energies of the system before and after the tunneling. Defining a
generalized N + 1-particle chemical potential as µN+1

ij = EN+1
i − EN

j , one finds that
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Figure 3.3: Charge stability diagram obtained for benzene with the parameters as used
in Figure 2.2. Only ground states and first excited states are included. Ground state
transitions mark the borders of the the red diamonds. Inside, no current can flow and
the charge on the dot is stable. The six-electron diamond around zero gate voltage,
corresponding to the neutral molecule, is by far the largest.



28 | CHAPTER 3. TRANSPORT THROUGH INTERACTING QUANTUM DOTS

a tunneling process from an N -particle state with energy EN
j to an N + 1-particle

state with energy EN+1
i is possible if µs & µN+1

ij and the reverse process is possible

if µN+1
ij & µd. In stability diagrams, one can therefore see additional lines indicating

peaks in the dI/dV that correspond to transitions between excited states. These lines
cross the borders of the charge diamonds, however, they are not seen inside, because
inside the diamonds only groundstates can be populated. This can be understood
by the following argument: Imagine that one has prepared the quantum dot in an
excited N -particle state with energy EN

j and the bias voltage is zero, meaning that

µs = µd = µ0. Now, after two consecutive tunneling events (from EN
j to EN±1

i and then

from EN±1
i to EN

j′ ), the dot will be in a state with energy EN
j′ , with j′ ≤ j. This follows

from the conditions (for the case from going to N+1) µs ≥ µN+1
ij and then µs ≤ µN+1

ij′ ,

which implies µN+1
ij′ ≥ µN+1

ij and therefore j′ ≤ j. In general, tunneling events can only
decrease the energy of the central system with respect to the Fermi energy of the leads.
In other words, even if the quantum dot is in an excited state at some initial time,
consecutive tunneling events that do not contribute to the stationary current (one can
also think of other relaxation processes) will bring it into the ground state, from where
sequential tunneling is energetically forbidden at small bias values. Only if the bias
is high enough so that current can flow, this will lead to a finite average population
of excited states if the condition µs ≥ µN+1

ij is fulfilled, and the lines indicating this
condition in the stability diagram will be observed in a measurement.
The charge stability diagram of benzene with the parameters as in Figure 2.2 is shown
in Figure 3.3. For clarity, only groundstate transitions and groundstate-first excited
state transitions are taken into account. The latter are only visible outside the stable
Coulomb diamonds.

3.1.2 Cotunneling

When the coupling between quantum dots and leads becomes stronger, the time be-
tween two tunneling events decreases. At some point, two or more tunneling events
overlap, and these so-called cotunneling events cannot be regarded as consecutive indi-
vidual tunneling processes. In a cotunneling process, an electron tunnels in or out the
dot, leaving the dot in an intermediate virtual state, which can have a higher energy
than the initial state. From this intermediate state, the dot changes back into the
state where it was before or to any other energetically accessible state. Cotunneling
of two electrons can leave the number of electrons on the quantum dot unchanged, or
change it by ±2. Furthermore, cotunneling can be either elastic or inelastic. Elastic
means that the energies of the initial and final electron states in the leads are the
same, inelastic means that these energies are different. In the latter case, this energy
has been transferred to the dot and leaves it in an excited state. In quantum dots,
this energy transfer can only be in discrete amounts given by the dots’ spectrum. In
transport experiments, inelastic cotunneling events can be observed as horizontal lines
in the stability diagrams inside the Coulomb diamonds at bias values that correspond
to the excitation energy. A more detailed introduction to cotunneling in interacting
mesoscopic systems can be found in the textbook by Bruus and Flensberg [57].
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3.1.3 The Kondo effect

For even larger dot-lead coupling, the Kondo effect can be observed in quantum dots. It
is an interesting many-body phenomenon, widely studied in condensed matter physics,
which arises from the interplay between delocalized and localized electrons. It was
first used by Jun Kondo in 1964 to explain the low-temperature resistivity minimum
observed in certain magnetic alloys [58]. He explained that particular feature in terms
of an anti-ferromagnetic exchange interaction between the spins of the delocalized
conduction electrons and the spins of the electrons localized at the magnetic impurities.
The Kondo effect has created enormous attention since, with the help of modern nano
fabrication methods, it was observed in quantum dot structures with intermediate
dot-lead coupling [59]. In quantum dots in the Coulomb blockade regime filled with
an odd number of electrons, the interaction of the delocalized lead electrons with the
unpaired spin on the dot leads to a sharp conductance peak at zero bias when the
temperature is lower than a characteristic energy scale, the Kondo temperature TK ,
which is related to the dot-lead coupling strength and to some intrinsic properties of
the leads like the density of states and the width of the conduction band. It has been
observed in a variety of quantum dots made out of a wide class of materials, e.g in
semiconducting [59], nanotube [60] and single-molecule [61] quantum dots.

A series of tutorial articles on different aspects of Coulomb blockade physics can be
found in the book edited by Grabert and Devoret [62]. A recent review on single-
electron effects in transport through nanoscale devices like quantum dots or single
molecule junctions is e.g. [63]. In Figure 3.4, the results of a measurement on a single-
walled carbon nanotube (SWCNT) quantum dot [64] are shown. Coulomb diamonds
as features of sequential tunneling as well as cotunneling lines and Kondo resonances
can be clearly seen.

3.2 Model Hamiltonian

After having provided some ideas of the phenomenology of quantum dots in the pre-
vious section, we want to give a more qualitative description of the current-voltage
characteristics. To do so, we introduce the Hamiltonian of the overall system as

H = HQD +Hleads +HT, (3.7)

where HQD describes the quantum dot structure. In the case of a benzene junction
HQD = HPPP. The effect of the gate voltage is already incorporated in HQD (see
chapter 2). Hleads describes both the source and drain contact as a Fermi gas of
noninteracting particles

Hleads =
∑

α k σ

(ǫk − µα)c†αkσcαkσ, (3.8)

where α = L,R stands for the left or right lead. As a convention, we identify the
source with the left and the drain with the right lead and, and in particular µs = µL,
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Figure 3.4: Bias spectroscopy plot of a single-walled carbon nanotube (SWCNT) quan-
tum dot for −10V < Vg < 10V (upper panel) that shows clear features of sequential
tunneling, cotunneling and the Kondo effect. The Coulomb diamonds are seen for
almost every added electron (285), and 88 odd-occupancy diamonds exhibit a zero
bias Kondo resonance. Lower panel: blow-up of five Coulomb diamonds that show
inelastic cotunneling and for odd occupancy Kondo resonances. Experiment by Holm
et al. [64].
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µd = µR. The chemical potentials µα of the leads depend on the applied bias voltage
µs,d = µ0 ± eVb

2
, so that the difference in the chemical potentials of the leads is given

by the bias voltage µs−µd = eVb. In the following we will measure the energy starting
from the equilibrium chemical potential of the leads µ0 = 0. The coupling to source
and drain leads is described by the tunneling Hamiltonian

HT = t
∑

αkσ

(

d†ασcαkσ + c†αkσdασ

)

, (3.9)

where we define d†ασ as the creator of the electron with spin quantum number σ = ±1
2

in the carbon atom (in case of a molecular junction) or quantum dot (in case of coupled
multiple quantum dots) which is closest to the lead α. To avoid confusion with the
reduced density matrix σ(t) introduced in the next section, we will use from now on
the letter τ for the quantum number of the operator Sz.

3.3 Generalized master equation - The dynamics

of the reduced density matrix

The electron dynamics of the quantum dot is obtained by solving the equation of
motion for the reduced density matrix (RDM). In this section, we give a derivation
of this generalized master equation (GME), mainly following [17, 18, 65, 66] and the
textbook of Blum [67]. Our starting point is the Liouville equation for the time
evolution of the density matrix ρ(t) of the overall system consisting of the leads and
the dot. The tunneling Hamiltonian HT is treated as a perturbation. We calculate
the time dependence of ρ(t) in the interaction picture, i.e. we define

ρI(t) = UI (t, t0)ρ(t0)U
†
I (t, t0), (3.10)

with the time evolution operator UI (t, t0), given by

UI (t, t0) = exp

(

i

~
(HQD +Hleads) (t− t0)

)

exp

(

−
i

~
(HQD +Hleads +HT) (t− t0)

)

,

(3.11)
and t0 being some reference time. Using (3.11) and (3.10) the equation of motion
becomes

i~
∂ρI(t)

∂t
=
[

HI
T(t), ρI(t)

]

, (3.12)

with HI
T(t) = exp

(

i
~
(HQD +Hleads) (t− t0)

)

HT exp
(

− i
~
(HQD +Hleads) (t− t0)

)

. By
integrating over time, we get

ρI(t) = ρI(t0) −
i

~

∫ t

t0

dt1
[

HI
T(t1), ρ

I(t1)
]

, (3.13)

and reinserting (3.13) into (3.12) yields

ρ̇I(t) = −
i

~

[

HI
T(t), ρI(t0)

]

+

(

i

~

)2 ∫ t

t0

dt1
[

HI
T(t),

[

HI
T(t1), ρ

I(t1)
]]

. (3.14)
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The dynamics of electron transport is determined by the chemical potentials of the
two leads, but more notably by the configuration of the central system. That is
why, from now on, we treat the time evolution of the reduced density matrix (RDM)
σ = Trleads{ρ

I(t)}, which is formally obtained from (3.14) by tracing out the lead
degrees of freedom: σ̇ = Trleads{ρ̇

I}. The trace over lead states in equation (3.14)
reads

σ̇(t) = −

(

1

~

)2 ∫ t

t0

dt1Trleads

[

HI
T(t),

[

HI
T(t1), ρ

I(t1)
]]

. (3.15)

The first term in equation (3.14) drops out, because leads and dot can be seen at as
statistically independent at time t0, which is natural if HT is switched on a that time.
Under the trace, the product HI

T(t)ρI(t0) vanishes, because HT changes the number
of particles in the leads. Up to this point, the equation is exact.
To simplify equation (3.15), several well defined approximations can be made. First,
the leads can be considered as large, macroscopic objects compared to the dot. The
influence of the central system on the leads is only marginal, because of the difference
in size and the tunneling between leads and dot is weak. From now on, we treat the
leads as reservoirs which stay in thermal equilibrium and we write the density matrix
of the overall system as a product of the system and leads density matrices

ρI(t) = σ(t)ρleads = σ(t) ⊗ ρsρd, (3.16)

where ρs and ρd are time independent and given by the thermal equilibrium expression

ρs/d =
exp

(

−β
(

Hs/d − µs/dNs/d

))

Zs/d

, (3.17)

with β = 1
kBT

the inverse temperature. It can be formally shown that the factorization
(3.16) corresponds to a second order treatment in the perturbation HT [67].
Second, we see that equation (3.15) is nonlocal in time, which means that σ̇(t) at the
time t depends on σ(t1) at all times between t0 and t. An equation local in time is ob-
tained by introducing the Markov approximation which replaces ρI(t1) = σI(t1)⊗ρsρd

by σI(t)⊗ρsρd. This means, that the time evolution of σI(t) is determined by σI(t) at
the same time only. This approximation is motivated by the following argument: Equa-
tion (3.15) contains two-time correlation function of the form Trleads{ρleads

∏

Bleads},
where

∏

Bleads is a product of two lead operators at different times. These correlation
functions rapidly decay on the time scale of the dot dynamics so that they can be
replaced by δ-functions [37]. In particular the Markov approximation becomes exact
in the stationary limit (t → ∞) we will focus on. Since we are interested in the long
term behavior of the system, we set t0 → −∞, replace t1 by t− t2 and finally obtain
the generalized master equation

σ̇(t) = −

(

1

~

)2 ∫ ∞

0

dt2Trleads

[

HI
T(t),

[

HI
T(t− t2), σ

I(t)ρleads

]]

. (3.18)

The reduced density operator σ is defined on the Fock space of the quantum dot,
yet we can neglect coherences (off-diagonal elements of the density matrix) between
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states with different particle number, since they are decoupled from the dynamics
of the populations. Coherences between states with same number of particles but
with different energy can be neglected, when their energy difference is larger than the
lead-dot coupling strength. Under this conditon, they are irrelevant due to their fast
fluctuation compared to the dynamics of the system. If two states are either exactly
degenerate or their energy difference is large, then the secular approximation can be
applied, meaning that only coherences between degenerate states are kept. In case
of quasi degenerate states, where the energy difference is smaller than the lead-dot
coupling strength, also coherences between these states must be taken into account.
We will discuss such cases in chapter 4.
Here, we show the GME for the case where the secular approximation is valid. To
proceed, we project equation (3.18) into the subspace of N -particle and energy E. To
do so, we introduce the projection operator PNE :=

∑

ℓτ |N E ℓ τ〉〈N E ℓ τ |. The sum
runs over the orbital and spin quantum numbers ℓ and τ , respectively. We find for the
block of the density matrix with energy E and particle number N , σNE = PNE σPNE

the GME

σ̇NE = −
∑

ατ

Γα

2

{

PNEdατ

[

f+
α (HQD − E) −

i

π
pα(HQD − E)

]

d†ατ σ
NE + (3.19)

+PNEd
†
ατ

[

f−
α (E −HQD) −

i

π
pα(E −HQD)

]

dατ σ
NE +H.c.

}

+
∑

ατE′

ΓαPNE

{

d†ατf
+
α (E − E ′)σN−1E′

dατ + dατf
−
α (E ′ − E)σN+1E′

d†ατ

}

PNE,

where ΓL,R = 2π
~
|tL,R|

2DL,R are the bare transfer rates with the constant densities
of states of the leads DL,R. Terms describing sequential tunneling from and to the
lead α are proportional to the Fermi functions f+

α (x) := f(x − µα) and f−
α (x) :=

1 − f+
α (x), respectively. Still in the sequential tunneling limit, but only in the equa-

tions for the coherences, one finds also terms proportional to the function pα(x) =
−Reψ

[

1
2

+ iβ
2π

(x− µα)
]

, where ψ is the digamma function. These terms are some-
times called energy non-conserving terms, because they describe virtual transitions to
states that are not energetically accessible. In contrast, the terms proportional to the
Fermi function reflect exactly the condition in equation (3.6) that was derived using
energy conservation. Both the Fermi functions and the digamma function result from
the trace over the leads degrees of freedom [65, 67, 68].
A closer analysis of the master equation allows also to formulate an expression for the
current operator. We start from the definition of the time derivative of the charge on
the quantum dot:

d

dt
〈Q〉 = Tr

{

N̂ σ̇
}

= 〈 IL + IR 〉 (3.20)

where Q =
∑

iτ d
†
iτdiτ is the operator of the charge on the quantum dot, N̂ is the

particle number operator and IL,R are the current operators at the left(right) contact.
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Conventionally, in the definition of IL,R we assume the current to be positive when it
is increasing the charge on the molecule. Thus, in the stationary limit, 〈 IL + IR 〉 is
zero. We write this expression in the basis of the subspaces of N particles and energy
E:

〈 IL + IR 〉 =
∑

NE

Tr
{

N̂PNEσ̇PNE

}

=
∑

NE

Tr
{

Nσ̇NE
}

. (3.21)

Further we insert (3.19) in (3.21) and take advantage of the cyclic properties of the
trace to find :

〈 IL + IR 〉 = (3.22)

∑

NE

∑

ατ

NΓαTr

{

−
[

f+
α (HQD − E)d†ατσ

NEdατ + f−
α (E −HQD)dατσ

NEd†ατ

]

+
∑

E′

PNE

[

f+
α (E − E ′)d†ατσ

N−1E′

dατ + f−
α (E ′ − E)dατσ

N+1E′

d†ατ

]

}

.

Notice that the energy non-conserving contributions drop from the expression of the
current operator. Still they contribute to the average current, because they determine
the solution of the GME, which is entering in the current formula in any case. Since
E and E ′ are dummy variables, we can switch them in the summands containing E ′.
Applying the relation:

∑

NE′

Tr {PNE′ g(E ′)} = Tr {g(HQD)} ,

where g(E ′) is a generic function, we substitute E ′ with HQD in equation (3.23).
Further we can conveniently rearrange the sum over N , arriving at the expression for
the current:

〈 IL + IR 〉 =
∑

NE

∑

ατ

ΓαTr

{

d†ατσ
NEdατ

[

−Nf+
α (HQD−E)+(N+1)f+

α (HQD−E)
]

+dατσ
NEd†ατ

[

−Nf−
α (E−HQD)+(N−1)f−

α (E−HQD)
]

}

.

(3.23)

This relation can be further simplified in order to identify the current operators. The
one corresponding to the left contact is e.g.

IL = ΓL

∑

NEτ

PNE

[

dLτf
+
L (HQD − E)d†Lτ − d†Lτf

−
L (E −HQD)dLτ

]

PNE. (3.24)

With this relation we can calculate the stationary current as the average 〈IL〉 =
Tr{σstatIL} = −〈IR〉, with σstat as the stationary density operator which is obtained
by setting σ̇NE = 0 in equation (3.19) and solving the remaining equation for σNE

under the condition that Trσ = 1.
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3.4 GME and current in the non-secular approxi-

mation

Coherences between states with different energies can become important, when the
difference in their energies has the same order of magnitude as the coupling to the leads.
In this case the secular approximation cannot be applied. We report here the general
expression for the generalized master equation and the associated current operator
in the Born-Markov approximation and under the only further condition (exact in
absence of superconductors) that coherences between states with different particle
number are decoupled from the populations and vanish exactly in the stationary limit:

σ̇N
EE′ = −

i

~
(E − E ′)σN

EE′ + (3.25)

−
∑

ατF

Γα

2
PNE

{

d†ατ

[

−
i

π
pα(F −HQD) + f−

α (F −HQD)

]

dατ+

dατ

[

−
i

π
pα(HQD − F ) + f+

α (HQD − F )

]

d†ατ

}

σN
FE′

−
∑

ατF

Γα

2
σN

EF

{

d†ατ

[

+
i

π
pα(F −HQD) + f−

α (F −HQD)

]

dατ+

dατ

[

+
i

π
pα(HQD − F ) + f+

α (HQD − F )

]

d†ατ

}

PNE′

+
∑

ατFF′

Γα

2
PNE

{

d†ατσ
N−1
FF′ dατ

[

+
i

π
pα(E ′ − F ′) + f+

α (E ′ − F ′)+

−
i

π
pα(E − F ) + f+

α (E − F )

]

+ dατσ
N+1
FF′ d

†
ατ

[

+
i

π
pα(F ′ − E ′) + f−

α (F ′ − E ′)

−
i

π
pα(F − E) + f−

α (F − E)

]}

PNE′

where σN
EE′ is, differently to equation (3.19), in the Schrödinger picture. Equation (3.19)

represents a special case of equation (3.25) in which all energy spacings between states
with the same particle number are either zero or much larger than the level broadening
~Γ. Equation (3.25) is derived in the weak coupling limit and bridges all the regimes
from exact degeneracies to weakly and completely broken degeneracies.
The problem of a master equation in presence of quasi-degenerate states in order to
study transport through molecules has been recently addressed in the work of Schultz
et al. [69]. The authors use a different approach, denoted “singular coupling limit”
in the literature, to derive an equation for the density matrix in presence of quasi-
degenerate states.
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The current operators associated to the master equation just presented read:

Iα =
Γα

2

∑

NEFτ

PNE

{

d†ατ

[

+
i

π
pα(E −HQD) + f−

α (E −HQD)

]

dατ

+ d†ατ

[

−
i

π
pα(F −HQD) + f−

α (F −HQD)

]

dατ

− dατ

[

+
i

π
pα(HQD − E) + f+

α (HQD − E)

]

d†ατ

− dατ

[

−
i

π
pα(HQD − F ) + f+

α (HQD − F )

]

d†ατ

}

PNF.

(3.26)

Nevertheless, within the limits of derivation of the master equation, this formula can
be simplified. Actually, if E − F ≤ ~Γ, then F can be safely substituted with E in
the argument of the digamma functions and of the Fermi functions, with an error of
order E−F

kBT
< ~Γ

kBT
which is negligible (the generalized master equation that we are

considering is valid for ~Γ ≪ kBT ). The approximation E ∼ F breaks down only
if E − F ∼ kBT , but this implies E − F ≫ ~Γ which is the regime of validity of
the secular approximation. Consequently, in this regime, terms with E 6= F do not
contribute to the average current because they vanish in the stationary density matrix.
Ultimately we can thus reduce the current operators to the simpler form:

Iα = Γα

∑

NEτ

PNE

{

+ d†ατ

[

f−
α (E −HQD)

]

dατ

− dατ

[

f+
α (HQD − E)

]

d†ατ

}

,

(3.27)

which is almost equal to the current operator corresponding to the secular approxi-
mation. The only difference is here the absence of the second projector operator that
allows contributions to the current coming from coherences between different energy
eigenstates.

3.5 Extension to fourth order

One can extend this so-called Bloch-Redfield approach to fourth or higher orders in
HT to describe cotunneling, pair tunneling and other effects [37]. A different approach
to derive the GME is a real-time diagrammatic approach developed by Schoeller et al.
[70, 71, 72]. Following this theory, one traces out the leads degrees of freedom at the
earliest possible stage and derive a formally exact equation of motion for the reduced
density matrix (RDM) of the system. Koller et al. [73] showed the equivalence of this
diagrammatic approach with the Bloch-Redfield approach described above.
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While these theories have the advantage of being exact to a desired order, they are
rather involved and already at fourth order in HT the number of diagrams is quite
large such that a continuation to higher orders seems to be unpractical.
In this thesis, the focus is mainly on effects arising from sequential tunneling processes
which correspond to second order in HT. Cotunneling processes are described with a
simpler approach based on the T -matrix formalism in chapter 6.





Chapter 4

A benzene interference
single-electron transistor

Interference effects strongly affect the transport characteristics of a benzene single-
electron transistor (SET) and for this reason we call it interference SET (ISET). In this
chapter, we discuss transport through such a device, where the molecule is attached to
the leads in two different configurations. In both cases, we assume that tunneling on
and off the molecule is only possible from the pz-orbitals localized at the atoms that
are closest to source and drain leads. In PARA configuration, atoms on opposite ends
of the molecule are coupled to the leads (we label them as atoms 1 and 4, counting
clockwise around the molecule and starting at the atom which is closest to the source),
whereas in META configuration the contact atoms are atoms 1 and 3 (see Figure (4.1)).

Figure 4.1: Schematic representation of the two different setups for the benzene SET.
In PARA configuration, atoms on opposite ends of the molecule are coupled to the
leads, whereas in META configuration the contact atoms are next-nearest neighbors.
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Strong differences are visible in the stability diagrams obtained for the two config-
urations. Striking are the selective reduction of conductance and the appearance of
regions of interference driven current blocking with associated negative differential
conductance (NDC) when changing from the para to the meta configuration.
NDC and current blocking caused by interference take place any time a SET presents
an N -particle non-degenerate ground state and two degenerate N + 1-particle ground
states (or two N −1-particle ground states) such that the ratio between the transition
amplitudes γiα (i = 1, 2, α = L,R) between those N - and N + 1-particle states is
different for tunneling at the left (L) and at the right (R) lead:

γ1L

γ2L

6=
γ1R

γ2R

. (4.1)

Due to condition (4.1) there exist linear combinations of the degenerate N +1-particle
states which are coupled to one of the leads but not to the other. The state which
is decoupled from the right lead represents a blocking state for the current flowing
L → R since electrons can populate this state by tunnelling from the left lead but
cannot tunnel out towards the right lead. Viceversa the state decoupled from the left
lead is a blocking state for the current R → L. Typically these two blocking states
are not orthogonal and thus cannot form a valid basis set together. The basis set
that diagonalizes the stationary density matrix (what we call in the manuscript the
”physical basis”) contains at large positive biases the L→ R blocking state and is thus
different from the physical basis at large negative biases which necessarily contains the
R → L blocking state. More generally the ”physical basis” depends continuously on
the bias. Thus only a treatment that includes coherences in the density matrix can
capture the full picture at all biases. By neglecting for simplicity the spin degree of
freedom, the 7-particle ground state of benzene is two times degenerate while the 6-
particle one is non-degenerate. If we choose for the 7-particle states the eigenstates of
the z-projection of the angular momentum we obtain the relation:

γ1L

γ2L

=
γ1R

γ2R

e4iφ, (4.2)

where φ is the angle between the left and the right lead. Thus in the meta configuration
(φ = 2π/3) the condition (4.1) is fullfilled while in the para (φ = π) the amplitude
ratios are equal. This condition implies that, in the para configuration one of the
7-particle states is decoupled from both leads at the same time and can thus (in first
approximation) be excluded from the dynamics. In contrast, in the meta configuration,
the linear combination of uniformly distributed eigenstates of the angular momentum
creates states with a peculiar interference pattern. The position of their nodes allows
to characterize them as different blocking states.
Notice that no asymmetry in the tunnelling rates, which are proportional to |γiα|

2,
is implied by (4.1). This fact excludes the explanation of the physics of interference
SET in terms of asymmetric couplings, which is used very often to explain NDC in
quantum dots. NDC can occur when the bias gets large enough so that a transport
channel involving an excited state can enter in the bias window in addition to the
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ground state channel. In general, the current increases in this situation. If the excited
state is coupled asymetrically to source and drain leads, namely there is a large tunnel
rate into the dot, but a small tunnel rate out, it will get an average population close to
one and the current will actually decrease. It will decrease because it is composed of
the transition rates between molecular states multiplied with the average population
of the initial state, so that a redistribution of average probabilities in favor of the
excited state, which can only be depopulated by a process with a small rate, leads to
a smaller current. Current suppression in sequential tunneling systems always goes
along with (almost) exclusive population of one particular state.
NDC and current blocking for benzene junctions have also been predicted in the work
of Hettler et al. [33], but in the para configuration and in presence of an external
electromagnetic field. In the para configuration one of the two degenerate 7-particle
ground states is decoupled from the 6-particle ground state at both leads at the same
time. More specifically, due to a selection rule derived in section 4.2, tunneling is
only possible from symmetric to symmetric (with respect to the plane through the
contact atoms and perpendicular to the molecule) and from anti-symmetric to anti-
symmetric states in para configuration. The electromagnetic field however, couples
symmetric and anti-symmetric states. The blocking situation comes about when an
excited 7-particle symmetric state gets populated and decays into the anti-symmetric
7-particle ground state by emitting a photon. This state can neither be depopulated
via tunneling nor decay any further and acts therefore as a blocking state.
In our work NDC occurs despite the absence of an external field and with no asymmetry
in the tunnelling rates.
In the following sections, we will discuss the symmetry properties of the isolated ben-
zene molecule and discuss the results of our transport calculations in terms of these
symmetries. At the end of this chapter, we will show that the surroundings of the
molecule in an SET setup will break the exact symmetry and therefore lift the exact
degeneracies that give rise to the interference effects. We therefore cannot use the
secular approximation any more. Our conclusion will be that also quasi-degeneracy of
two states (meaning E ′ − E . Γ) can cause interference and NDC.

4.1 The D6h point group

Benzene has a high symmetry and belongs to the D6h point group. This group consists
of all the symmetry operations that map the molecule onto itself and it obeys the four
conditions necessary to define a group in a strict mathematical sense: the completeness
of the group, the validity of the associative law, the existence of a unit element and the
existence of an inverse element for each element of the group. 24 different symmetry
operations can be distinguished. These are

1 unity operation, denoted as E in the Schoenflies system,

5 rotations about the symmetry axis perpendicular to the molecule by the angles
±2π

6
, ±2π

3
, and π, denoted as C6, C3, C2, where in Cn the rotation angle is ±2π

n
,
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Figure 4.2: Symmetry planes and axes for the D6h point group. Image generated with
the Crystal -package for Mathematica by Jörg Enderlein [74].

1 reflection about the plane of the molecule, σh,

3 reflections about planes perpendicular to the molecule and through two carbon
atoms on opposite ends of the molecule, σv,

3 reflections about planes perpendicular to the molecule and perpendicular to the
connection of two neighboring carbon atoms, σd,

3 rotations about axes lying in the molecular plane and in the plane through two
carbon atoms on opposite ends of the molecule by the angle π, C ′2,

3 rotations about axes lying in the molecular plane and in the plane perpendicular
to the connection of two neighboring carbon atoms, C ′′2 ,

4 improper rotations (rotations about the axis perpendicular to the molecular
plane by angles of ±2π

6
, ±2π

3
, followed by an reflection about that plane), S6

and S3,

1 inversion i about the center of the molecule (which is actually the improper
rotation S2).

All symmetry planes and symmetry axes contain the center of the molecule. In the
above list, these symmetry operations are already divided into classes, each corre-
sponding to a physically distinct kind of symmetry operation such as rotation of π
about equivalent twofold axes, or rotation of ±2π/6 about a six-fold axis. We make
use of the mathematical power of group theory to classify the molecular orbitals by
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their belonging to so-called irreducible representations of the point group. The irre-
ducible representations completely determine the transformation of the orbitals under
classes of symmetry operations and also specify their degeneracy. Group theory is em-
ployed as well for following the degeneracies of the energy levels when the symmetry
of the molecule is lowered by the surroundings in a SET setup.

For strict mathematical definitions of the concepts of groups, classes, reducible and
irreducible representations of groups and the conventions of the Schoenflies symmetry
notation, we refer to the textbook on group theory by Dresselhaus, Dresselhaus and
Jorio [75].

4.2 Symmetry of the benzene eigenstates

In this section, we will review the symmetry characteristics of the eigenstates of the
interacting Hamiltonian of benzene, focusing on the symmetry operations σv and Cn

which have a major impact on the electronic transport through the molecular ISET.

Table 4.1 shows an overview of the states of the neutral molecule (the 6 particle states)
sorted by Sz and symmetries. The eigenstates of the interacting benzene molecule
have either A-, B- or E-type symmetries. While orbitals having A or B symmetries
can only be spin degenerate, states with an E symmetry show an additional twofold
orbital degeneracy, essential for the explanation of the transport features occurring in
the meta configuration.

Transport at low bias is described in terms of transitions between ground states with
different particle number. Table 4.2 shows the symmetries of the ground states (and
of some first excited states) of interacting benzene for all possible particle numbers.
Ground state transitions occur both between orbitally non-degenerate states (with A
and B symmetry), as well as between orbitally degenerate and non-degenerate states
(E- to A-type states).

The interacting benzene Hamiltonian commutes with all the symmetry operations of
theD6h point group, thus it has a set of common eigenvectors with each operation. The
element of D6h of special interest for the para configuration is σv, i.e., the reflection
about the plane through the contact atoms and perpendicular to the molecular plane.
The molecular orbitals with A and B symmetry are eigenstates of σv with eigenvalue
±1, i.e., they are either symmetric or antisymmetric with respect to the σv operation.
The behavior of the E−type orbitals under σv is basis dependent, yet one can always
choose a basis in which one orbital is symmetric and the other one antisymmetric.

Let us now consider the generic transition amplitude 〈N |dατ |N+1〉, where dατ destroys
an electron of spin τ on the contact atom closest to the α lead. It is useful to rewrite
this amplitude in the form

〈N |dατ |N + 1〉 = 〈N |σ†
vσvdατσ

†
vσv|N + 1〉, (4.3)

where we have used the property σ†
vσv = 1. Since in the para configuration both

contact atoms lie in the mirror plane σv, it follows σvdασ
†
v = dα. If the participating



44 | CHAPTER 4. A BENZENE INTERFERENCE SET

N # ↑ # ↓ # states # states with a
certain symmetry

6 6 0 1 1 B1u

4 A1g

2 A2g

5 1 36 2×6 E2g

4 B1u

2 B2u

2×6 E1u

16 A1g

20 A2g

4 2 225 2×36 E2g

22 B1u

17 B2u

2×39 E1u

38 A1g

30 A2g

3 3 400 2×66 E2g

38 B1u

30 B2u

2×66 E1u

2 4 225

1 5 36
...

0 6 1

Table 4.1: Overview of the 6 particle states of benzene, sorted by Sz and symmetry.
Orbitals with A- and B-type of symmetry show no degeneracy, while E-type orbitals
are doubly degenerate.

states are both symmetric under σv, equation (4.3) becomes

〈N, sym|σ†
vdατσv|N + 1, sym〉 =

= 〈N, sym|dατ |N + 1, sym〉 (4.4)

and analogously in the case where both states are antisymmetric. For states with
different symmetry it is

〈N, sym|dατ |N + 1, antisym〉 =

= −〈N, sym|dατ |N + 1, antisym〉 = 0. (4.5)

In other terms, there is a selection rule that forbids transitions between symmetric
and antisymmetric states. Further, since the ground state of the neutral molecule
is symmetric, for the transport calculations in the para configuration we select the
effective Hilbert space containing only states symmetric with respect to σv. Corre-
spondingly, when referring to the N particle ground state we mean the energetically
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N Degeneracy Energy[eV] Symmetry Symmetry behavior
(at ξ = 0) under σv

0 1 0 A1g sym
1 2 -22 A2u sym
2 1 -42.25 A1g sym
3 4 -57.42 E1g 2 sym, [2 antisym]
4 [3] [-68.87] [A2g] [antisym]

2 -68.37 E2g 1 sym, [1 antisym]
5 4 -76.675 E1g 2 sym, [2 antisym]
6 1 -81.725 A1g sym
7 4 -76.675 E2u 2 sym, [2 antisym]
8 [3] [-68.87] [A2g] [antisym]

2 -68.37 E2g 1 sym, [1 antisym]
9 4 -57.42 E2u 2 sym, [2 antisym]
10 1 -42.25 A1g sym
11 2 -22 B2g sym
12 1 0 A1g sym

Table 4.2: Degeneracy, energy and symmetry of the ground states of the isolated
benzene molecule for different particle numbers. We choose the on-site and inter-site
Coulomb interactions to be U = 10 eV, V = 6 eV, and the hopping to be b = −2.5 eV.
Notice, however, that screening effects from the leads and the dielectric are expected
to renormalize the energy of the benzene many-body states.

lowest symmetric state. For example in the case of 4 and 8 particle states it is the
first excited state to be the effective ground state. In the para configuration also the
orbital degeneracy of the E−type states is effectively cancelled due to the selection of
the symmetric orbital (see Table 4.2).
Small violations of this selection rule, due e.g. to molecular vibrations or coupling to an
electromagnetic bath, result in the weak connection of different metastable electronic
subspaces. We suggest this mechanism as a possible explanation for the switching
and hysteretic behavior reported in various molecular junctions. This effect is not
addressed in this work.
For a simpler analysis of the different transport characteristics it is useful to introduce
a unified geometrical description of the two configurations. In both cases, one lead is
rotated by an angle φ with respect to the position of the other lead. Hence we can
write the creator of an electron in the right contact atom d†Rτ in terms of the creation
operator of the left contact atom and the rotation operator:

d†Rτ = R†
φd

†
LτRφ, (4.6)

where Rφ is the rotation operator for the anticlockwise rotation of an angle φ around
the axis perpendicular to the molecular plane and piercing the center of the benzene
ring; φ = π for the para and φ = (2π/3) for the meta configuration.
The energy eigenstates of the interacting Hamiltonian of benzene can be classified also
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in terms of their quasi-angular momentum. In particular, the eigenstates of the z-
projection of the quasi angular momentum are the ones that diagonalize all operators
Rφ with angles multiples of π/3. The corresponding eigenvalues are phase factors
e−iℓφ where ~ℓ, the quasi-angular momentum of the state, is an integer multiple of ~.
The discrete rotation operator of an angle φ = π (C2 symmetry operation), is the one
relevant for the para configuration. All orbitals are eigenstates of the C2 rotation with
the eigenvalue ±1.
The relevant rotation operator for the meta configuration correspond to an angle
φ = 2π/3 (C3 symmetry operation). Orbitals with an A or B symmetry are eigen-
states of this operator with the eigenvalue +1 (angular momentum ℓ = 0 or ℓ = 3).
Hence we can already predict that there will be no difference based on rotational
symmetry between the para and the meta configuration for transitions between states
involving A- and B-type symmetries. Orbitals with E symmetry however behave quite
differently under the C3 operation. They are the pairs of states of angular momenta
ℓ = ±1 or ℓ = ±2. The diagonal form of the rotation operator on the two-fold
degenerate subspace of E-symmetry reads:

C3 =

(

e−|ℓ|· 2π
3

i 0

0 e|ℓ|·
2π
3

i

)

(4.7)

For the two-fold orbitally degenerate 7-particle ground states |ℓ| = 2. This analysis
in terms of the quasi-angular momentum makes the calculation of the fundamental
interference condition (4.2) given in the introduction easier. In fact the following
relation holds between the transition amplitudes of the 6 and 7 particle ground states:

γℓR ≡ 〈7gℓτ |d
†
Rτ |6g〉 = 〈7gℓτ |R

†
φd

†
LτRφ, |6g〉 = e−iℓφγℓL (4.8)

and (4.2) follows directly.

4.3 Transport calculations

The results discussed here are obtained by solving equation (3.19) in the stationary
limit σ̇NE(t) = 0 and using the result in the formula for the current in chapter 3. As
input in equation (3.19), we need the eigenenergies of the isolated molecule described
by HPPP, and the matrix elements 〈NEℓτ |d†ατ ′′|N − 1E ′ℓ′τ ′〉 of the operators d†ατ that
create an electron in a pz-orbital at the contact atom to lead α, written in the eigenbasis
of HPPP . The symmetries of the eigenstates are reflected in these matrix elements.
They act as transition amplitudes for the tunneling event from the state |N − 1E ′ℓ′τ ′〉
to |NEℓτ〉. The sequential tunneling rates are of second order in these amplitudes.
In Figure 4.3 we present the stability diagram for the benzene ISET contacted in the
para (upper panel) and meta position (lower panel). Bright ground state transition
lines delimit diamonds of zero differential conductance typical for the Coulomb block-
ade regime, while a rich pattern of satellite lines represents the transitions between
excited states. Though several differences can be noticed, most striking are the sup-
pression of the linear conductance, the appearance of negative differential conductance
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Figure 4.3: Stability diagram for the benzene ISET contacted in the para (above) and
meta (below) configuration. Dot-dashed lines highlight the conductance cuts presented
in Figure 4.4, the dashed lines the regions corresponding to the current traces presented
in Figure 4.5 and Figure 4.7, the dotted line the region corresponding to the current
trace presented in Figure 4.6. The parameters used are U = 4|b|, V = 2.4|b|, kBT =
0.04|b|, ~ΓL = ~ΓR = 10−3|b|.

(NDC) and the strong suppression of the current at the right(left) border of the 7 (5)
particle diamond when passing from the para to the meta configuration. All these
features are different manifestations of the interference between orbitally degenerate
states and ultimately reveal the specific symmetry of benzene.

4.3.1 Linear conductance

We study the linear transport regime both numerically and analytically. For the an-
alytical calculation of the conductance we consider the low temperature limit where
only ground states with N and N +1 particles have considerable occupation probabil-
ities in a certain range of the gate voltage. Therefore only transitions between these
states are relevant and we can treat just the terms of equation (3.19) with N and
N + 1 particles and the ground state energies Eg,N and Eg,N+1, respectively. A closer
look at (3.19) reveals that the spin coherences are decoupled from the other elements
of the density matrix. Thus we can set them to zero, and write (3.19) in a block
diagonal form in the basis of the ground states of N and N +1 particles. Additionally,
since the total Hamiltonian H is symmetric in spin, the blocks of the GME with the
same particle but different spin quantum number τ must be identical. Finally, since
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around the resonance the only populated states are the N and N + 1 particle states,
the conservation of probability implies that:

1 =
∑

n

σN
nn +

∑

m

σN+1
mm , (4.9)

where σN
nn is the population of the N -particle ground state and n contains the orbital

and spin quantum numbers. With all these observations we can reduce (3.19) to
a much smaller set of coupled differential equations, that can be treated analytically.
The stationary solution of this set of equations can be derived more easily by neglecting
the energy non-conserving terms in (3.19). These are contained in the elements of the
GME describing the dynamics of the coherences between orbitally degenerate states.
With this simplification we derive an analytical formula for the conductance close to
the resonance between N and N + 1 particle states as the first order coefficient of the
Taylor series of the current in the bias:

GN,N+1(∆E) = 2e2
ΓLΓR

ΓL + ΓR

ΛN,N+1

[

−
f ′(∆E)

(SN+1 − SN)f(∆E) + SN

]

(4.10)

where ∆E = −Eg,N+Eg,N+1−(µ0+κeVg) is the energy difference between the benzene
ground states with N and N + 1 electrons diminished by a term linear in the gate
voltage. The derivation of this formula is rather lengthy but not difficult and thus not
given here. Interference effects are contained in the overlap factor ΛN,N+1:

ΛN,N+1 =

∣

∣

∣

∑

nmτ

〈N,n|dLτ |N+1,m〉〈N+1,m|d†Rτ |N,n〉
∣

∣

∣

2

∑

nmατ

∣

∣

∣〈N,n|dατ |N+1,m〉
∣

∣

∣

2 , (4.11)

where n and m label the SN-fold and SN+1-fold degenerate ground states with N and
N + 1 particles, respectively. In order to make the interference effects more visible we
remind that d†Rτ = R†

φd
†
LτRφ, with φ = π for the para while φ = 2π/3 for the meta

configuration. Due to the behavior of all eigenstates of Hben under discrete rotation
operators with angles multiples of π/3, we can rewrite the overlap factor:

ΛN,N+1 =

∣

∣

∣

∑

nmτ

|〈N,n|dLτ |N+1,m〉|2eiφnm

∣

∣

∣

2

2
∑

nmτ

∣

∣

∣
〈N,n|dLτ |N+1,m〉

∣

∣

∣

2 , (4.12)

where φnm encloses the phase factors coming from the rotation of the states |N,n〉 and
|N + 1,m〉.
The energy non-conserving terms neglected in (4.10) influence only the dynamics of
the coherences between orbitally degenerate states. Thus, equation (4.10) provides an
exact description of transport for the para configuration, where orbital degeneracy is
cancelled. Even if equation (4.10) captures the essential mechanism responsible for
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the conductance suppression, we have derived an exact analytical formula also for the
meta configuration and we present it later on.
In Figure 4.4 we present an overview of the results of both the para and the meta con-
figuration. A direct comparison of the conductance (including energy non-conserving
terms) in the two configurations is displayed in the upper panel. The lower panel illus-
trates the effect of the energy non-conserving terms on the conductance in the meta
configuration. The number of pz electrons on the molecule and the symmetry of the
lowest energy states corresponding to the conductance valleys are reported. The curve
can be continued to negative gate voltages (notice that b < 0) by mirroring about
Vg = 0 and replacing the number of electrons N by 12−N . The symmetries displayed
in the upper panel belong to the (effective) ground states in the para configuration,
the corresponding symmetries for the meta configuration are shown in the lower panel.
Figure 4.4 shows that the results for the para and the meta configuration coincide
for the 10 ↔ 11 and 11 ↔ 12 transitions. The ground states with N = 10, 11, 12
particles have A− or B−type symmetries, they are therefore orbitally non-degenerate,
no interference can occur and thus the transitions are invariant under configuration
change. For every other transition we see a noticeable difference between the results
of the two configurations (Figure 4.4). In all these transitions one of the participating
states is orbitally degenerate. First we notice that the linear conductance peaks for
the 7 ↔ 8 and 8 ↔ 9 transitions in the para configuration are shifted with respect
to the corresponding peaks in the meta configuration. The selection of an effective
symmetric Hilbert space associated to the para configuration results in different ground
state energies of the 4 and 8 particle states in the two configurations, since in the para
configuration the first state participating to transport (the effective ground state) is
in reality the first excited state. This leads to a redefinition of ∆E for transitions
involving these states and therefore to a change in the peak position.
In addition, the total degeneracy is reduced from 4 to 2 by cancelling the orbital
degeneracy. The degeneracies SN, SN+1 of the participating states as well as the ground
state energy are both entering the degeneracy term of equation (4.10)

∆ = −
f ′(∆E)

(SN+1 − SN)f(∆E) + SN

. (4.13)

In this term, the degeneracies give rise to two effects. First, they shift the maximum of
the conductance peak away from the resonance at ∆E = 0. This happens because the
symmetric (with respect to ∆E = 0) function f ′(∆E) is multiplied with an asymmet-
ric, steplike function in the denominator. If the degeneracy of the N +1-particle state
SN+1 is higher than SN, the maximum will be shifted to the side where N -particles
are on the quantum dot. This shift is found to be 1

2
kBT ln SN+1

SN
, proportional to the

temperature and to the logarithm of the ratio SN+1

SN
. The second point is that large

degeneracies, entering in the denominator, will in general lead to smaller values of ∆.
The maximum value of this function ∆ for the transition 6 ↔ 7 is given in table 4.3.
The most striking effect regarding transitions with orbitally degenerate states partic-
ipating is the systematic suppression of the linear conductance when changing from
the para to the meta configuration. The suppression is appreciable despite the con-
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ductance enhancement due to the energy non-conserving terms (see Figure 4.4, lower
panel). Thus, we will for simplicity discard them in the following discussion.
The conductance suppression is determined by the combination of two effects: the
reduction to the symmetric Hilbert space in the para configuration and the interfer-
ence effects between degenerate orbitals in the meta configuration. As we can see
from Table 4.3 on the example of the 6 ↔ 7 transition peak, ∆max is higher in the
para configuration but not enough to fully explain the difference between the two
configurations.

Overlap factor Degeneracy term
Λ ∆max [1/kBT ]

PARA 2C 0,1715
META 1

2
C 0,1111

Table 4.3: Overlap factor and maximum value of the degeneracy term in the para and
the meta configuration for the 6 ↔ 7 transition peak. It is C = |〈6g|dLτ |7gℓτ〉|

2, where
τ and ℓ are the spin and the quasi angular momentum quantum numbers, respectively.
The values of ∆max are proportional to 1/kBT .

The second effect determining linear transport is the interference between the E-type
states, which is accounted for in the overlap factor Λ. The overlap factor is basis
independent, thus we can write the transition probabilities for the 6 ↔ 7 transition
as |〈6g|dLτ |7g ℓ τ〉|

2 = C, where τ and ℓ are the spin and the quasi-angular momentum
quantum number, respectively. The transition probabilities have the same value, since
all four 7 particle states are in this basis equivalent. This can be seen by taking
advantage of the symmetry properties of the molecular states with respect to the σv

operation and to the rotation operator Rφ for rotations about a discrete angle φ = nπ
3

,
as introduced in Section 4.2. The starting point is the generic relation between these
two operators:

Rφσv = σvR−φ. (4.14)

We can now apply both sides of this relation to the 7 particle ground states |7g, ℓ = ±2〉:

Rφσv|7g, ℓ = ±2〉 = σvR−φ|7g, ℓ = ±2〉. (4.15)

The 7 particle ground states |7g, ℓ = ±2〉 are eigenstates of each Rφ, and the corre-
sponding eigenvalues are phase factors:

Rφ|7g, ℓ = ±2〉 = e∓2·iφ|7g, ℓ = ±2〉. (4.16)

Thus, equation (4.15) becomes

Rφ

(

σv|7g, ℓ = ±2〉
)

= e±2·iφ
(

σv|7g, ℓ = ±2〉
)

. (4.17)

Yet, according to equation (4.16), this equation can only be valid if

σv|7g, ℓ = ±2〉 = λ|7g, ℓ = ∓2〉. (4.18)
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and, since σ2
v = 1, λ can only be a phase factor. For the calculation of the transition

probabilities we use further the property σ†
vσv = 1. Since the left contact atom (atom

1) lays in the reflection plane σv, it is: σvdLσ
†
v = dL. Also, since the symmetry of the

6 particle ground state is A1g, it is: σv|6g〉 = |6g〉. Under these considerations, we can
write for the transition probability to the state |7g, ℓ = 2〉:

|〈6g|dL|7g, ℓ = 2〉|2 = |〈6g|σ
†
vσvdLσ

†
vσv|7g, ℓ = 2〉|2 = (4.19)

= |〈6g|dLσv|7g, ℓ = 2〉|2 = |〈6g|dL|7g, ℓ = −2〉|2 = C.

Under the C2 rotation the symmetric 7 particle ground state does not acquire any
phase factor. Under the C3 rotation however, the two orbitally degenerate states
acquire different phase factors, namely e

4π
3

i and e−
4π
3

i, respectively. Thus the overlap
factors Λ for the 6 ↔ 7 transition are:

Λpara =
1

8C
· |4C|2 = 2C,

Λmeta =
1

8C
·
∣

∣

∣2Ce+
4π
3

i + 2Ce−
4π
3

i
∣

∣

∣

2

=
1

2
C.

We see that Λ is four times larger in para configuration. The linear conductance is
determined by the product between the overlap factor and the degeneracy term. It is
the destructive interference between degenerate E-type orbitals, accounted for in the
overlap factor Λ, that gives the major contribution to the strong suppression of the
conductance in the meta configuration.

Analytical formula for the linear conductance including the
energy non-conserving terms

In the derivation of the conductance formula (4.10) we neglected the energy non-
conserving terms in the equation (3.19). Since in the GME they appear only in the
dynamics of the coherences between orbitally degenerate states, equation (4.10) is
exact for the para configuration, where the orbital degeneracy is cancelled. This is not
the case in the meta configuration where the orbital (quasi-)degeneracy is essential
for the description of interference. Thus we derived a generic analytical formula for
the conductance, taking into account the energy non-conserving terms. Again, we
give here just the result, because the derivation is lengthy and does not lead to new
insights. It reads

GN,N+1(∆E) = e2ΓΛN,N+1∆

[

1 +
aux(SN, SN+1)12Λ2

N,N+1 (f±(∆E))
2

16Λ2
N,N+1 (f±(∆E))2 + ω2

]

. (4.20)

Here, it is Γ = ΓL = ΓR. ΛN,N+1 and ∆ are the overlap factor and the degen-
eracy term introduced in Eqs. (4.11), (4.12). The auxiliary function aux(SN, SN+1)
in the correction term is zero if there are no orbitally degenerate ground states in-
volved in the transition. If one of the participating states is orbitally degenerate it is
aux(SN, SN+1) = 1. The sign in f±(∆E) is defined as follows: f+(∆E) has to be used
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if the N particle ground state is orbitally degenerate. If instead the N + 1 particle
ground state exhibits orbital degeneracy, f−(∆E) has to be inserted. The energy non-
conserving terms are included in the factor ω = ωL|Vb=0 = ωR|Vb=0. It is defined only
if a degenerate state is participating in transport. In case that e.g. the N particle
ground state has two degenerate orbitals |Ng, 1〉, |Ng, 2〉, ωα with α = L,R reads

ωα =
∑

E′,l

[

i

π
pα(Eg,N − E ′)

]

〈Ng, 1|d
†
Lτ |N − 1, E ′ l〉〈N − 1, E ′ l|dLτ |Ng, 2〉 (4.21)

+
∑

E′,l

[

i

π
pα(E ′ − Eg,N)

]

〈Ng, 1|dLτ |N + 1, E ′ l〉〈N + 1, E ′ l|d†Lτ |Ng, 2〉,

where pα(x) = −Reψ
[

1
2

+ iβ
2π

(x− µα)
]

and ψ is the digamma function, as defined
in Section 3.3. The presence of these terms reduces the efficiency of the destructive
interference due to a renormalization of the energies of the states involved. In this
expression, a particular choice of the basis is implied, such that 〈Ng, i|d

†
Lτ |N − 1, E ′ l〉,

〈Ng, i|dLτ |N + 1, E ′ l〉, i = 1, 2, are real and do not depend on i. We will discuss this
and the effect of renormalization on the non-linear current in chapter 5.

4.3.2 Negative differential conductance (NDC) and current
blocking

Interference effects between orbitally degenerate states are also affecting non-linear
transport and producing in the meta configuration current blocking and thus NDC at
the border of the 6 particle state diamond (Figure 4.3). The upper panel of Figure
4.5 shows the current through the benzene ISET contacted in the meta configuration
as a function of the bias voltage. The current is given for parameters corresponding
to the white dashed line of Figure 4.3. In this region only the 6 and 7 particle ground
states are populated.
At low bias the 6 particle state is mainly occupied. As the bias is raised, transitions 6 ↔
7 occur and current flows. Above a certain bias threshold a blocking state is populated
and the current drops. For the understanding of this non-linear current characteristics,
we have to take into account energy conservation, the Pauli exclusion principle and,
in addition, the interference between participating states. For the visualization of
the interference effects, we introduce the transition probability (averaged over the z
coordinate and the spin σ):

P (x, y;n, τ) = lim
L→∞

∑

σ

1

2L

∫ L/2

−L/2

dz|〈7g n τ |ψ
†
σ(r)|6g〉|

2 (4.22)

for the physical 7 particle basis, i.e., the 7 particle basis that diagonalizes the stationary
density matrix at a fixed bias. Here τ is the spin quantum number, n = 1, 2 labels
the two states of the physical basis which are linear combinations of the orbitally
degenerate states |7gℓτ〉 and can be interpreted as conduction channels. Each of the
central panels of Figure 4.5 are surface plots of (4.22) at the different bias voltages a-c.



4.3. TRANSPORT CALCULATIONS | 53

Figure 4.4: Conductance of the benzene ISET as a function of the gate voltage. Clearly
visible are the peaks corresponding to the transitions between ground states with N
and N + 1 particles. In the low conductance valleys the state of the system has a
definite number of particles and symmetry as indicated in the upper panel for the
para, in the lower for the meta configuration. Selective conductance suppression when
changing from the meta to the para configuration is observed.
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The 7 particle ground states can interfere and thus generate nodes in the transition
probability at the contact atom close to one or the other lead, but, in the meta
configuration, never at both contact atoms at the same time.

Energetic considerations are illustrated in the lower panels of Figure 4.5 for two key
points of the current curve at positive biases. The left panel corresponds to the reso-
nance peak of the current. Due to energy conservation, electrons can exit the molecule
at both leads. On the contrary the entry is allowed only at the right leads. The cur-
rent is suppressed when transitions occur to a state which cannot be depopulated (a
blocking state). Since, energetically, transmissions to the 6 particle state are allowed
at both leads, each 7 particle state can always be depopulated and no blocking occurs.

The current blocking scenario is depicted in the lower right panel of Figure 4.5. For
large positive bias the transition from a 7 particle ground state to the 6 particle
ground state is energetically forbidden at the left lead. Thus, for example, the c panel
in Figure 4.5 visualizes the current blocking situation yielding NDC: while for both
channels there is a non-vanishing transition probability from the source lead to the
molecule, for the upper channel a node prevents an electron from exiting to the drain
lead. In the long time limit the blocking state gets fully populated while the non-
blocking state is empty. At large negative bias the blocking scenario is depicted in the
panel a that shows the left-right symmetry obtained by a reflection through a plane
perpendicular to the molecule and passing through the carbon atoms atoms 6 and 3.
We remark that only a description that retains coherences between the degenerate 7
particle ground states correctly captures NDC at both positive and negative bias.

In contrast to the 6 → 7 transition, one does not observe NDC at the border of the 7
particle Coulomb diamond, but rather a strong suppression of the current. The upper
panel of Figure 4.6 shows the current through the benzene ISET contacted in the meta
configuration as a function of the bias voltage corresponding to the white dotted line
of Figure 4.3. The middle panels show the transition probabilities between each of the
7 particle and the 6 particle ground state.

The lower panel of Figure 4.6 shows a sketch of the energetics at positive bias corre-
sponding to the “expected” resonance peak. Here electrons can enter the molecular
dot at both leads, while the exit is energetically forbidden at the left lead due to Paulis
exclusion principle. Thus, if the system is in the 7 particle state which is blocking the
right lead, this state cannot be depopulated, becoming the blocking state.
On the other hand, transitions from the 6 particle ground state to both 7 particle
ground states are equally probable. Thus the blocking state will surely be populated
at some time. The upper plot of the b panel in Figure 4.6 shows the transition prob-
ability to the blocking state that accepts electrons from the source lead but cannot
release electrons to the drain.
As just proved, in this case the current blocking situation occurs already at the res-
onance bias voltage. For a higher positive bias, the transition probability from the
blocking state at the drain lead increases and current can flow. This effect, though,
can be captured only by taking into account also the energy non-conserving terms in
(3.19). We study the influence of these terms in detail in chapter 5.

In the para configuration, the current as a function of the bias voltage is shown in
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Figure 4.5: Upper panel - Current through the benzene ISET in the meta configuration
calculated at bias and gate voltage conditions indicated by the dashed line of Figure
4.3. A pronounced NDC with current blocking is visible. Middle panels - Transition
probabilities between the 6 particle and each of the two 7 particle ground states for
bias voltage values labelled a − c in the upper panel. The transition to a blocking
state is visible in the upper (lower) part of the c (a) panels. Lower panels - Sketch
of the energetics for the 6 → 7 transition in the meta configuration at bias voltages
corresponding to the resonance current peak and current blocking as indicated in the
upper panel of this figure.
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Figure 4.6: Upper panel - Current through the benzene ISET in the meta configuration
calculated at bias and gate voltage conditions indicated by the dotted line of Figure
4.3. No NDC is visible. Middle panels - Transition probabilities between each of the
7 particle and the 6 particle ground state for bias voltage values labelled a − c in
the upper panel. Lower panel - Sketch of the energetics for the 7 → 6 transition in
the meta configuration at bias voltage corresponding to the expected resonance peak.
(compare to Figure 4.5).
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Figure 4.7: Left panel - Current through the benzene ISET in the para configura-
tion calculated at bias and gate voltage conditions indicated by the dashed line of
Figure 4.3. No interference effects are visible. Right panels - Transition probabilities
between the 6 particle and the symmetric and antisymmetric 7 particle ground states.

Figure 4.7. The current is given for parameters corresponding to the white dashed
line of Figure 4.3. In this case, no interference effects are visible. We see instead the
typical step-like behavior of the current in the Coulomb blockade regime.
The panels on the right are the surface plots of

P (x, y; τ) = lim
L→∞

∑

σ

1

2L

∫ L/2

−L/2

dz|〈7g τ ; (a)sym|ψ†
σ(r)|6g〉|

2. (4.23)

The upper plot shows the transition probability to the symmetric 7 particle state,
the lower to the antisymmetric. Remember that in the para configuration only the
symmetric states contribute to transport, which means that orbital degeneracies or
coherences between orbitally degenerate states do not play any role in the transport.
Thus in the para configuration, no interference triggered current blocking or NDC can
occur.
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4.4 Reduced symmetry

In this section we study the effect of reduced symmetry on the results presented pre-
viously. To do so, we generalize the model Hamiltonian by taking into account the
perturbations on the molecule due to the contacts and the bias voltage. The contact
between molecule and leads is provided by different anchor groups. These linkers are
coupled to the contact carbon atoms over a σ bond thus replacing the corresponding
benzene hydrogen atoms. Due to the orthogonality of π and σ orbitals, the anchor
groups affect in first approximation only the σ orbitals of benzene. In particular the
different electron affinity of the atoms in the linkers imply a redistribution of the den-
sity of σ electrons. Assuming that transport is carried by π electrons only, we model
the effect of this redistribution as a change in the on-site energy for the pz orbitals of
the contact carbon atoms:

H ′
PPP := Hcontact = ξc

∑

ασ

d†ασdασ, α = L,R (4.24)

where R = 3, 4, respectively, in the meta and para configuration, L = 1 in both setups.
We also study the effect of an external bias on the benzene ISET. In particular we
release the strict condition of potential drop all concentrated at the lead-molecule
interface. Nevertheless, due to the weak coupling of the molecule to the leads, we
assume that only a fraction of the bias potential drops across the molecule. For this
residual potential we take the linear approximation Vb(r) = −Vb

a
(r · r̂sd/a0), where

we choose the center of the molecule as the origin and r̂sd is the unity vector directed
along the source to drain direction. a0 = 1.43

o

A is the bond length between two carbon
atoms in benzene, a is the coefficient determining the intensity of the potential drop
over the molecule. Since the pz orbitals are strongly localized, we can assume that
this potential will not affect the inter-site hopping, but only the on-site term of the
Hamiltonian:

H ′
PPP := Hbias = e

∑

iσ

ξbi
d†iσdiσ (4.25)

with ξbi
=
∫

dr pz(r − Ri)Vb(r)pz(r − Ri).

Under the influence of the contacts or the bias potential, the symmetry of the molecule
changes. Table 4.4 shows the point groups to which the molecule belongs in the
perturbed setup. This point groups have only A- and B-type reducible representations.
Thus the corresponding molecular orbitals do not exhibit orbital degeneracy.
No interference effects influence the transport in the para configuration. Thus we do
not expect its transport characteristics to be qualitatively modified by the new set up
with the corresponding loss of degeneracies.

In the meta configuration on the other hand, interferences between orbitally degenerate
states play a crucial role in the explanation of the occurring transport features. Näıvely
one would therefore expect that neither conductance suppression nor NDC and current
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PARA META
Contact perturb. D2h C2v

Bias perturb. C2v C2v

Table 4.4: Point groups to which the molecule belongs under the influence of the
contacts and the external bias potential.

blocking occur in a benzene ISET with reduced symmetry. Yet we find that, under
certain conditions, the mentioned transport features are robust under the lowered
symmetry.

The perturbations due to the contacts and the bias lead to an expected level splitting
of the former orbitally degenerate states. Very different current-voltage characteristics
are obtained depending on the relation between the energy splitting δE and other two
important energy scales of the system: the tunnelling rate ~Γ and the temperature
kBT . In particular, when δE ≪ ~Γ ≪ kBT , interference phenomena persist. In
contrast, when ~Γ < δE ≪ kBT interference phenomena disappear, despite the fact
that, due to temperature broadening, the two states still can not be resolved. In this
regime, due to the asymmetry in the tunnelling rates introduced by the perturbation,
standard NDC phenomena, see Figure 4.9, occur.

In the absence of perfect degeneracy, we abandon the strict secular approximation
scheme that would discard the coherences in the density matrix between states with
different energies. We adopt instead a softer approximation by retaining also coher-
ences between quasi-degenerate states. Since they have Bohr frequencies comparable
to the tunnelling rate, they influence the stationary density matrix. Formulas for
the GME and the current taking into account these coherence terms are presented in
section 3.4.

Figure 4.8 shows from left to right closeup views of the stability diagram for the setup
under the influence of increasing contact perturbation around the 6 ↔ 7 resonance.
The orbital degeneracy of the 7 particle states is lifted and the transport behavior for
the 6 ↔ 7 transition depends on the energy difference between the formerly degenerate
7 particle ground states. In panel a the energy difference is so small that the states are
quasi-degenerate: δE ≪ ~Γ ≪ kBT . As expected, we recover NDC at the border of
the 6 particle diamond and current suppression at the border of the 7 particle diamond,
like in the unperturbed setup.
Higher on-site energy-shifts correspond to a larger level spacing. Panel b displays the
situation in which the latter is of the order of the level broadening, but still smaller
than the thermal energy (δE ≃ ~Γ ≪ kBT ): no interference causing NDC and current
blocking can occur. Yet, due to thermal broadening, we cannot resolve the two 7
particle states.
Eventually, panel c presents the stability diagram for the case δE > kBT > ~Γ: the
level spacing between the 7 particle ground and first excited state is now bigger than
the thermal energy, thus the two transition lines corresponding to these states are
clearly visible at the border of the 6 particle stability diamond.

Figure 4.9 shows closeup views of the stability diagram for the setup under the influ-
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Figure 4.8: Closeup views of the stability diagram around the 6 ↔ 7 resonance for
the system under contact perturbation. The perturbation strength grows from left
to right The parameter that describes the contact effect assumes the values ξc =
0.15~Γ, 2~Γ, 15kBT from left to right respectively and kBT = 10~Γ .

ence of the bias perturbation at the border of the 6 and 7 particle diamonds. The same
region is plotted for different strengths of the external potential over the molecule.
In contrast to the contact perturbation, the amount of level splitting of the former
degenerate states is here bias dependent. This fact imposes a bias window of in-
terference visibility. The bias must be small enough, for the 7 particle states to be
quasi-degenerate and at the same time bigger than the thermal energy, so that the oc-
curring NDC is not obscured by the thermally broadened conductance peak. A strong
electrostatic potential perturbation closes the bias window and no interference effect
can be detected.
Panel a of Figure 4.9 represents the weak perturbation regime with no qualitative
differences with the unperturbed case. The typical fingerprints of interference (NDC
at the border of the 6 particle diamond and current blocking for the 7 → 6 transition)
are still visible for intermediate perturbation strength (panel b) but this time only in a
limited bias window. Due to the perturbation strength, at some point in the bias, the
level splitting is so big that the quasi-degeneracy is lifted and the interference effects
destroyed. In panel c the quasi-degeneracy is lifted in the entire bias range. There
is NDC at the border of the 6 particle diamond, but is not accompanied by current
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Figure 4.9: Closeup views of the stability diagram around the 6 ↔ 7 resonance for
the system under the effect of the bias potential, displayed for different strengths of
the electrostatic potential drop over the molecule. The parameter that describe the
strength of the electrostatic drop overthe molecule assumes the values a = 25, 12, 0.6
from left to right respectively.

blocking as proved by the excitation line at the border of the 7 particle diamond (see
arrow): no interference occurs. The NDC is here associated to the sudden opening of
a slow current channel, the one involving the 6 particle ground state and the 7 particle
(non-degenerate) excited state (standard NDC).

Figure 4.10 refers to the setup under both the bias and contact perturbations. The
left panel shows the energy of the lowest 7 particle states as a function of the bias.
In the right panel we present the stability diagram around the 6 ↔ 7 resonance.
NDC and current blocking are clearly visible only in the bias region where, due to
the combination of bias and contact perturbation, the two seven particle states return
quasi-degenerate. Also the fine structure in the NDC region is understandable in terms
of interference if we take into account the renormalization of the level splitting due to
the energy non-conserving terms in the condition of quasi-degeneracy.

Interference effects predicted for the unperturbed benzene ISET are robust against
various sources of symmetry breaking. Quasi-degeneracy, δE ≪ ~Γ ≪ kBT , is the
necessary condition required for the detection of the interference in the stability dia-
gram of the benzene ISET.
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Figure 4.10: Combination of the bias and contact perturbations. Left panel - Energy
levels of the 7 particle ground and first excited state as functions of the bias volt-
age. Right panel - Stability diagram around the 6 ↔ 7 resonance. The perturbation
parameters are in this case ξc = 2~Γ and a = 12.

The results presented in this chapter were obtained in collaboration with Dana Darau,
Andrea Donarini and Milena Grifoni. They were published in

[17] G. Begemann, D. Darau, A. Donarini, and M. Grifoni, Phys. Rev. B 77, 201406
(2008), Erratum: Phys. Rev. B 78, 089901(E) (2008).

[18] D. Darau, G. Begemann, A. Donarini, and M. Grifoni, Phys. Rev. B 79, 235404
(2009).



Chapter 5

All-electric spin control in
interference single electron
transistors

Figure 5.1: Two examples of interference single electron transistors (ISETs): a benzene
molecular junction contacted in the meta configuration (a) and a triple quantum dot
artificial molecule (b). The source and drain are parallel polarized ferromagnetic leads.

Interference blocking in SETs is expected whenever a non-degenerateN particle ground
state and two degenerate N + 1 particle ground states contribute simultaneously to
transport and the ratio of the transition amplitudes between those N and N + 1 par-
ticle states is different on the left and on the right, equation (4.1). This condition is
rather general and can be fulfilled not only in benzene ISETs, but for example also in
triangular quantum dots (TQD) (see Figure 5.1), or other systems that show orbital
degeneracies.
In this chapter, we show that in ISETs in the presence of parallel polarized ferro-
magnetic leads the interplay between interference and the exchange interaction on the
system generates an effective energy renormalization yielding different blocking biases
for majority and minority spins. Hence, by tuning the bias voltage full control over
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the spin of the trapped electron is achieved. We present here our results showing spin
selective interference blockade, for both the benzene ISET and the TQD ISET. In the
TQD ISET, we also demonstrate the possibility of switching between components of
an excited triplet states by means of the bias voltage.
The system Hamiltonian for the TQD ISET is given by

HPPP = ξ
3
∑

i=1

∑

σ

d†iσdiσ + b
3
∑

i=1

∑

σ

(

d†iσdi+1σ + d†i+1σdiσ

)

(5.1)

+ U
3
∑

i=1

(

ni↑ −
1

2

)(

ni↓ −
1

2

)

+
1

2

3
∑

i

V
(

ni↑ + ni↓ − 1
)(

ni+1↑ + ni+1↓ − 1
)

,

where cyclic boundary conditions are implied. Notice the formal similarity to the PPP
Hamiltonian for benzene.
From what we learned in the previous chapter, we would conclude that the interference
blocking is a threshold effect and the current remains blocked until a new excited state
participates to the transport. However, as shown in Figure 5.2, panels a and b, the
current is blocked only at specific values of the bias voltage. In presence of polarized
leads, we observe current blocking at two specific bias values (panels c and d), and
the analysis of the stationary solution of the GME reveals two blocking states with
different spin projection. In the TQD ISET, we find analogous results.
The explanation for the blocking at specific biases only relies on the following observa-
tion: The blocking state (Figure 5.4) must be antisymmetric with respect to the plane
perpendicular to the system and passing through its center and the atom closest to
the drain; this state is thus also an eigenstate of the projection of the angular momen-
tum in the direction of the drain lead. The corresponding eigenvalue depends on the
symmetry of the atomic wave function with respect to the molecular plane: ~ or 0 for
symmetric or antisymmetric wave functions respectively. At positive (negative) bias
voltages we call this state the R(L)-antisymmetric state |ψR(L), a〉. But the coupling
between the system and the leads not only generates the tunneling dynamics described
so far, but also contributes to an internal dynamics of the system that distorts the
antisymmetric state, but leaves the systems particle number unchanged.

5.1 Effective Hamiltonian for the internal dynam-

ics

In fact the equation of motion for the reduced density matrix σ of the system (equa-
tion (3.19)) can be cast, to lowest non vanishing order in the coupling to the leads, in
the form:

σ̇ = −
i

~
[Hsys, σ] −

i

~
[Heff , σ] + Ltunσ. (5.2)

The commutator with Hsys in equation (5.2) represents the coherent evolution of the
system in absence of the leads. It vanishes in the secular approximation. The operator
Ltun describes the sequential tunnelling processes and it is defined as all the terms in
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equation (3.19) that contain the Fermi function. FinallyHeff renormalizes the coherent
dynamics associated to the system Hamiltonian. It includes all the terms containing
the digamma function in equation (3.19). The transition amplitudes γαi between the
N and N + 1 particle states like the ones introduced in equation (4.1) are contained
in both Heff and Ltun. Heff can be written as:

Heff =
∑

ατ

ωατLα, (5.3)

where Lα is the projection of the angular momentum in the direction of the lead α
and, for paramagnetic systems, it does not depend on the spin degree of freedom
τ . Moreover, ωατ is the renormalization frequency given to the states of spin τ by
their coupling to the α lead. Similar effective dynamics has been mapped into the
precession of a pseudo-spin around a pseudo-exchange field [69, 76]. In our case the
presence of parallel polarized leads mixes the orbital and the spin degrees of freedom.
Although Heff is diagonal for what concerns the spin, and thus spin accumulation
due to precession [68] of the spin degree of freedom is excluded, in the presence of
polarized leads, the spin up and the spin down undergo different effective dynamics.
In particular, we find that at the bias voltage where the blocking conditions for one
spin species are exactly fulfilled, the other spin species still feels a renormalization and
thus does not form a completely blocking state. This leads to a full population of one
specific spin species at that bias voltage.
For sake of simplicity we give in the following the explicit form of the transition
amplitudes γαi, of the operator Lα and of the associated frequency ωατ only for the
benzene ISET and for the ground state transition 6g → 7g that is characterized by
interference blocking. The argumentation is nevertheless very general and can be
repeated for all the systems exhibiting rotational symmetry. The transition amplitudes
read:

γαℓ = 〈6g00|dMτ |7gℓτ〉e
−iℓφα , (5.4)

where |7g ℓ τ〉 are the orbitally degenerate 7 particle ground states, ℓ = ±2 the z

projection of the angular momentum in units of ~ and dMτ destroys an electron of
spin τ in a reference carbon atom M placed in the middle between the two contact
atoms. Moreover, φα is the angle of which we have to rotate the molecule to bring the
reference atom M into the position of the contact atom α. The present choice of the
reference atom implies that φL = −φR = π

3
. In the Hilbert space generated by the

two-fold orbitally degenerate |7g ℓ τ〉 the operator Lα reads:

Lα =
~

2

(

1 ei2|ℓ|φα

e−i2|ℓ|φα 1

)

. (5.5)

To derive the explicit form of this operator, it is convenient to choose the arbitrary
phases of the states |7gℓτ〉 in such a way that the rotation of π around the axis passing
through the reference atom M and the center of the molecule transforms |7gℓτ〉 into
−|7g − ℓτ〉. In other terms

exp(iπLM

~
) = −τx, (5.6)
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Figure 5.2: Benzene ISET: polarized vs. unpolarized configuration. Panel a - Current
vs. bias and gate voltage for unpolarized leads. Panel d - Current vs. bias and gate
voltage for polarized leads (polarization P = 0.85). Panels b and c - Blow up of the
6 → 7 particle transition for both configurations. The unpolarized case shows a single
current blocking line and the trapped electron has either up or down polarization. The
polarized case shows two current blocking lines, corresponding to the different spin of
the trapped electron. The current is given in units of eΓ where Γ is the bare average
rate, and the temperature kBT = 0.01b where b is the hopping parameter
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Figure 5.3: Triple dot ISET: polarized vs. unpolarized configuration. Panel a - Current
vs. bias and gate voltage for unpolarized leads. Panel d - Current vs. bias and gate
voltage for polarized leads (polarization P = 0.7). Panels b and c - Blow up of
the 6 → 5 particle transition for both configurations. The selective spin blocking is
analogous to the one of the benzene ISET (5.2).
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Figure 5.4: Spin control. Panel a - Current (in units of eΓ) through the benzene ISET
vs bias and polarization at the 6 → 7 electrons transition. Panel b - Population of
the majority spin 7 particle state. The two zero current lines at high bias correspond
to the maximum or minimum population of the 7 particle majority spin state and
thus identify the spin state of the trapped electron on the molecule. Panels c and d
- Schematic representation of the spin selective blocking corresponding to the dashed
(c) and dotted (d) lines of the panels a and b.
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where τx is the first Pauli matrix. The relation is in fact an equation for LM and the
solution reads:

LM =
~

2

(

1 1
1 1

)

. (5.7)

We obtain Lα by rotation of LM in the molecular plane, namely:

Lα = e−
i
~

φαLzLMe
i
~

φαLz =
~

2

(

1 ei2|ℓ|φα

e−i2|ℓ|φα 1

)

. (5.8)

The frequency ωατ is defined in terms of transition amplitudes to all the states of
neighbor particle numbers:

ωατ =
1

π

∑

τ ′{E}

Γ0
ατ ′

[

〈7gℓτ |dMτ ′|8{E}〉〈8{E}|d
†
Mτ ′|7g − ℓτ〉pα(E − E7g

) +

〈7gℓτ |d
†
Mτ ′|6{E}〉〈6{E}|dMτ ′|7g − ℓτ〉pα(E7g

− E)
]

, (5.9)

where the compact notation |N{E}〉 indicates all possible states with particle number
N and energy E, pα(x) = −Reψ

[

1
2

+ iβ
2π

(x− µα)
]

where β = 1/kBT , T is the tempera-
ture and ψ is the digamma function. Moreover Γ0

ατ ′ = 2π
~
|t|2Dατ ′ is the bare tunneling

rate to the lead α of an electron of spin τ ′, where t is the tunnelling amplitude and Dατ ′

is density of states for electrons of spin τ ′ in the lead α at the corresponding chemical
potential µα. We model the polarization in the leads by spin dependent densities of
states:

Dασ =

{

Dα(1 + P ), σ =↑,
Dα(1 − P ), σ =↓ .

(5.10)

Due to the particular choice of the arbitrary phase of the 7 particle ground states,
ωατ is real and does not depend on the orbital quantum number ℓ. It depends instead
on the bias and gate voltage through the energy of the 6, 7-ground and 8 particle
states. In Figure 5.5 the black curve depicts ωLτ as a function of the bias in absence of
polarization: the frequencies corresponding to the two spin species coincide and thus
vanish at the same bias. The same condition,

ωLτ = 0, (5.11)

also determines the bias at which the current is completely blocked. In fact, at that
bias the effective Hamiltonian contains only the projection of the angular momentum
in the direction of the right lead (the drain) and the density matrix corresponding
to the full occupation of the 7 particle R-antisymmetric state (σ = |ψR, a〉〈ψR, a|) is
the stationary solution of equation (5.2). As we leave the blocking bias the effective
Hamiltonian contains also the projection of the angular momentum in the direction
of the left lead and the R-antisymmetric state is no longer an eigenstate of Heff . The
corresponding density matrix is not a stationary solution of (5.2) and current flows
through the system. The L↔ R symmetry of the system implies, for negative biases,
the blocking condition ωRτ = 0.
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ωL/R is also entering the formula for the linear conductance, equation (4.22). Also
there, interference effects are less pronounced due to the renormalization of the involved
states.
We concentrate here on the range of gate and bias voltages at which the dynamics
is restricted to transitions involving the |6g00〉 and |7gℓτ〉 many particle states of the
benzene ISET.
The seven particle states are spin and orbital degenerate. The general theory of the
GME would require a priori to keep a full 4x4 density matrix describing the 7 particle
subspace. In the presence of parallel polarized leads, though, the coherences between
different spin degrees of freedom can be neglected since spin is always conserved by the
electrons while travelling through the device. The GME can thus be written in terms
of the nine variables collected in the 1x1 matrix σ6g and the two 2x2 matrices σ7gτ with
τ =↑, ↓. Due to the rotational symmetry of the system it is more convenient to refer
to another set of variables, namely to describe the dynamics in terms of the occupation
probabilities W6, W7τ and the expectation values of the different projections of the
angular momentum for the system. The new set of variables is:

W6 = σ6g ,

W7τ = Tr{σ7gτ},

Lατ = Tr{Lασ
7gτ},

Lzτ = Tr{Lzσ
7gτ}.

(5.12)

The operator Lz is the generator of the set of discrete rotations around the axis per-
pendicular to the plane of the benzene molecule that bring the molecule into itself and
can be written within the 7 particle Hilbert space spanned by the vectors |7gℓτ〉 as
Lz = −~|ℓ|τz, where τz is the third Pauli matrix. The operator Lα generates, in the
same space, the discrete rotations around the axis in the molecular plane and passing
through the center and the atom closest to the contact α. Finally, the dynamics for
the variables introduced in equation (5.12) is given by the equations:

Ẇ6 = 2
∑

ατ

Γατ

[

−f+
α (∆E)W6 + f−

α (∆E)Lατ

]

, (5.13)

Ẇ7τ = 2
∑

α

Γατ

[

f+
α (∆E)W6 − f−

α (∆E)Lατ

]

, (5.14)

L̇ατ = −2Γατf
−
α (∆E)Lατ + 2

{

Γατf
+
α (∆E) + Γᾱτf

+
ᾱ (∆E) cos2[|ℓ|(φα − φᾱ)]

}

W6

+Γᾱτf
−
ᾱ (∆E) sin2[|ℓ|(φα − φᾱ)]W7τ − Γᾱτf

−
ᾱ (∆E)(Lατ + Lᾱτ )

+
sin[2|ℓ|(φα − φᾱ)]

4
ωᾱτLzτ , (5.15)

L̇zτ = −
∑

α

Γατf
−
α (∆E)Lzτ − 2 tan[|ℓ|(φL − φR)](ωLτ − ωRτ )(W7τ − LLτ − LRτ )

−2 cot[|ℓ|(φL − φR)](ωLτ + ωRτ )(LLτ − LRτ ), (5.16)

where Γατ = Γ0
ατ |〈6g00|dατ |7gℓτ〉|

2 is the tunnelling rate at the lead α involving the
ground states with 6 and 7 particles. Terms describing sequential tunnelling from
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and to the lead α are proportional to the Fermi functions f+
α (x) := f(x − µα) and

f−
α (x) := 1 − f+

α (x), respectively, and ∆E = E7g − E6g − eVg where E6g and E7g

are the energies of the 6 and 7 particle ground states. Finally with ᾱ we mean the
lead opposite to the lead α. By using the expression |ℓ| (to be substituted with 2 for
the 6 → 7 particle transition) we maintained the generality of the equations. The
replacement |ℓ| = 2 → 1 and the appropriate redefinition of ∆E is enough to treat the
6 → 5 transition. Another important generalization concerns the position of the leads.
The para (φL − φR = π) and ortho (φL − φR = π/3) configuration are also treated
within the same equations. In particular one can see that all the terms containing
the renormalization frequencies drop from the equations in the para configuration and
that the equations for the ortho and meta configuration coincide.
The spin splitting of the renormalization frequencies is obtained from equation (5.9).

By introducing the average bare rate Γ =
Γ0

α↑
+Γ0

α↓

2
, for simplicity equal in both leads,

and using the fact that benzene is paramagnetic we get:

ωα↑−ωα↓ = 2ΓPα
1

π

∑

{E}
[

〈7gℓ ↑ |dM↑|8{E}〉〈8{E}|d
†
M↑|7g − ℓ ↑〉pα(E − E7g

)

+〈7gℓ ↑ |d†M↑|6{E}〉〈6{E}|dM↑|7g − ℓ ↑〉pα(E7g
− E)

−〈7gℓ ↑ |dM↓|8{E}〉〈8{E}|d
†
M↓|7g − ℓ ↑〉pα(E − E7g

)

−〈7gℓ ↑ |d†M↓|6{E}〉〈6{E}|dM↓|7g − ℓ ↑〉pα(E7g
− E)

]

,

(5.17)

where one appreciates the linear dependence of the spin splitting on the lead polariza-
tion Pα. The first and the third term of the sum would cancel each other if the energy
of the singlet and triplet 8 particle states would coincide. An analogous condition, but
this time on the 6 particle states, concerns the second and the fourth terms. For this
reason the exchange interaction on the system is a necessary condition to obtain spin
splitting of the renormalization frequencies and thus the full all-electric spin control.

5.2 Interference blocking for excited states

In Figure 5.3, we see the current stability diagram for a triangular quantum dot ISET.
Interference is visible at the transitions involving an orbitally degenerate ground state,
that is at the transitions 2 ↔ 3, 3 ↔ 4 (low bias only), 4 ↔ 5 (low bias only) and
5 ↔ 6. In Figure 5.6, we show the current stability diagram for the transitions
involving 1 and 2 particle states. No interference is observed for low bias, since the
groundstates for N = 1, 2 show no orbital degeneracies. The dominant feature in this
plot is instead the region with strong current suppression at the border of the N = 1
diamond, starting a finite bias voltages. In the following, we will demonstrate that the
blocking of the current is due to interference blockade triggered by the first excited
2-particle state, which is a (spin) triplet state with additional orbital degeneracies.
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Figure 5.6: Part of the current stability diagram for the triple dot ISET. The current
is color coded, the scale is in units of eΓ. Superimposed are blue lines that indicate the
transport conditions, equation (3.2), for various channels. The 10 ↔ 20 ground state
transition is drawn as solid line, dashed and dot-dashed lines correspond to ground-
to excited state or excited- to excited state transitions. The parameters used here in
units of |b|: U = 5, V = 2, kBT = 0.002.

In Figure 5.7, we present a current-voltage curve for unpolarized leads for a gate
voltage corresponding to the vertical dashed line in the stability diagram, Figure 5.6
(green line). For low bias, no current is flowing due to Coulomb blockade, and the
N = 2 ground state is the only populated state. Once the bias is high enough so that
E2

0 − E1
0 = µ2 ≥ µd = µ0 −

Vb

2
, electrons can tunnel out into the source, leaving the

dot in the N = 1 ground state. The dots chemical potential µ2 is indicated with the
arrow a in Figure 5.9. In this situation, electrons can tunnel in from the source to
populate again the N = 2 ground state, so that current can flow as a series of single
electron tunneling processes, that change the configuration of the dot from the N = 2
to the N = 1 ground state and back. If the bias is increased further so that also the
generalized chemical potential µ2

10 (indicated by the arrow b in Figure 5.9) is in the bias
window, µs ≥ µ2

10 = E2
1−E

1
0 ≥ µd, the current decreases and eventually vanishes at one

particular point. Interference blockade occurs when the first excited two particle state
can be populated via the transitions 20 → 10, 10 → 21, namely when the conditions
−Vb

2
< µ2

00 and Vb

2
> µ2

10 are fulfilled. The state 21 cannot be depopulated by tunneling

out into 10 on the right lead due to interference. Only when µ3
01 >

Vb

2
or −Vb

2
< µ2

11,
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Figure 5.7: I-V -curve at ξ = 4.7749|b| (corresponding to the white dashed line in Figure 5.6)
for unpolarized leads (green line) or parallel polarized leads (blue line, polarization P = 0.4).
The current is blocked at three different points.

other channels allow to depopulate the blocking state and current can flow. We see
in Figure 5.6 that the lines indicating these conditions encircle the region where the
current is blocked.
The mechanism for the blocking is the same as described earlier. Degenerate orbitals
of the state E2

1 interfere to form a state which is geometrically decoupled from the
drain lead and therefore cannot be depopulated. This blocking is perfect only at
one particular bias voltage, when the level renormalization induced by the internal
dynamics is not affecting the decoupling mechanism. In Figure 5.7, we also show an
I-V -curve for polarized leads (polarization = 0.4). In this case, the current is blocked
at three different bias voltages, and at each blocking bias a different component of the
triplet state (with Sz = −1, 0, 1) is trapped on the dot (see Figure 5.8). Also in this
situation the components of the triplet with different Sz undergo a different effective
renormalization.
We conclude that interference blockade in SETs can be used to prepare a quantum
dot in a specific triplet state with all electrical means.
The results presented in this chapter were obtained in collaboration with Andrea
Donarini and Milena Grifoni. They were published in

[19] A. Donarini, G. Begemann, and M. Grifoni, Nano Lett. 9, 2897 (2009).
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Figure 5.8: Populations of the relevant states for parallel polarized leads (P = 0.4) at
ξ = 4.7749|b|. Notice that at each current blocking point in Figure 5.7, the dot is in a
certain component of the triplet state.
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Figure 5.9: Spectrum of the triangular quantum dot for a specific gate voltage that corre-
sponds to the dashed white line in the stability diagram in Figure 5.6 ( ξ = 4.7749). Blue
lines indicate the energies of the states, the black dashed auxiliary lines are used to visualize
the (generalized) chemical potentials µ2 = µ2

00, µ2
10, µ2

11, µ3
01 corresponding to the arrows

a, b, c, d, respectively.



Chapter 6

Nonequilibrium cotunneling: an
effective Kondo Hamiltonian
approach vs. exact results

In the Coulomb-blockade regime, sequential tunneling transport is exponentially sup-
pressed and processes where two or more electrons tunnel simultaneously become the
dominant transport mechanism [77]. These are called cotunneling processes and have
received a lot of interest in recent years for several reasons. First, applications that
rely on Coulomb blockade in quantum dots are limited by cotunneling. Second, co-
tunneling processes can act as an additional tool in transport spectroscopy to identify
electronic and vibrational excitation energies in semiconducting [78, 79] or carbon
nanotube [80] quantum dots. More recently, the interplay of sequential tunneling and
cotunneling processes was in the focus of both experimental [78, 81] and theoreti-
cal works [34, 82]. This interplay comes about at high enough source-drain voltages,
when inelastic cotunneling processes can lead to a nonequilibrium population of ex-
cited states and therefore enable sequential tunneling processes inside the Coulomb
diamond (cotunneling assisted sequential tunneling).

To calculate the current and other observables in transport through quantum dots in
the Coulomb blockade regime, there are a number of techniques, each of them having
their advantages and (at least practical) limitations. A real-time transport approach
was developed by Schoeller, König and Schön [70, 71, 72] to describe nonequilibrium
transport properties of mesoscopic systems with strong Coulomb interaction. Follow-
ing this theory, one can trace out the leads degrees of freedom and derive a formally
exact equation of motion for the reduced density matrix (RDM) of the system. The
theory allows for a systematic expansion in the tunneling Hamiltonian HT, pinpointing
the different tunneling processes. More specifically, sequential tunneling processes are
attributed to contributions of second order in HT, cotunneling to such of fourth order,
and so on. The authors also established a diagrammatic representation of the various
terms entering in the equation for the RDM. Alternatively, exactly the same equation
can be derived within a Bloch-Redfield approach iterated to fourth order in HT.

In systems with normal metal leads (where the spin projection Sz is conserved) and
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without orbital degeneracies, a simple rate equation is sufficient to describe sequential
tunneling processes [37]. Within this so-called master equation approach, one calcu-
lates transitions between states of the quantum dot system with Fermi’s golden rule,
again treating HT as a perturbation. This approach can be generalized to higher order
tunneling processes by making use of the so called T -matrix

T (E) = HT +HT
1

E −H0 + i0+
T (E), (6.1)

where 0+ is a symbolic notation for an infinitesimal positive number. The T -matrix,
known from scattering theory, describes the propagation of particles from an initial
to a final state, where the particle can propagate directly or experience an arbitrary
number of scattering (in this case tunneling) events. In particular, transition rates
from the initial to the final state can be calculated up to a given order in HT. In the
quantum transport context, the T -matrix based approach was e.g. applied to a double
dot structure [34] or to molecular systems where electronic and vibronic degrees of
freedom can be strongly coupled [36]. Compared to the GME, it is relatively simple
and yields good agreement where additional effects due to level shifts and broadening
are irrelevant, namely in the regime where the tunneling induced level width is much
smaller than the temperature. It should be said that effects arising from interference
between (quasi-)degenerate states cannot be taken into account by a rate equation
approach based on the T -matrix. In systems where such effects are expected, the
concept of the GME must be used, because the dynamics of off-diagonal elements of
the RDM, responsible for coherence and interference, is not captured by simple rate
equations.
If one aims at describing cotunneling processes only, implying that the quantum dot is
in the deep Coulomb blockade regime, further simplifications are possible. In particular
it was recently shown by Schmaus et al. [83] for a multilevel quantum dot with odd
filling that a generalized Schrieffer-Wolff [84] transformation can be used to obtain an
effective cotunneling Hamiltonian. Transport can then be calculated using e.g. rate
equations or Green’s function techniques.
In this chapter, we show that an effective Kondo Hamiltonian can be obtainend by
eliminating linear contributions in HT from H and projecting the leading second or-
der contributions on a subspace with an odd number of electrons. This is equiva-
lent to a Schrieffer-Wolff transformation. Renormalization group techniques for the
Kondo model are available and give correct qualitative and quantitative predictions
for the current and conductance that include higher order tunneling processes. These
techniques can be applied when other excitations are well separated from the regime
covered by the low energy Kondo Hamiltonian. In this thesis, we do not use these
powerful but complex techniques, and restrict ourselves to fourth order rate equations
to describe various cotunneling processes. In particular, a comparison between exact
numerical results up to fourth order in HT and approximation schemes is made to
identify the validity and accuracy of the approximate methods.
We show here that sequential tunneling contributions can become relevant already
inside the Coulomb diamond, when excited states become populated via inelastic co-
tunneling and enable sequential tunneling processes. At this point, the cotunneling
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contributions to the rates can become negative, which would lead to an ill-defined set
of rate equations if the sequential tunneling contributions were not large enough to
assure positive definiteness of the rates. In section 6.5, we estimate the gate dependent
renormalization of the energy levels that define the inelastic cotunneling threshold, as
it was observed e.g. in [64].

6.1 Transport

In this chapter, we consider systems without orbital degeneracies and non-polarized
leads, so that a rate equation approach to transport is sufficient. As we want to
calculate cotunneling rates, we iterate the T -matrix to second order in HT. We label
the states of the quantum dot with their particle number N , the Sz-component of their
spin η and an additional quantum number l. The rate for a transition between two
states |N ′l′η′〉 → |Nlη〉 of the quantum dot system is then given by

Γ|Nlη〉〈N ′l′η′| = 2π
∑

f,i

∣

∣

∣

∣

∣

〈fNlη|HT +HT
1

EiN′l′η′
−HQD −Hleads + i0+

HT|iN ′l′η′〉

∣

∣

∣

∣

∣

2

Wiδ(EfNlη
− EiN′l′η′

). (6.2)

Here the sum goes over all possible initial and final states of the leads |iNlη〉 =
|Nηl〉|iL〉|iR〉, |fN ′l′η′〉 = |N ′η′l′〉|fL〉|fR〉, the former weighted by a thermal distribu-
tion function Wi. The rate equation describing the dynamical population probabilities
of the states is

ṖNlη = −
∑

N ′l′η′

Γ|N ′l′η′〉〈Nlη| P
Nlη +

∑

N ′l′η′

Γ|Nlη〉〈N ′l′η′| P
N ′l′η′

, (6.3)

where PNlη is the probability of finding the dot in the state |Nlη〉 and the stationary
solution is given by

∑

N ′l′η′

Γ|N ′l′η′〉〈Nlη|P
Nlη =

∑

N ′l′η′

Γ|Nlη〉〈N ′l′η′| P
N ′l′η′

, (6.4)

with the additional normalization condition
∑

Nlη

PNlη = 1. (6.5)

Equation (6.3) is very intuitive and sometimes just given heuristically. However, to
lowest (second) order in HT it follows directly from the GME, equation (3.19), by
neglecting off-diagonal elements of the reduced density matrix (RDM) and identifying
the occupation probabilities PNlη with the diagonal elements of the RDM. With the
help of the stationary solution, we calculate the current as

I = Isequential + Icotunneling, (6.6)
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with

Isequential =
∑

Nlη

∑

sm

(

ΓL
|N+1sm〉〈Nlη| − ΓL

|N−1sm〉〈Nlη|

)

PNlη
stat , (6.7)

Icotunneling =
∑

Nlη

[

∑

l′η′

(

ΓRL
|Nl′η′〉〈Nlη| − ΓLR

|Nl′η′〉〈Nlη|

)

]

PNlη
stat . (6.8)

Cotunneling rates that connect N - and N ± 2-particle states are not taken into ac-
count. These processes can be neglected, because they are not seen inside the Coulomb
diamonds and are of small magnitude outside. They were addressed in [85].
For the evaluation of equation (6.2), all possible configurations of the leads with dif-
ferent thermal weight have to be taken into account. We can write the possible initial
states as

∑

i

|iNlη〉 = |Nηl〉
∑

iL

|iL〉
∑

iR

|iR〉, (6.9)

and the final state follows from the initial state by summing over all possible tunneling
processes that connect |Nηl〉 with |N ′η′l′〉. Specifically it means that for the sequential
tunneling rates, we obtain

∑

f

|fN±1l′η′〉 = |N+1 η′l′〉
∑

kασ

ckασ

∑

iL

|iL〉
∑

iR

|iR〉+|N−1 η′l′〉
∑

kασ

c†kασ

∑

iL

|iL〉
∑

iR

|iR〉,

(6.10)
and for the cotunneling rates

∑

f

|fNl′η′〉 = |Nη′l′〉
∑

kk′

∑

αα′

∑

σσ′

c†k′α′σ′ckασ

∑

iL

|iL〉
∑

iR

|iR〉. (6.11)

The sum over k and k′ are recast into integrals with the replacements
∑

kα →
∑

α

∫

dǫk να, where να is the density of states in lead α. The expectation
value of pairs of lead operators is by definition given by the Fermi function:

∑

iL

∑

iR

〈iL|〈iR|c
†
kασck′α′σ′|iR〉|iL〉Wi = δαα′δσσ′δkk′ f(ǫk − µα). (6.12)

6.2 The Kondo Hamiltonian

In the deep Coulomb blockade regime, each diamond in the stability diagram corre-
sponds to an N -particle ground state. In such a situation, we can describe our system
by an effective low energy Hamiltonian

HN =
∑

lη

Elη|N lη〉〈N lη| +Hleads +HN
int, (6.13)

that includes only N -electron states in the quantum dot and transitions between those
via cotunneling events involving virtual excitations of N ± 1 particle states. We can
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derive this equation by lowest order perturbation theory [86]. If we write the state of
the system as the sum of the terms |N − 1〉, |N〉 and |N + 1〉, where |N〉 represents
all states with electron number N , then the Schrödinger equation can be written as





HN−1 N−1 HN−1 N

HN N−1 HN N HN N+1

HN+1 N HN+1 N+1









|N − 1〉
|N〉

|N + 1〉



 = E





|N − 1〉
|N〉

|N + 1〉



 , (6.14)

where HN N ′ = PNHPN ′ and PN is a projection operator onto the subspace with N
particles. There is no term in the Hamiltonian that connects the N − 1 and the N +1
spaces directly. The lead Hamiltonian is not written here, it gives contributions to
the diagonal of the above matrix only. We can now eliminate |N − 1〉 and |N + 1〉 to
obtain
(

HNN +HNN+1
1

E −HN+1N+1

HN+1N +HNN−1
1

E −HN−1N−1

HN−1N

)

|N〉 = E|N〉.

(6.15)
Contributions from states with N ± 2 are of higher order and are thus neglected in
equations (6.14), (6.15). The last two terms in equation (6.15) can be recast into the
form

HN
int =

∑

kk′

αα′

∑

σσ′

∑

ll′

ηη′

[

J ll′

αα′

2
τ ηη′ · τ σ′σ|Nlη〉〈Nl

′η′| +
P ll′

αα′

2
δηη′δσσ′|Nlη〉〈Nl′η′|

]

c†kασck′α′σ′ .

(6.16)
Details of the calculations are shown in section 6.5. The first term in equation (6.16)
looks like the famous Kondo Hamiltonian with an anti-ferromagnetic spin-spin in-
teraction, but generalized to two (or more) orbitals, while the second is a potential
scattering term. The assumption that N is odd reflects itself in the possible values of
η = ±1

2
for ↑, ↓. The expressions for the coupling matrix elements read

J ll′

αα′ = tαtα
′∗∑

s

〈Nl ↑ |dα↓|N + 1s〉〈N + 1s|d†α′↑|Nl
′ ↓〉

ENl′ − EN+1s + ǫk′α′ + i0+
+ (6.17)

tαtα
′∗∑

s

〈Nl ↓ |d†α′↓|N − 1s〉〈N − 1s|dα↑|Nl
′ ↑〉

EN−1s − ENl′ + ǫkα − i0+
,

P ll′

αα′ = tαtα
′∗∑

sσ

〈Nl ↑ |dασ|N + 1s〉〈N + 1s|d†α′σ|Nl
′ ↑〉

ENl′ − EN+1s + ǫk′α′ + i0+
+ (6.18)

tαtα
′∗∑

sσ

〈Nl ↑ |d†α′σ|N − 1s〉〈N − 1s|dασ|Nl
′ ↑〉

EN−1s − ENl′ + ǫkα − i0+
.

The spin operator of the molecule can be expressed in terms of the vector of the Pauli

matrices, τ =

{(

0 1
1 0

)

,

(

0 −i
i 0

)

,

(

1 0
0 −1

)}

:

Sll′ =
1

2

∑

ηη′

|Nηl〉τ ηη′〈Nη′l′|. (6.19)
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Schrieffer and Wolff [84] were the first to obtain a result similar to equation (6.13)
starting from the single impurity Anderson model. They showed the relation between
Anderson- and Kondo like models using a canonical transformation. The equations
(6.17), (6.18) represent a generalization of their results to more complicated models
with more orbitals and more charge states.

6.3 Different approximations/approaches

In the following, we calculate the current and conductance based on equations (6.2)
and following. We use different approximation schemes of increasing complexity. The
theory by Koller, Leijnse et al. [73, 87] based on the real-time diagrammatic approach
[70] acts as a benchmark for our calculations. In this approach, kinetic equations for
the reduced density matrix exact up to fourth order in HT are developed. We refer to
it as KinEq-approach.

6.3.1 First Approximation - cotunneling only

Well inside the Coulomb diamonds, the current is dominated by cotunneling processes.
In a first approximation, we therefore neglect sequential tunneling contributions in
equation (6.2). This is the regime where the system can be described by the low-energy
Kondo Hamiltonian in equation (6.13). As a further simplification, we neglect the ǫk
energy dependence in the denominators of the coupling constants J and P . This is
justified for small (compared to the charging energy) bias voltages, so that the electrons
that tunnel to and from the leads have energies around the equilibrium chemical
potential and thus 1

EN+1s−ENl−ǫk
≈ 1

EN+1s−ENl
because of EN+1s − ENl ≫ ǫk, ǫk′ . The

sums over k and k′ in the expression for the rates are recast into integrals, so that we
obtain

Γαα′

|Nηl〉〈Nη′l′| = 2π

∫

dǫkνα

∫

dǫk′να′f(ǫk − µα)(1 − f(ǫk′ − µα′)) (6.20)

δ (ENlη − ENη′l′ − ǫk − ǫk′)

(
∣

∣J ll′

RL

∣

∣

2

2
(1+ τx)ηη′ + δηη′

∣

∣P ll′

RL

∣

∣

2

2

)

,

which can be solved easily to yield for example

ΓRL
|Nηl〉〈Nη′l′| = 2π νLνRnB (−(ENη′l′ − ENηl) − eVb) (−(ENη′l′ − ENηl) − eVb)

(
∣

∣J ll′

RL

∣

∣

2

2
(1+ τx)ηη′ + δηη′

∣

∣P ll′

RL

∣

∣

2

2

)

, (6.21)

where nB(x) = 1
exp(βx)−1

is the Bose Einstein distribution function. At low temper-

atures, −nB(−x)x ≈ θ(x)x. As a result, the differential conductance is finite but
constant as a function of Vb until inelastic cotunneling sets in. At this point, the
dI/dV increases steplike, because a new transport channel is available. The resulting
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nonequilibrium distribution of population probabilities generates typically a cusp in
the dI/dV on top of the step.
This approximation is valid for gate voltages inside the N -electron Coulomb diamond,
as long as the denominators of J and P are not vanishing, and for small bias voltages.
We refer to this approximation as AppI.

6.3.2 Second Approximation - cotunneling only

To get a more precise description of the cotunneling conductance, we take into account
in a second approximation the energy dependence of J and P . By shifting the inte-
gration variable ǫk → ǫk + µL in equation (6.21), we see that J and P now explicitly
depend on µL and therefore on the bias voltage. In the rates, one gets a summation
over expressions of the general form

Γ ∼

∫

dǫf(ǫ) (1 − f(ǫ+ µL − µR + ENl − ENl′))
1

ǫ− E1 ± i0+

1

ǫ− E2 ± i0+
,

where E1 and E2 depend on l and l′ and the summation indices in the expressions
for J and P . If E1 = E2, these expressions cannot be evaluated directly, because of
divergences stemming from second order poles. This problem was stated already in
1994 [88], and a regularization scheme has been developed and become standard within
the T -matrix approach to transport [89, 36]. In this regularization scheme, a finite
width γ ∼ Γ is attributed to the molecular levels which enters the denominators as
imaginary parts. This level broadening physically stems from the tunneling coupling,
but is not taken into account by the T -matrix approach. Thus the poles are shifted
away from the real axis so that the integral can actually be performed. The resulting
expression can be expanded in powers of γ and the leading term is found to be of
order 1/γ. Together with the prefactor of the rates, Γ2, this term is identified to be
a sequential tunneling term. It is excluded to avoid double counting of sequential
tunneling processes. The next to leading order term is of order γ0 and gives the
regularized cotunneling rate. At this point, the actual value of the broadening does
not matter and the limit γ → 0 can safely be taken. The calculation of the current
with regularized cotunneling processes and disregarding sequential tunneling rates is
referred to as AppII.

6.3.3 T -matrix Approach

AppII fails when cotunneling assisted sequential tunneling processes become accessible.
This can happen well inside the Coulomb diamond, when excited N particle states are
populated via inelastic cotunneling. At the lines given by the resonance condition
of the generalized chemical potential of the dot with the chemical potential of the
leads (dashed lines inside the Coulomb diamond in Figure 6.1) the cotunneling rates
become negative which leads to an ill-defined set of rate equations, unless we include
also sequential tunneling terms and allow also states with N ± 1 to be populated.
For the calculation of the rates, we use equation (6.2). This is exactly the T -matrix
approach mentioned in the introduction.
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6.4 Results

We compare now the different approaches applied to a double quantum dot (DD)
system, filled with one electron. The Hamiltonian is given by

HDD =
2
∑

α=1

∑

σ

ξασd
†
ασdασ + b

∑

σ

(

d†1σd2σ + d†2σd1σ

)

+U
∑

α

nα↑nα↓ + V (n1↑ + n1↓)(n2↑ + n2↓). (6.22)

The parameters we use are (in units of |b|, b < 0): ξ = −Vg, U = 18.18, V = 9.32,
ΓL = ΓR = 2πνL|t

L|2 = 0.0178, kBT = 0.1136. The energies of the N = 1 states are
ENl = ±b which leads to an inelastic cotunneling threshold of ∆ = −2b.
In Figure (6.2), the conductance through the DD calculated with the KinEq approach
is plotted on a logarithmic color scale. We see the Coulomb diamond with N = 1.
Outside the diamond, there are additional lines that involve sequential tunneling be-
tween excited states and groundstates. Inside the diamond, at Vb = 1∆ the threshold
for inelastic cotunneling is clearly visible. Also the onset of the cotunneling assisted
sequential tunneling (see dashed lines in Figure (6.1)) can be seen. In Figures (6.3)
and (6.4), we plot the dI/dV versus bias voltage, calculated using the different ap-
proximation schemes at different values of the gate voltage.
We see that AppI yields good agreement with the KinEq approach only at small bias
voltages. Inelastic cotunneling can be described correctly only if ∆ ≪ EC , which is
not the case for the parameters here. This situation can be found e.g. in molecular
quantum dots, where the perfect degeneracies in the spectrum of the isolated symmet-
ric molecule are lifted by the asymmetric environment of the source-molecule-drain
junction.
AppII and KinEq agree nicely as long as gate and bias voltages are such that one is in
the innermost diamond defined by the dashed lines (see Figure (6.1)). At its borders,
the cotunneling rates can become negative and the rate equations ill-defined. It is not
valid outside of this region.
Inside the overall Coulomb diamond, the T -matrix approach and KinEq yield almost
exactly the same result. Small relative deviations (few per cent) between the two
approaches can be seen at the resonant lines, which can be attributed to the class of
diagrams not taken into account by the T -Matrix. Larger deviations occur outside of
the diamond (see Figure (6.5)).
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Figure 6.1: Sketch of the Coulomb diamond with one particle. Red lines indicate a
transition between states with zero and one particles, green lines between states with
one and two particles. Solid lines are for groundstate-groundstate transitions that
define the Coulomb blockade region, dashed lines involve excited states.

Figure 6.2: log10(dI/dV ) calculated with KinEq. One nicely sees the general resem-
blance to Figure (6.1). The onset of inelastic cotunneling processes at Vb = ∆ is clearly
visible.
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Figure 6.3: dI/dV as a function of bias voltage calculated with the different approaches
at Vg = 1V . AppII yields divergences in the conductance at resonances. The T -
matrix approach and KinEq are well behaved and include also sequential tunneling
contributions which are of order 1/Γ larger than the cotunneling rates.
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Figure 6.4: dI/dV as a function of bias voltage calculated with the different approaches
at the center of the diamond (Vg = 2V ). AppII and the T -matrix approach coincide
for a large bias range. AppI underestimates the conductance.
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Figure 6.5: Relative difference in current between KinEq and the T -matrix approach.
Deviations are seen at the position of the resonant lines (see Figure 6.1). Otherwise,
the agreement is almost perfect.
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6.5 Gate-dependent tunneling-induced level shifts

The coupling of the molecule to the leads has certain hybridization effects on the
molecular states, such as broadening of the otherwise delta-like levels, and in addition
a renormalization of the position of the energy levels. To see these effects within a
perturbative approach, a summation to all orders in HT over at least a certain class of
contributions has to performed [90]. Instead, if we follow Haldane’s scaling approach
[91], the shift of the energy level Elη can be calculated by taking into account all
possible fluctuations it can experience to lowest order in HT:

δElη =
∑

ασs

∫ D

−D

dǫ

2π
Re

[

Γα
(1 − fα(ǫ)) |〈N−1s|dασ|Nlη〉|

2

Elη − (EN−1s + ǫ)
+Γα

fα(ǫ)
∣

∣〈N+1s|d†ασ|Nlη〉
∣

∣

2

Elη − (EN+1s − ǫ)

]

,

(6.23)
where Γα = 2πνα|t

α|2 and D is the bandwidth of the lead conduction band. This shift
does not depend on η. Evaluating the integrals at T ≈ 0 yields

δElη =
∑

ασs

Γα

2π

[

|〈N−1s|dασ|Nlη〉|
2 ln

Elη − EN−1s − µα

Elη − EN−1s −D
(6.24)

+
∣

∣〈N+1s|d†ασ|Nlη〉
∣

∣

2
ln
Elη − EN+1s + µα

Elη − EN+1s −D

]

,

and in the infinite band limit D → ∞ we can approximate this as

lim
D→∞

δElη =
∑

ασs

Γα

2π

[

|〈N−1s|dασ|Nlη〉|
2 ln

(EN−1s + µα − Elη)

eV
(6.25)

+
∣

∣〈N+1s|d†ασ|Nlη〉
∣

∣

2
ln

(EN+1s − µα − Elη)

eV

]

−
∑

ασs

Γα

2π
ln

D

eV

[

〈Nlη|d†ασ|N−1s〉〈N−1s|dασ|Nlη〉

+〈Nlη|dασ|N+1s〉〈N+1s|d†ασ|Nlη〉
]

=
∑

ασs

Γα

2π

[

|〈N−1s|dασ|Nlη〉|
2 ln

(EN−1s + µα − Elη)

eV

+
∣

∣〈N+1s|d†ασ|Nlη〉
∣

∣

2
ln

(EN+1s − µα − Elη)

eV

]

−
∑

ασ

Γα

2π
ln

D

eV
〈Nlη|d†ασdασ + dασd

†
ασ|Nlη〉

=
∑

ασs

Γα

2π

[

|〈N−1s|dασ|Nlη〉|
2 ln

(EN−1s + µα − Elη)

eV

+
∣

∣〈N+1s|d†ασ|Nlη〉
∣

∣

2
ln

(EN+1s − µα − Elη)

eV

]

−
∑

ασ

Γα

2π
ln

D

eV
.

The difference between two N particle energies entering in the inelastic cotunneling
rates is then gate dependent, but not depending on the exact value of D. The gate
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dependence leads to a tilting of the otherwise horizontal cotunneling line in the stability
diagram. This effect has been observed in a recent experiment by Holm [64].
It is very interesting to see the resemblance of this result with the result obtained
by Sonja Koller [90]. She followed the real-time diagrammetic approach by König et
al. [71], and obtained a renormalization by summing a given subclass of diagrams to
all orders in HT. Translated to our notation, her result for the renormalized energy
difference of two levels Elη − El′η′ + δElη − δEl′η′ reads

δElη − δEl′η′ =
∑

ασs

Γα

2π

[

|〈N−1s|dασ|Nlη〉|
2 Ψ

(

1

2
+ i

β(EN−1s + µα − Elη)

2π

)

+
∣

∣〈N+1s|d†ασ|Nlη〉
∣

∣

2
Ψ

(

1

2
+ i

β(EN+1s − µα − Elη)

2π

)

− |〈N−1s|dασ|Nl
′η′〉|

2
Ψ

(

1

2
+ i

β(EN−1s + µα − El′η′)

2π

)

−
∣

∣〈N+1s|d†ασ|Nl
′η′〉
∣

∣

2
Ψ

(

1

2
+ i

β(EN+1s − µα − El′η′)

2π

)]

,(6.26)

where Ψ is the digamma function and stems from the precise evaluation of integrals as
in equation (6.23) at finite temperatures. In the limit T → 0, her result agrees exactly
with ours.

Derivation of equation (6.16)

This section can be regarded as an appendix to this chapter. We derive the expression
for the effective Kondo Hamiltonian, equation (6.16). To evaluate equation (6.15), we
use the projection operators PN and PN+1 on the tunneling Hamiltonian:

HNN+1 = PNHTPN+1 =
∑

kσα

tα
∑

Nlη

∑

sm

〈Nlη|dασ|N+1sm〉c†kασ|Nlη〉〈N+1sm|, (6.27)

where lη and sm run over all possible N and N + 1 particle states, respectively. We
show here the calculation for HN→N+1→N

int := HNN+1
1

Ei−HN+1N+1−Hleads+i0+HN+1N in

some detail, while for HN→N−1→N
int we just added the result in equations (6.17) and

(6.18). We find:

HNN+1
1

Ei −HN+1N+1 −Hleads + i0+
HN+1N (6.28)

=
∑

kασ

∑

k′α′σ′

∑

ll′

∑

ηη′

∑

ss′

∑

mm′

tαtα
′∗
c†kασ|Nlη〉〈Nlη|dασ|N + 1sm〉〈N + 1sm|

1

Ei −HN+1N+1 −Hleads + i0+
|N + 1s′m′〉〈N + 1s′m′|d†α′σ′|Nl

′η′〉〈Nl′η′|ck′α′σ′

=
∑

kασ

∑

k′α′σ′

∑

ll′

∑

ηη′

∑

sm

tαtα
′∗ 〈Nlη|dασ|N + 1sm〉〈N + 1sm|d†α′σ′|Nl′η′〉

ENl′η′ − EN+1sm + ǫk′α′σ′ + i0+
c†kασck′α′σ′ |Nlη〉〈Nl

′η′|.
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To see the relation between equation (6.28) and equation (6.16), and to identify the
exchange scattering J ll′

αα′ and the potential scattering P ll′

αα′ , we perform the sum over
σ and σ′ in equation (6.28) term by term, for fixed ll′, αα′, kk′ and EN+1sm = EN+1s

for zero magnetic field. Still, we have to sum over m, in words over all the states
with different Sz in the multiplet with Energy EN+1s. Again, we show the calculation
explicitly for HN→N+1→N

int . We obtain

∑

σσ′

∑

ηη′

∑

m

tαtα
′∗ 〈Nηl|dασ|N + 1sm〉〈N + 1sm|d†α′σ′|Nη′l′〉

ENη′l′ − EN+1s + ǫk′α′σ′

c†kαsck′α′σ′|Nlη〉〈Nl
′η′|

= tαtα
′∗ 〈Nl ↑ |dα↓|N + 1s 0〉〈N + 1s 0|d†α′↑|Nl

′ ↓〉

ENl′↓ − EN+1s + ǫk′α′↑ + i0+
c†kα↓ck′α′↑|N ↑ l〉〈N ↓ l′|

+tαtα
′∗ 〈Nl ↓ |dα↑|N + 1s 0〉〈N + 1s 0|d†α′↓|Nl

′ ↑〉

ENl′↑ − EN+1s + ǫk′α′↓ + i0+
c†kα↑ck′α′↓|Nl ↓〉〈Nl

′ ↑ |

+
∑

η

tαtα
′∗ 〈Nηl|dα↑|N+1s η+1

2
〉〈N+1s η+1

2
|d†α′↑|Nηl

′〉

ENηl′ − EN+1s + ǫk′α′↑ + i0+
c†kα↑ck′α′↑|Nηl〉〈Nηl

′|

+
∑

η

tαtα
′∗ 〈Nηl|dα↓|N+1s η−1

2
〉〈N+1s η−1

2
|d†α′↓|Nηl

′〉

ENηl′ − EN+1s + ǫk′α′↓ + i0+
c†kα↓ck′α′↓|Nηl〉〈Nηl

′|.

(6.29)

We want to write this in the form
[

J−+τ−σ′στ
+
ηη′ +J+−τ+

σ′στ
−
ηη′ +Jzzτ z

σ′στ
z
ηη′ +Pδσ′σδηη′ ]

c†kασck′α′σ′|Nlη〉〈Nl′η′|. Here, τ+ and τ− are linear combinations of τx and τ y, τ± =
τx ± iτ y. In particular τ · τ = τxτx + τ yτ y + τ zτ z = 1

2
(τ+τ− + τ−τ+) + τ zτ z. In the

following, we identify J+−, J−+, Jzz and P (for simplicity, the indices αα′ and ll′ are
omitted at the moment), and show that J+− = J−+ = Jzz = J . We do so by using
angular momentum ladder operators S+ =

∑

i d
†
i↑di↓ and S− =

∑

i d
†
i↓di↑, where i runs

over all the atoms of the molecule, and their impact on the multiplet states with spin
S and Sz = m is

S−|S,m〉 = ~

√

S(S + 1) −m(m− 1)|S,m− 1〉, (6.30)

S+|S,m〉 = ~

√

S(S + 1) −m(m+ 1)|S,m+ 1〉,

together with the commutation relations

[

S+, d†ασ

]

= δσ↓d
†
α↑, (6.31)

[

S+, dασ

]

= −δσ↑dα↓,
[

S−, d†ασ

]

= δσ↑d
†
α↓,

[

S−, dασ

]

= −δσ↓dα↑.



92 | CHAPTER 6. NONEQUILIBRIUM COTUNNELING

Using equations (6.30) and (6.31), we get

〈Nl ↓ |dα↑|N + 1s 0〉〈N + 1s 0|d†α′↓|Nl
′ ↑〉 (6.32)

= 〈Nl ↑ |S+dα↑|N + 1s 0〉〈N + 1s 0|d†α′↓S
+|Nl′ ↓〉

= 〈Nl ↑ |dα↓|N + 1s 0〉〈N + 1s 0|d†α′↑|Nl
′ ↓〉,

and with this we find that

J+− = J−+ = tαtα
′∗ 〈Nl ↓ |dα↑|N + 1s 0〉〈N + 1s 0|d†α′↓|Nl

′ ↑〉

ENl′ − EN+1s + ǫk′α′ + i0+
. (6.33)

To identify Jzz and P , we introduce the shorthand notation, Mησ =〈Nηl|dασ|N+1sm〉

〈N + 1sm|d†α′σ|Nηl
′〉. Again with equations (6.30), (6.31), one can show that M↑↑ =

M↓↓ and M↓↑ = M↑↓. With |Nηl〉〈Nηl′| = 1
2

∑

η |Nηl〉〈Nηl
′| + ηSz

ll′ , the last two lines
of equation (6.29) can be rewritten as

1

ENl′ − EN+1s + ǫk′α′ + i0+

[

∑

σσ′

[M↑↑ −M↓↑]S
z
ll′τ

z
σ′σc

†
kασck′α′σ′+ (6.34)

1

2

∑

ησ

[M↑↑ +M↓↑] c
†
kασck′α′σ|Nηl〉〈Nηl

′|

]

,

from where we identify

Jzz = tαtα
′∗∑

m

[

〈Nl ↑ |dα↑|N + 1sm〉〈N + 1sm|d†α′↑|Nl
′ ↑〉

ENl′ − EN+1s + ǫk′α′ + i0+
(6.35)

−
〈Nl ↑ |dα↓|N + 1sm〉〈N + 1sm|d†α′↓|Nl

′ ↑〉

ENl′ − EN+1s + ǫk′α′ + i0+

]

,

P = tαtα
′∗∑

m

∑

σ

[

〈Nl ↑ |dασ|N + 1sm〉〈N + 1sm|d†α′σ|Nl
′ ↑〉

ENl′ − EN+1s + ǫk′α′ + i0+

]

. (6.36)

The remaining task is to show that Jzz = J+− or in other terms that

〈Nl ↓ |dα↑|N + 1s 0〉〈N + 1s 0|d†α′↓|Nl
′ ↑〉 (6.37)

=
[

〈Nl ↑ |dα↑|N + 1s 1〉〈N + 1s 1|d†α′↑|Nl
′ ↑〉

−〈Nl ↑ |dα↓|N + 1s 0〉〈N + 1s 0|d†α′↓|Nl
′ ↑〉
]

,

which can be done again by using equations (6.30), (6.31). We use in particular

〈N S η|dα↑|N+1 S+
1

2
η+

1

2
〉 = (6.38)

√

(S + 1
2
)(S + 3

2
) − (η + 1

2
)(η + 3

2
)

√

S(S + 1) − η(η − 1)
〈N S η−1|dα↑|N+1 S+

1

2
η−

1

2
〉,

from where it follows that equation (6.37) is fulfilled.
The results presented in this chapter were obtained in collaboration with Jens Paaske,
Sonja Koller and Milena Grifoni. A publication is in preparation.



Chapter 7

Conclusions

We have investigated quantum transport through single molecule junctions with weak
lead-molecule coupling. In chapter 2, the PPP-Hamiltonian for conjugated molecules
was derived and specified for benzene. This model covers the excitations of benzene
relevant for transport, and it is known to give good agreement with experiments on
benzene in the gas phase. As the theoretical framework to describe transport through
the molecule, we have derived the generalized master equation (GME) for the reduced
density matrix (RDM) of the molecule to lowest non-vanishing order in the lead-
molecule coupling in chapter 3.

In chapter 4, we have presented the results of our calculations on transport through a
benzene interference single electron transistor (ISET), attached to the lead in para and
meta configuration. In both cases, transport is characterized by Coulomb blockade. In
meta configuration, we found that destructive interference of degenerate many-body
eigenstates causes a reduction of the linear conductance with respect to the para con-
figuration, and negative differential conductance (NDC) and current blocking at finite
bias voltages. We tested the robustness of the interference effects against breaking of
the exact symmetry of the benzene molecule, which is related to the presence of exact
degeneracies. As the condition for the interference effects to survive, we have found
the quasi degeneracy of two interfering states, meaning that the difference in energy
must be smaller than the molecule-lead coupling strength, δE ≪ ~Γ ≪ kBT .

The energetic analysis of the sequential tunneling processes together with the Pauli
exclusion principle in the leads and the interference-caused node in the transition prob-
ability of the blocking state would lead to the conclusion that current blocking is a
threshold effect. We find instead that due to the internal dynamics of the molecular
states induced by the coupling to the leads, the interference is perfectly destructive
and the current is blocked completely only at one specific bias voltage. In chapter
5, we proposed to use the characteristic blocking behavior to obtain control over the
molecules spin degree of freedom by means of the bias voltage. In the presence of
parallel polarized leads, different components of spin multiplets experience different
renormalizations, and thus the current is blocked at more than one specific bias voltage.
Every time the current is blocked, the molecule is in a specific state of the multiplet,
and the bias can be tuned to switch between different configurations. Spin control by
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all-electrical means is highly desirable for spintronics and spin based quantum com-
puting applications. In addition to benzene junctions, we propose other realizations
of ISETs. As necessary conditions, we identified the presence of degenerate orbitals
and the possibility to form superpositions of these orbitals that exhibit nodes at one
electrode and not at the other. In particular, these conditions are fulfilled for systems
with discrete rotational symmetry. We showed that qualitatively the same interference
effects as in benzene can be expected in a triangular arrangement of quantum dots.
Multiple quantum dots can be described by Hamiltonians formally equivalent to HPPP,
but with adjusted parameters.
In chapter 6, we left the sequential tunneling regime and investigated cotunneling
processes. We showed that in the deep Coulomb blockade regime the system can be
described by an effective Kondo Hamiltonian. We have derived different approximation
schemes for the cotunneling rates, all based on the T -matrix formalism and a master
equation approach, neglecting coherences. We compared these approximation schemes
to the exact fourth order calculations by Koller et al. [73] and discussed their regimes
of validity as well as their accuracy. The generalized master equation and the T -
matrix approach show good agreement where additional effects due to level shifts and
broadening are irrelevant, namely in the regime where the tunneling induced level
width is much smaller than the temperature.

Perspectives

In the end of this thesis, we want to give some stimulus for a continuation of our work.
Therefore, we list suggestions for future works and some of the problems that could
not be resolved in the framework of this thesis.

• An estimate of the reduction of the addition energy due to screening effects of
the electron electron interaction on the molecule in presence of polarizable envi-
ronments is highly desirable. To calculate this quantity, we suggest to implement
the approach of Kaasbjerg [56] for our model.

• Molecules are characterized by vibrations. The impact of these vibrational modes
on the interference effects is an interesting question that should be addressed.

• A simple method that can deal with degeneracies, and therefore with interference
effects in the cotunneling regime, is of great interest. Is it possible to general-
ize the T -matrix based rate equation approach to include coherences between
degenerate states?

• In benzene, a multi-orbital Kondo effect is expected. To gain a quantitative
understanding of the conductance in the Kondo regime, one can derive the pa-
rameters J and P in the Kondo model from the exact many-body eigenstates of
benzene and use them as an input for renormalization group (RG) calculations.
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Transport through a double-quantum-dot system with noncollinearly polarized leads

R. Hornberger, S. Koller, G. Begemann, A. Donarini, and M. Grifoni
Institut für Theoretische Physik, Universität Regensburg, 93035 Regensburg, Germany

�Received 29 November 2007; revised manuscript received 21 February 2008; published 12 June 2008�

We investigate linear and nonlinear transport in a double quantum dot system weakly coupled to spin-
polarized leads. In the linear regime, the conductance as well as the nonequilibrium spin accumulation are
evaluated in analytic form. The conductance as a function of the gate voltage exhibits four peaks of different
heights with mirror symmetry with respect to the charge neutrality point. As the polarization angle is varied,
due to exchange effects, the position and shape of the peaks change in a characteristic way, which preserves the
electron-hole symmetry of the problem. In the nonlinear regime, various spin-blockade effects are observed.
Moreover, negative differential conductance features occur for noncollinear magnetizations of the leads. In the
considered sequential tunneling limit, the tunneling magnetoresistance �TMR� is always positive with a char-
acteristic gate voltage dependence for noncollinear magnetization. If a magnetic field is added to the system,
the TMR can become negative.

DOI: 10.1103/PhysRevB.77.245313 PACS number�s�: 73.63.Kv, 72.25.�b, 73.23.Hk, 85.75.�d

I. INTRODUCTION

Spin-polarized transport through nanostructures is attract-
ing increasing interest due to its potential application in
spintronics1,2 as well as in quantum computing.3 Down-
scaling magnetoelectronic devices to the nanoscale implies
that Coulomb interaction effects become increasingly
important.4,5 In particular, the interplay between spin-
polarization and Coulomb blockade can give rise to a com-
plex transport behavior in which both the spin and the charge
of the “information carrying” electron play a role. This has
been widely demonstrated by many experimental studies on
single-electron transistors �SETs� with ferromagnetic leads,
with central element being either a ferromagnetic particle,6–8

normal metal particles,9,10 a two-level artificial molecule,11 a
C60 molecule,12 or a carbon nanotube,13 showing the increas-
ing complexity and variety of the investigated systems. Ini-
tially, the theoretical work was mainly focused on the differ-
ence in the transport properties for parallel or antiparallel
magnetizations in generic spin-valve SETs.14–24 More re-
cently, the interplay between spin and interaction effects for
noncollinear magnetization configurations attracted quite
some interest both in systems with a continuous energy
spectrum,25–28 as well as in single-level quantum dots,29–36

many-level nanomagnets,37 and in carbon nanotube quantum
dots.38 In the noncollinear case, a much richer physics is
expected than in the collinear one. For example, two separate
exchange effects have to be taken into account. On the one
hand, there is the nonlocal interface exchange, in scattering
theory for noninteracting systems described by the imaginary
part of the spin-mixing conductance,39 which in the context
of current-induced magnetization dynamics acts as an effec-
tive field.40 Such an effective field has been experimentally
found to strongly affect the transport dynamics in spin valves
with MgO tunnel junctions.41 This effect has also been re-
cently involved to explain negative tunneling magnetoresis-
tance �TMR� effects in carbon nanotube spin valves13 and
called spin-dependent interface phase shifts.22,42 The second
exchange term is an interaction-dependent exchange effect
due to virtual tunneling processes that is absent in noninter-

acting systems.25,28,30,38 This latter exchange effect is poten-
tially attractive for quantum information processing since it
allows to switch on and off magnetic fields in arbitrary di-
rections just by a gate electric potential.

Recently, there has been increasing interest in double-
quantum-dot systems �that can be realized, e.g., in semicon-
ducting structures43 or carbon nanotubes44� as tunable sys-
tems attractive for studying fundamental spin correlations. In
fact, the exchange Coulomb interaction induces a singlet-
triplet splitting, which can be used to perform logic gates.45

Moreover, Coulomb interaction together with the Pauli prin-
ciple can be used to induce spin-blockade when the two elec-
trons have triplet correlations.46–49 The Pauli spin-blockade
effect can be used to obtain a spin-polarized current even in
the absence of spin-polarized leads; it requires a strong
asymmetry between the two on-site energies of the left and
right dots.

So far, transport through a double-dot �DD� system
with spin-polarized leads has been addressed in few
theoretical23,24,50 and experimental11 works, for the case of
collinearly polarized leads only. While Ref. 23 addresses ad-
ditional Pauli spin-blockade regimes when one lead is half-
metallic and one is nonmagnetic, Ref. 24 focuses on the
effects of higher order processes in symmetric DD systems,
which can, e.g., yield a zero bias anomaly or a negative
tunneling magnetoresistance. In Ref. 11, Coulomb blockade
spectroscopy is used to measure the energy difference be-
tween symmetric and antisymmetric molecular states and to
determine the spin of the transferred electron.

In this work, we investigate spin-dependent transport in
the so-far unexplored case of a DD system connected to
leads with arbitrary polarization direction. Specifically, we
focus on the low transparency regime where a weak coupling
between the DD and the leads is assumed. Our model takes
into account interface reflections as well as exchange effects
due to the interactions and relevant for noncollinear polariza-
tion. We focus on the case of a symmetric DD, so that rec-
tification effects induced by Pauli spin-blockade are ex-
cluded. In the linear transport regime, the conductance is
calculated in closed analytic form. This yields four distinct
resonant tunneling regimes, but due to the electron-hole sym-
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metry of the DD Hamiltonian, each possess a symmetric mir-
ror with respect to the charge neutrality point. However, by
applying an external magnetic field, this symmetry is broken,
which can lead to negative tunneling magnetoresistance fea-
tures. Finally, in the nonlinear regime, some excitation lines
can be suppressed for specific polarization angles, and nega-
tive differential features also occur.

The method developed in this work to investigate charge
and spin transport is based on the Liouville equation for the
reduced density matrix �RDM� in lowest order in the reflec-
tion and tunneling Hamiltonians. The obtained equations of
motion are fully equivalent to those that could be obtained
by using the Green’s function method30,51 in the same weak-
tunneling limit. The advantage of our approach is that it is, in
our opinion, easier to understand and to apply for newcom-
ers, as it is based on standard perturbation theory and does
not require knowledge of the nonequilibrium Green’s func-
tion formalism.

The paper is organized as follows. In Sec. II, we introduce
the model system for the ferromagnetic DD single-electron
transistor. In Sec. III, the coupled equations of motion for the
elements of the DD reduced density matrix are derived.
Readers not interested in the derivation of the dynamical
equations can directly go to Secs. IV and V, where results for
charge and spin transfer in the linear and nonlinear regimes,
respectively, are discussed. Finally, we present results for the
transport characteristics in the presence of an external mag-
netic field in Sec. VI. Conclusions are drawn in Sec. VII.

II. MODEL

We consider a two-level DD, or a single molecule with
two localized atomic orbitals, attached to ferromagnetic
source and drain contacts and with a capacitive coupling to a
lateral gate electrode. The system is described by the total
Hamiltonian,

Ĥ = Ĥ� + Ĥs + Ĥd + ĤT + ĤR, �1�

accounting for the DD Hamiltonian, the source �s� and drain
�d� leads, and the tunneling �T� and reflection �R� Hamilto-
nians. The two contacts are considered to be magnetized
along an arbitrary but fixed direction determined by the mag-
netization vectors m� �. The two magnetization axes enclose
an angle �� �0° ,180°� �see Fig. 1�. The spin quantization
axis z�� in lead � is parallel to the magnetization m� � of the
lead. The majority of electrons in each contact will then be in

the spin-up state. The Hamiltonians Ĥs , Ĥd that model the
source and drain contacts ��=s ,d� read as follows:

Ĥ� = �
k��

��k��
− ���c�k��

† c�k��
, �2�

where c�k��

† and c�k��
are electronic lead operators. They

create, respectively annihilate, electrons with momentum k
and spin �� in lead �. The electrochemical potentials ��

=�0�+eV� contain the bias voltages Vs and Vd at the left and
right lead with Vs−Vd=Vbias. There is no voltage drop within
the DD. We denote in the following �k��

−��ª��k��
.

Tunneling processes into and out of the DD are described

by ĤT. We denote with d���

† , d���
the creation and destruc-

tion operators in the DD. We assume that tunneling only can
happen between a contact and the closest dot, so that we can
use the convention that the lead indices �=s ,d correspond to
�=1,2 for the DD. With t� the tunneling amplitude, we find

ĤT = �
�k��

�t�d���

† c�k��
+ t�

�c�k��

† d���
� . �3�

The so-called reflection Hamiltonian ĤR includes reflec-
tion events at the lead-molecule interface.28,38 For strongly
shielded leads, the overall effect is the occurrence of a small
energy shift �R induced by the magnetic field in the contacts
and built up during several cycles of reflections at the bound-
aries. It reads

ĤR = − �R �
�=s,d

�d�↑�

† d�↑�
− d�↓�

† d�↓�
� . �4�

Finally, the DD Hamiltonian needs to be specified. As the
spin quantization axis of the DD, z��, we choose the direction
perpendicular to the plane spanned by z�s and z�d �Ref. 30� �see
Fig. 2�. The two remaining basis vectors x�� and y�� are along
z�s+z�d, respectively along z�s−z�d. The matrices that math-
ematically describe the above transformations read

Ms↔� =
1
�2

�+ e+i�/4 + e−i�/4

− e+i�/4 + e−i�/4 � = Md↔�
� . �5�

We express the DD Hamiltonian in the localized basis
such that, e.g., 	+,−
 describes a state with a spin-up electron
on site 1 and a spin-down electron on site 2 �with spin di-
rections expressed in the spin-coordinate system of the DD�.
Such state can be obtained by applying creation operators on
the vacuum state, i.e., 	+,−
=d1↑

† d2↓
† 	0
. In general, the order-

gate
gate

Θ

FIG. 1. �Color online� Schematic picture of the model: a double-
quantum-dot system attached to polarized leads. The significance of
the on-site and intersite interactions U and V, respectively, is de-
picted. The source and drain contacts are polarized and the direction
of the magnetizations m� � is indicated by the arrows.

FIG. 2. �Color online� The spin quantization axis of the double-
dot, z�, is chosen to be perpendicular to the plane spanned by the
magnetization directions m� s, m� d in the leads. The latter enclose an
angle �.
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ing of the creation operators is defined as d1↑
† d2↑

† d1↓
† d2↓

† 	0
.
The DD Hamiltonian then reads

Ĥ� = �
���

��d���

† d���
+ b�

��

�d1��

† d2��
+ d2��

† d1��
�

+ �� −
U

2
− V��

�=1

2

�
��

d���

† d���
+ U�

�=1

2

n�↑�
n�↓�

+ V�n1↑�
+ n1↓�

��n2↑�
+ n2↓�

� , �6�

where the spin index � indicates that the operators are ex-
pressed in the spin-coordinate system of the DD. The tunnel-
ing coupling between the two sites is b, while U and V are
on-site and intersite Coulomb interactions. In the following,
we consider a symmetric DD with equal on-site energies �1
=�2. Thus, we can incorporate the on-site energies in the
parameter � proportional to the applied gate voltage Vgate.

To understand transport properties of the two-site system
in the weak-tunneling regime, we have to analyze the eigen-
states of the isolated interacting system. These states, which
are expressed in terms of the localized states, and the corre-
sponding eigenvalues are listed in Table I.52 Table I also
indicates the eigenvalues of the total spin operator. The
ground states of the DD with odd particle number are spin
degenerate. In contrast, the ground states with even particle

number have total spin S=0 and are not degenerate. In the
case of the two-particle ground state, the parameters �0 and
	0 determine whether the electrons prefer to pair in the same
dot or are delocalized over the DD structure. Since the eigen-
states are normalized to one, the condition �0

2+	0
2=1 holds.

The energy difference between the S=0 ground state and the
triplet is given by the exchange energy,

J =
1

2
�� − U + V� = 2	b	�R + �1 + R2� ,

where �=4	b	�1+R2 and R= �V−U� / �4	b	�.
Besides the triplet, one observes the presence of

higher two-particle excited states with total spin S=0.

Finally, we remark that ĤT and ĤR contain operators of the
DD, d���

† and d���
, in the spin-coordinate systems of the

leads, while Ĥ� is already expressed in terms of DD opera-
tors d���

† and d���
with spin expressed in the coordinate

system of the DD.

III. DYNAMICAL EQUATIONS FOR THE REDUCED
DENSITY MATRIX

In this section, we shortly outline how to derive the equa-
tion of motion for the RDM to lowest nonvanishing order in
the tunneling and reflection Hamiltonians. The method is
based on the well known Liouville equation for the total
density matrix in lowest order in the tunneling and reflection
Hamiltonians. Equations of motion for the reduced density
matrix are obtained upon performing the trace over the lead
degrees of freedom,53 yielding, after standard approxima-
tions, Eqs. �13� and �14� below. In the case of spin-polarized
leads, however, it is convenient to express the equations of
motion for the RDM in the basis that diagonalizes the iso-
lated system’s Hamiltonian and in the system’s spin quanti-
zation axis. After rotation from the leads’ quantization axis to
the DD one we obtain �Eq. �21��, which forms the basis of all
the subsequent analysis.

Let us start from the Liouville equation for the total den-
sity matrix 
̂I�t� in the interaction picture,

i�
d
̂I�t�

dt
= �ĤT

I �t� + ĤR
I �t�, 
̂I�t�� , �7�

with ĤT and ĤR transformed into the interaction picture by

ĤT/R
I �t�=ei/��Ĥ�+Ĥs+Ĥd��t−t0�ĤT/Re−i/��Ĥ�+Ĥs+Ĥd��t−t0�, where t0

indicates the time at which the perturbation is switched on.
Integrating Eq. �7� over time and inserting the obtained ex-
pression in the right-hand side of Eq. �7� one equivalently
finds


̂̇I�t� = −
i

�
�ĤR

I �t�, 
̂I�t0�� −
i

�
�ĤT

I �t�, 
̂I�t0�� −
1

�2�
t0

t

dt��ĤT
I �t�

+ ĤR
I �t�,�ĤT

I �t�� + ĤR
I �t��, 
̂I�t���� . �8�

TABLE I. Eigenstates of the double-dot system and correspond-
ing eigenvalues and parity. In the limit 	b	→� where the interdot
hopping is unhindered, R→0 and �0→	0. For 	b	→0, i.e., no in-
terdot hopping takes place, we find that R→ +� and �0→1, 	0

→0 if UV; state 	2
 then becomes degenerate to 	2��0�
, forming
a Heitler–London state. In turn, if U�V, then R→−� and �0→0,
	0→1.

Abbreviation State Eigenvalue Spin

	0
 	0,0
 0 0

	1e�
 1
�2

�	� ,0
+ 	0,�
� ��+b 1/2

	1o�
 1
�2

�	� ,0
− 	0,�
� ��−b 1/2

	2
 �0

�2
�	+,−
+ 	−,+
�

+
	0

�2
�	2,0
+ 	0,2
�

2��+ 1
2 �U+V−�� 0

	2��1�
 	+,+

	2��0�
 1

�2
�	+,−
− 	−,+
� 2��+V 1

	2��−1�
 	−,−

	2�
 1

�2
�	2,0
− 	0,2
� 2��+U 0

	2�
 	0

�2
�	+,−
+ 	−,+
�

−
�0

�2
�	2,0
+ 	0,2
�

2��+ 1
2 �U+V+�� 0

	3o�
 1
�2

�	2,�
+ 	� ,2
� 3��+U+2V+b 1/2

	3e�
 1
�2

�	2,�
− 	� ,2
� 3��+U+2V−b 1/2

	4
 	2,2
 4��+2U+4V 0

in terms of R= �U−V� / �4	b	�:
�=4	b	�1+R2 , �0= 1

�2
1

�1+R2−R�1+R2
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The time evolution of the RDM,


̂�
I �t� ª Trleads�
̂I�t�� , �9�

is now formally obtained from Eq. �8� by tracing out the lead
degrees of freedom. To proceed, we make the following stan-
dard approximations.

�i� The leads are considered as reservoirs of noninteract-
ing electrons that stay in thermal equilibrium at all times. In
fact, we only consider weak tunneling and, therefore, the
influence of the DD on the leads is marginal. Hence, we can
approximatively factorize the density matrix of the total sys-
tem as


̂I�t� � 
̂�
I �t�
̂s
̂d, �10�

where 
̂s and 
̂d are time independent and given by the usual

thermal equilibrium expression for the contacts 
̂s/d= e−	Ĥs/d

Zs,d
,

where 	 is the inverse temperature and Zs/d are the partition
sums over all states of lead s /d.

�ii� We consider the lowest nonvanishing order in ĤT/R.
�iii� We apply the Markov approximation, i.e., in the in-

tegral in Eq. �8�, we replace 
̂�
I �t�� with 
̂�

I �t�. In other
words, it is assumed that the system loses all memory of its
past due to the interaction with the lead electrons.

Furthermore, being interested in the long term behavior of
the system only, we send t0→−�. We finally obtain the gen-
eralized master equation �GME� for the reduced density ma-
trix,


̂̇�
I �t� = −

i

�
Trleads�ĤR

I �t�, 
̂�
I �t�
̂s
̂d�

−
1

�2�
0

�

dt� Trleads��ĤT
I �t�,�ĤT

I �t − t��, 
̂�
I �t�
̂s
̂d��� .

�11�

A. Contribution from the tunneling Hamiltonian

In the following, we derive the explicit expression for the
GME in the basis of the isolated DD. For simplicity, we omit
the contribution of the reflection Hamiltonian in a first in-
stance. When we shall have obtained the final form of the
GME due to the tunneling term, we will see that it is easy to
insert the contribution from the reflection Hamiltonian. Let
us then start from the tunneling Hamiltonian in the interac-
tion picture,

ĤT
I �t� = �

�k��

�
i,j

t�c�k��

† �d���
�ij	i
j	exp�i��i − � j + ��k��

�t/��

+ H.c., �12�

where �d���
�ij = i	d���

	j
 and �d���

† �ij = i	d���

† 	j
 are the
electron annihilation and creation operators in the spin-
quantization axis of lead � expressed in the basis of
the energy eigenstates of the quantum dot system. To
simplify Eq. �11�, standard approximations are invoked.
�i� The first one is the secular approximation: fast oscil-
lations in time average out in the stationary limit we
are interested in and thus can be neglected. Together with
the relation Trleads�
̂s
̂dc�k��

† c��k���
�=�kk���������f����k��,

where f����k�� is the Fermi function, and the cyclic proper-
ties of the trace we get


̇̂�
I �t� = −

1

�2�
0

�

dt� �
�k��

	t�	2��
ilm

f����k��
��d���

�il�d���

† �lm	i
m	
̂�
I �t�exp�i��m − �l + ��k��

�t�/��

+ �
ilm

�1 − f����k��
���d���

† �il�d���
�lm	i
m	
̂�

I �t�exp�− i��l − �m + ��k��
�t�/��

+ �
ilm

f����k��
�
̂�

I �t��d���
�il�d���

† �lm	i
m	exp�− i��i − �l + ��k��
�t�/��

+ �
ilm

�1 − f����k��
��
̂�

I �t��d���

† �il�d���
�lm	i
m	exp�+ i��l − �i + ��k��

�t�/��

− �
iljm

�1 − f����k��
���d���

�ij
̂�
I �t� jl�d���

† �lm	i
m	exp�+ i��m − �l + ��k��
�t�/��

− �
iljm

f����k��
��d���

† �ij
̂�
I �t� jl�d���

�lm	i
m	exp�− i��l − �m + ��k��
�t�/��

− �
iljm

�1 − f����k��
���d���

�ij
̂�
I �t� jl�d���

† �lm	i
m	exp�− i��i − � j + ��k��
�t�/��

− �
iljm

f����k��
��d���

† �ij
̂�
I �t� jl�d���

�lm	i
m	exp�+ i�� j − �i + ��k��
�t�/��� . �13�
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�ii� For the second approximation, we notice that we wish
to evaluate single components n	
̂�

I 	m
 of the RDM in the
system’s energy eigenbasis. Therefore, we assume that the
DD is in a pure charge state with a certain number of elec-
trons N and energy EN. In fact, in the weak-tunneling limit,
the time between two tunneling events is longer than the

time where relaxation processes happen. That is, we can
neglect matrix elements between states with different num-
ber of electrons and only regard elements of 
̂�

I , which con-
nect states with same electron number N and same energy
EN. So, we can divide 
̂�

I into submatrices labeled with N
and EN and find


̇nm
ENN�t� = −

�

�
�
���

� �
l,l��	N−1


, �
j�	ENN


, �
h,h��	N+1


�	t�	2�
�a� + � f���h − � j�D���

��h − � j� +
i

�
� d�k

f���k�D���
��k�

�k − �h + � j
��d���

�nh�d���

† �hj
 jm
ENN�t�

�b� + ��1 − f��� j − �l��D���
�� j − �l� −

i

�
� d�k

�1 − f���k��D���
��k�

�k − � j + �l
��d���

† �nl�d���
�lj
 jm

ENN�t�

�c� + � f���h − � j�D���
��h − � j� −

i

�
� d�k

f���k�D���
��k�

�k − �h + � j
�
nj

ENN�t��d���
� jh�d���

† �hm

�d� + ��1 − f��� j − �l��D���
�� j − �l� +

i

�
� d�k

�1 − f���k��D���
��k�

�k − � j + �l
�
nj

ENN�t��d���

† � jl�d���
�lm

�e� − 2�1 − f���h − � j��D���
��h − � j��d���

�nh��d���

† �hm
h�h
EhN+1�t�

�f� − 2f��� j − �l�D���
�� j − �l��d���

† �nl��d���
�lm
l�l

ElN−1�t��� . �14�

In Eq. �14�, we used the notation 
nm
ENN

ª n	
̂�
I,ENN	m
.

By convention, ��l,l� ,� j ,�h,h� � means that in each line
��a�–�f��, we sum over the indices occurring in this line only.
Notice that the sum over j is restricted to states of energy
Ej =EN=En=Em. For the states with N�1 electrons, we have
to sum over all energies; therefore, we indexed the density
matrix with Eh=Eh� in line �e� and El=El� in line �f�. Further,
we replaced the sum over k by an integral, �k
→�d��k��

D���
���k��

�, where D���
���k��

� denotes the den-
sity of states in lead � for the spin direction ��, and applied
the following useful formula:

� d��k��
G���k��

��
0

t

dt�e��i/�����k��
−E�t�

= ��G�E� � i���
d��k��

G���k��
�

���k��
− E�

, �15�

where the prime at the integral denotes Cauchy’s prin-
cipal-part integration. In our case, G���k��

�
=D���

���k��
�f�

����k��
� with f�

+ = f� and f�
− =1− f�. In order to

simplify the notations, we replaced ��k��
by �k in Eq. �14�.

B. Transformation into the spin-coordinate system of the
double dot

In Sec. II, we introduced the transformation rules for
changing from the lead spin coordinates �� into the DD spin
coordinates ��. These rules give

�d�↑�

†

d�↓�

† � =
1
�2
�+ e−i��/2 + e+i��/2

− e−i��/2 + e+i��/2��d�↑�

†

d�↓�

† � , �16�

with �sª− �
2 , �dª + �

2 .
Thus, Eq. �14� can be easily expressed in the DD spin

quantization axis. For example, it holds

�
��

D���
d��

† d��
=

1

2
�D�↑�

+ D�↓�
��

��

������
d���

† d���

+
1

2
�D�↑�

− D�↓�
��

��

����−��

� d���

† d�−��
,

�17�

where we introduced
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�����
��
ª � 1 �� = ���

ei�� �� = ↑ ��� = ↓
e−i�� �� = ↓ ��� = ↑ .

�
For later convenience, we also define

F����
��

�
ª

1

2�D�+�
f�

��E� + D�−�
f�

��E� �� = ���

D�+�
f�

��E� − D�−�
f�

��E� �� � ��� ,
�

and its related principal-part integral,

P����
��

� �E� ª ��
d�F����

��
� ����� − E�−1.

C. Contribution from the reflection Hamiltonian

In order to give the full expression for the GME in the
system’s eigenbasis, we need to compute the contribution
from the reflection Hamiltonian in Eq. �11�. In analogy to
what we did to evaluate the contribution from the tunneling

Hamiltonian, we must first transform ĤR into the interaction
picture and then perform the secular approximation to get rid

of the time dependence. To start, we express ĤR in the DD
spin quantization basis,

ĤR
I = − �R�

�
�

j�	N


l�	N−1


�
������

�����
��

� d��jl

† d�
�lj� 	j
j	 .

�18�

The commutator is easily evaluated to be

−
i

�
Trleads�ĤR

I , 
̂�
I �t�
s
d�

= −
i

�
�
�

�R �
j�	N


�
l�	N−1


�
������

�����
��

� �d��jl

† d�
�lj� 	j


�j	
̂�
I �t� − 
̂�

I �t�d��jl

† d�
�lj� 	j
j	� . �19�

In order to include this commutator in the master equation
�Eq. �14��, let us introduce the following abbreviation:

R����
��

=
1

	t�	2
�R����↑��

�� ↓ + ���↓��
�� ↑� . �20�

Now, we can add R����
��

in Eq. �14� in lines �b� and �d� to
find the final form of the complete master equation in the DD
spin-coordinate system. It reads


̇nm
ENN�t� = −

�

�
�

�=s,d
	t�	2 �

��,���

� �
l,l��	N−1


, �
j�	ENN


, �
h,h��	N+1


��
�a� + �����

�� �F����
��

+ ��h − � j� +
i

�
P����

��
+ ��h − � j���d���

�nh�d��
��

† �hj
 jm
ENN�t�

�b� + �����
��

� �F����
��

− �� j − �l� −
i

�
�P����

��
− �� j − �l� + R����

��
���d���

† �nl�d��
��

�lj
 jm
ENN�t�

�c� + �����
�� �F����

��
+ ��h − � j� −

i

�
P����

��
+ ��h − � j��
nj

ENN�t��d���
� jh�d��

��
† �hm

�d� + �����
��

� �F����
��

− �� j − �l� +
i

�
�P����

��
− �� j − �l� + R����

��
��
nj

ENN�t��d���

† � jl�d��
��

�lm

�e� − 2�����
��

F����
��

− ��h − � j��d���
�nh�
h�h

EhN+1�t��d��
��

† �hm

�f� − 2�����
��

� F����
��

+ �� j − �l��d���

† �nl�
l�l
ElN−1�t��d��

��
�lm. �21�

D. Current formula

We now observe that Eq. �21� can be recast in the follow-
ing Bloch–Redfield form:


̇nm
ENN�t� = − �

j j�

Rnmjj�
NN


 j j�
ENN�t� + �

hh�

Rnmhh�
NN+1


hh�
EhN+1�t�

+ �
ll�

Rnmll�
NN−1


ll�
ElN−1�t� , �22�
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where the sums in Eq. �22� run over states with fixed particle
number: j , j�� �	ENN
�, h ,h�� �	N+1
�, l , l�� �	N−1
�. The
Redfield tensors are given by ��=s ,d� �Ref. 38�

Rnmjj�
NN = �

�
�

l�or h�
��mj����,nhhj

�+�NN+1 + ��,nllj
�+�NN−1� + �nj���,j�hhm

�−�NN+1

+ ��,j�llm
�−�NN−1�� , �23�

Rnmkk�
NN�1 = �

�

���,k�mnk
�+�NN�1 + ��,k�mnk

�−�NN�1� , �24�

where the quantities ��,njjk
���NN�1 can be easily read out from

Eq. �21�. They are

��,nhh�k
���NN+1 = �

�����
��

�
�����

��
	t�	2�F����

��
+ ��h − �k�

�
i

�
P����

��
+ ��h − �k���d���

�nh�d��
��

† �h�k� ,

��,nll�k
���NN−1 = �

�����
��

�
�����

��
� 	t�	2�F����

��
− ��k − �l�

�
i

�
�P����

��
− ��k − �l� + R����

��
��

��d���

† �nl�d��
��

�l�k� .

With the stationary density matrix 
̂�st
I being known, the

current �through lead �=s /d=�� follows from

I = 2�e Re�
N

�
n,n�,j

���,njjn�
�+�NN+1 − ��,njjn�

�+�NN−1�
n�n,st
EnN . �25�

We numerically solve Eq. �22� and use the result to evaluate
the current flowing through the DD, as will be Secs. V–VII.
At low-bias voltages, however, we can make some further
approximations to arrive at an analytical formula for the
static dc.

IV. LOW-BIAS REGIME

A. General considerations

A low-bias voltage ensures that merely one channel is
involved with respect to transport properties. Here, we focus
on gate voltages that align charge states N and N+1. More-
over, we can focus on density matrix elements that involve
the energy ground states EN

�0� and EN+1
�0� only. In the following,

we shall use the following compact notations:


̂�
I,EN

�0�N
ª 
̂�

�N�, n	
̂�
�N�	m
 = 
nm

�N�. �26�

Evaluation of the current requires the knowledge of 
̂�
�N�

and 
̂�
�N+1�, i.e., a solution of the set of coupled equations that

are obtained from Eq. �21� or, equivalently, from Eq. �22�. In
the low-bias regime, this task is simplified since �i� terms
which try to couple states with particle numbers unlike N and
N+1 can be neglected; �ii� we can reduce the sums over h ,h�

in the equation for 
̇̂�
�N� and over l , l� in the equation for


̇̂�
�N+1� to energy-ground states EN

�0� and EN+1
�0� because all the

other transitions are exponentially suppressed by the Fermi
function. Notice, however, that these two approximations are
not appropriate for the principal-part terms since they are not
energy conserving. The resulting equations for 
̂�

�N� and 
̂�
�N+1�

�Eqs. �B1� and �B2�, respectively� can be found in Appendix
B. In the following, we shall apply those equations to derive
an analytical expression for the conductance in the four dif-
ferent resonant charge state regimes possible in a DD system,
i.e.,

N = 0 ↔ N = 1, N = 1 ↔ N = 2,

N = 2 ↔ N = 3, N = 3 ↔ N = 4. �27�

In all of the four cases, we get a system of five coupled
equations involving diagonal and off-diagonal elements of
the RDM. The matrix elements of the dot operators between
the involved states entering these equations are given in Ap-
pendix A. Before going into the details of these equations, it
is instructive to analyze the structure and the physical sig-
nificance of the involved RDM elements.

B. Elements of the reduced density matrix

N=0. In the case of an empty system, we have only one
density matrix element in the corresponding block with fixed
particle number N=0, i.e.,


00
�0��t� = :W0, �28�

describing the probability to find an empty double-dot sys-
tem.
N=1. In this case, we have four eigenstates for the system,
where the two even ones build the degenerate ground state
and the two odd ones are excited states �see Table I�. In the
low-bias regime, we only need to take into account transi-
tions between ground states. Therefore, we have to deal with
the 2�2 matrix,

�
1e↑1e↑
�1� 
1e↑1e↓

�1�


1e↓1e↑
�1� 
1e↓1e↓

�1� � = :� W1↑ w1ei�1

w1e−i�1 W1↓
� . �29�

The total occupation probability for one electron is

W1 ª W1↑ + W1↓. �30�

The meaning of the off-diagonal elements, the so-called co-
herences, becomes clear if we regard the average spin in the
system,

Si
�1� =

1

2
Tr��i

Pauli
̂�
�1��t�� , �31�

where i=x ,y ,z and �i
Pauli are the Pauli spin matrices. This

yields

Sx
�1� = w1 cos �1, Sy

�1� = − w1 sin �1, �32�

Sz
�1� =

1

2
�W1↑ − W1↓� . �33�
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N=2. For the case N=2, we actually have six different
eigenstates, but only one of them, 	2
, is a ground state �with
spin S=0�, see Table I. Only this ground state must be con-
sidered in the low-bias regime, yielding


22
�2��t� = :W2. �34�

This element describes the probability to find a dot with two
electrons.
N=3. In this case, we have again four eigenstates for the
system, whereas the two odd ones build the degenerate
ground state and the two even ones are excited. In the low-
bias regime, we only need to deal with the 2�2 matrix in-
volving the three-particle ground states,

�
3o↑3o↑
�3� 
3o↑3o↓

�3�


3o↓3o↑
�3� 
3o↓3o↓

�3� � = :� W3↑ w3ei�3

w3e−i�3 W3↓
� . �35�

The total occupation probability for three electrons is

W3 ª W3↑ + W3↓.

As for the case N=1, the off-diagonal elements yield infor-
mation on the average spin Si

�3�= 1
2Tr��i

Pauli
̂�
�3��t�� in the sys-

tem through the following relations:

Sx
�3� = w3 cos �3, Sy

�3� = − w3 sin �3, �36�

Sz
�3� =

1

2
�W3↑ − W3↓� . �37�

N=4. Finally, if the double quantum dot is completely filled
with four electrons, we only have one nondegenerate state.
Correspondingly, there is only one relevant RDM matrix el-
ement,


44
�4��t� = :W4, �38�

describing the probability to find four electrons in the sys-
tem. The total spin is S=0.

Hence, we see that in all of the four cases �Eq. �27��, we
get a system of five equations with the five independent
physical quantities WN ,WN+1 and Sx

�i� ,Sy
�i� ,Sz

�i� with i=1 or 3.

C. Conductance formula

We shall exemplarily present results for the resonant
transition N=1↔N=2. For the other transitions, similar
considerations apply. The quantities of interest are
W1 ,W2 ,Sx

�1� ,Sy
�1� ,Sz

�1�, which are related through Eqs. �32�
and �36� to the density matrix elements of 
̂�

�1�. From Eqs.
�B1� and �B2� and Table III, and with W1=1−W2 we finally
obtain the following:

Ẇ1 = −
�

�
�

�=s,d
	t�	2k+

2�2F�↓↓
+ ��2�W1 − 4F�↓↓

− ��2�W2

− 4F�↑↓
+ ��2�S� �1� · m� �� , �39�

S�̇ �1� = −
�

�
�

�=s,d
	t�	2k+

2�2F�↑↑
+ ��2�S� �1� − �F�↑↓

+ ��2�W1

− 2F�↑↓
− ��2�W2�m� � +

2

�k+
2 P���1,�E2� − E1

�0��m� �

� S� �1�� . �40�

We have introduced the notation 4k�
2
ª ��0�	0�2. All of the

nonvanishing principle-value factors P�↑↓
� and the reflection

parameter R�↑↓ have been merged to the following compact
form:

P���1,�E2� − E1
�0�� ª −

1

2
�P�↓↑

− ��1� + R�↓↑� − k+
2P�↑↓

+ ��2�

+
1

4
P�↑↓

+ ��2� − �1e� −
1

4
P�↑↓

+ ��2� − �1e�

− k−
2P�↑↓

+ ��2� − �1e� , �41�

where we introduced the chemical potential �N+1=EN+1
�0�

−EN
�0� and �E2� denotes the four different two-particle ener-

gies. We notice that the set of coupled equation �Eq. �39� and
�40�� for the evolution of the populations and of the spin
accumulation has a similar structure to that reported in Refs.
28, 30, and 38 for a single-level quantum dot, a metallic
island, and a single-walled carbon nanotube, respectively.
Some prefactors and the argument of the principal-part
terms, however, are DD specific. In particular, as in Refs. 28
and 30, we clearly identify a spin precession term originating
from the combined action of the reflection at the interface
and the interaction. The associated effective exchange split-
ting is �B1, where �=−g�B is the gyromagnetic ratio and

B� 1 ª
2

�
�
�

	t�	2P�m� � �42�

is the corresponding effective exchange field. We now focus
on the stationary limit. In the absence of the precession term,
the spin accumulation has only a Sy

�1� component since, due
to our particular choice of the spin quantization axis, Sx

�1�

=0 holds. The exchange field tilts the accumulated spin out
of the magnetizations’ plane and gives rise to a nonzero Sz

�1�

component proportional to B1 and Sy
�1�.

To get further insight in the spin dynamics, we observe
that since we are looking at the low-bias regime, we can
linearize the Fermi function f� in the bias voltage, i.e.,

TABLE II. Matrix elements for the N=0↔N=1 transition in-
duced by operators d�↑ and d�↓, �=1,2.

0↔1

	1e↑
 	1e↓
 	1o↑
 	1o↓


d1↑ : 0	 1
�2

0 1
�2

0

d1↓ : 0	 0 1
�2

0 1
�2

d2↑ : 0	 1
�2

0 − 1
�2

0

d2↓ : 0	 0 1
�2

0 − 1
�2
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f���� = �1 + e	��+eV���−1 � f���„1 − f�− ��e	V�… . �43�

By introducing the polarization of the contacts,

p���� ª
D�↑�

��� − D�↓�
���

D�↑�
��� + D�↓�

���
,

we can express the F
����

��
� factors as

F�↑↑
� ��� �

1

2
D����f�����1 � f����e	V�� ,

F�↑↓
� ��� = p����F�↑↑

� ��� ,

where D�=D�↑�
+D�↓�

. It is also sufficient for our calcula-
tions to regard the density of states as a constant quantity,
D����=D�. Consequently, the polarization is also constant,
p����= p�. Finally, we focus in the following on the symmet-

ric case where both leads have the same properties, which, in
particular, means that tunneling elements, polarizations, den-
sity of states, and reflection amplitude are equal,

t1 = t2 = :t, p1 = p2 = :p ,

D1 = D2 = :D, R1��−��
= R2��−��

= :R . �44�

Upon introducing the linewidth �= 2�
� D	t	2, the conductance

G12= I12 /Vbias for the resonant regime N=1↔N=2 reads

G12��� =
�

2
e2	k+

2 f��2�f�− �2�
f�− �2� + 1

��1 −
p2 sin2��

2 �
1 + �B1/f��2�2�k+

2�2 cos2��
2 �� . �45�

Similarly, we find for an arbitrary resonance �i=0,1 ,2 ,3�,

Gii+1��� =
�

2
e2		i + 1	d†	i
	2

f��i+1�f�− �i+1�
1 + f„�− 1�i�i+1…

�1 −
p2 sin2��

2 �
1 + �Bi+1/f��− 1�i+1�i+1�2�	i + 1	d†	i
	2�2 cos2��

2 �� , �46�

where 	i+1	d†	i
	 is a shortcut notation for the nonvanishing
matrix elements 	Ei+1

�0� i+1	d��
† 	Ei

�0�i
	 calculated in Tables
II–V. It holds 	1	d��

† 	0
	= 	4	d��
† 	3
	=1 /�2 and 	2	d��

† 	1
	
= 	3	d��

† 	2
	=k+. Moreover, we gathered together the
principal-part contributions and the ones coming from the
reflection Hamiltonian in the effective magnetic fields,

B� 2 = B� 1,

B� 3 = B� 4 ª
2

�
�
�

	t�	2P����4,E3
�0� − �E2��m� �.

The latter are defined in terms of the following function:

P����4,E3
�0� − �E2�� ª −

1

2
�P�↓↑

+ ��4� + R�↓↑� − k+
2P�↑↓

− ��3�

+
1

4
P�↑↓

− ��3o − �2�� −
1

4
P�↑↓

− ��3o − �2��

− k−
2P�↑↓

− ��3o − �2�� .

Moreover, a closer look to Eq. �46� shows that its angular
dependence is strongly coupled to the square of the ratio
��Bi� / ���f��−1�i�i��, which is the effective exchange split-
ting rescaled by the coupling and the Fermi function. The
ratio occurs in the denominators, and its value depends on
the gate voltage. As the change of Bi under the variation in
the gate voltage is comparatively small, the factor dominat-
ing the gate voltage evolution is the Fermi function. This
accounts for the population of the dot: only if a nonzero spin

is present �i.e., odd filling: one or three electrons� the effec-
tive magnetic field can have an influence. That is why cor-
respondingly the renormalized effective exchange splitting
vanishes for even fillings, namely, below 0↔1 and 2↔3,
respectively, above the 1↔2 and 3↔4 resonances. This can
nicely be seen from Fig. 3 �remember that Vgate�−�, so “be-
low” means larger, “above” means smaller ��, where the four
different factors ��Bi�2 / �f��−1�i�i���2 are plotted. The
curves belonging to the resonances involving the half-filling
do not immediately go to zero but show a more complex
behavior with some small intermediate peaks due to the in-
fluence of the various excited states present for a two-
electron population of the dot. As we expect, G01��� and
G34��� �G12��� and G23���, respectively� are mirror symmet-
ric with respect to each other when the gate voltage is varied.
This in turn reflects the electron-hole symmetry of the DD
Hamiltonian. The parameters of the figures are chosen to be
as follows �b�0�:

kBT = 4 � 10−2	b	, �� = 4 � 10−3	b	 ,

U = 6	b	, V = 1.6	b	 , �47�

and p=0.8, R=0.05D. As expected, the peaks are mirror
symmetric with respect to the half-filling gate voltage. No-
tice also the occurrence of different peak heights, both in the
parallel and in the antiparallel case. For both polarizations,
the principal-part terms entering Eq. �46� vanish, the spin
accumulation is entirely in the magnetization plane, and the
peak ratio is solely determined by the ratio of the ground
state overlaps 2 /k+

2. For polarization angles ��0,�, the ra-
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tio is also determined by the nontrivial angular and voltage
dependence of the effective exchange fields. Finally, as ex-
pected from the conductance formula Eq. �46�, the conduc-
tance is suppressed in the antiparallel compared to the paral-
lel case. The four conductance peaks are plotted as a function
of the gate voltage in Fig. 4 for the polarization angles �
=0 and �=�, top and bottom figures, respectively. These
features of the conductance are nicely captured by the color
plot of Fig. 5, where numerical results for the conductance
plotted as a function of gate voltage and polarization angle
are shown. The conductance suppression nearby �=� is
clearly seen.

In the following, we analyze in detail the single resonance
transitions. Due to the mirror symmetry, it is convenient to
investigate together the N=0↔N=1, N=3↔N=4 and N
=1↔N=2, N=2↔N=3 resonances. We use the convention
that for a fixed resonance, the parameter �=0 when �N+1
=0.

1. Resonant regimes N=0^N=1 and N=3^N=4

The expected mirror symmetry of G01 and G34 is shown in
Fig. 6, where the conductance peaks are plotted for different
polarization angles � of the contacts. Notice that the analyti-

cal expressions �Eq. �46�� �continuous lines� perfectly match
the results obtained from a numerical integration of the mas-
ter equation �Eq. �21�� with the current formula �Eq. �25��.
We also can see that the maxima of the conductance decrease
with � growing up to �. It can be shown that the peaks for
�=0 and �=� lie at the same value of � because the effec-
tive fields Bi exactly vanish due to trigonometrical prefac-
tors. In other words, virtual processes captured in the effec-
tive fields Bi do not play a role in the collinear cases. For
noncollinear configurations, however, the peak maxima are
shifted toward the gate voltages where an odd population of
the dot dominates because there the effective exchange field
can act on the accumulating spin and make it precess, which
eases tunneling out. These findings are in agreement with
results obtained for a single-level quantum dot,30 a metallic
island,28 and carbon nanotubes.38 To quantify the relative
magnitude of the current for a given polarization angle �
with respect to the case �=0, we introduce the angle-
dependent TMR as

TMRNN+1��,�� = 1 −
GN,N+1��,��
GN,N+1�0,��

.

For the 0↔1 transition, it reads

TABLE III. Matrix elements for the N=1↔N=2 transition induced by d�↑
† and d�↓

† , �=1,2. The notation
	2��sz�
, with sz=0, �1, specifies which one of the triplet elements is addressed.

1↔2

	1e↑
 	1e↓
 	1o↑
 	1o↓


d1↑
† : 2g	 0 �0+	0

2
0 −�0+	0

2

2��+1�	 1
�2

0 − 1
�2

0

2��0�	 0 1
2 0 − 1

2

2��−1�	 0 0 0 0

2�	 0 1
2 0 1

2

2�	 0 −�0+	0

2
0 −�0−	0

2

d1↓
† : 2g	 −�0−	0

2
0 �0−	0

2
0

2��+1�	 0 0 0 0

2��0�	 1
2 0 − 1

2 0

2��−1�	 0 1
�2

0 − 1
�2

2�	 − 1
2 0 − 1

2 0

2�	 �0−	0

2
0 �0+	0

2
0

d2↑
† : 2g	 0 �0+	0

2
0 �0−	0

2

2��+1�	 − 1
�2

0 − 1
�2

0

2��0�	 0 − 1
2 0 − 1

2

2��−1�	 0 0 0 0

2�	 0 − 1
2 0 1

2

2�	 0 −�0+	0

2
0 �0+	0

2

d2↓
† : 2g	 −�0−	0

2
0 −�0+	0

2
0

2��+1�	 0 0 0 0

2��0�	 − 1
2 0 − 1

2 0

2��−1�	 0 − 1
�2

0 − 1
�2

2�	 1
2 0 − 1

2 0

2�	 �0−	0

2
0 −�0−	0

2
0
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TMR01 =
p2 sin2��

2 �
1 + �B1

2/f2�− �1��2�cos2��
2 � . �48�

Hence, the TMR vanishes for �=0 and takes the constant
value,

TMR01��,�� = p2,

at �=�. For the remaining polarization angles, ��0 and
���, the TMR is gate voltage dependent and positive. The
behavior of the TMR as a function of the gate voltage is
shown in Fig. 7. To understand the gate voltage dependence

of the TMR at noncollinear angles, we have to remember
that the dot is depleted with increasing �. For the 0↔1 tran-
sition, this means that at positive �, the dot is predominantly
empty, so that an electron that enters the dot also leaves it
fast. In this situation, the TMR is finite and its value depends
in a complicated way on the amplitude of the exchange field.
At negative �, the DD is predominantly occupied with an

TABLE IV. Matrix elements for the N=2↔N=3 transition governed by d�↑ and d�↓, �=1,2.

2↔3

	3o↑
 	3o↓
 	3e↑
 	3e↓


2g	 �0+	0

2
0 �0−	0

2
0

d1↑: 2��+1�	 0 0 0 0

2��0�	 − 1
2 0 − 1

2 0

2��−1�	 0 1
�2

0 1
�2

2�	 − 1
2 0 1

2 0

2�	 −�0+	0

2
0 �0+	0

2
0

d1↓: 2g	 0 −�0−	0

2
0 −�0+	0

2

2��+1�	 1
�2

0 1
�2

0

2��0�	 0 − 1
2 0 − 1

2

2��−1�	 0 0 0 0

2�	 0 1
2 0 − 1

2

2�	 0 �0−	0

2
0 −�0−	0

2

d2↑: 2g	 −�0−	0

2
0 �0−	0

2
0

2��+1�	 0 0 0 0

2��0�	 − 1
2 0 1

2 0

2��−1�	 0 1
�2

0 − 1
�2

2�	 − 1
2 0 − 1

2 0

2�	 �0−	0

2
0 �0+	0

2
0

d2↓: 2g	 0 �0+	0

2
0 −�0+	0

2

2��+1�	 1
�2

0 − 1
�2

0

2��0�	 0 − 1
2 0 1

2

2��−1�	 0 0 0 0

2�	 0 1
2 0 1

2

2�	 0 −�0+	0

2
0 −�0−	0

2

TABLE V. Matrix elements for the N=3↔N=4 transition in-
duced by the operators d�↑

† and d�↓
† , �=1,2.

3↔4

	3o↑
 	3o↓
 	3e↑
 	3e↓


d1↑
† : 2,2	 0 1

�2
0 − 1

�2

d1↓
† : 2,2	 1

�2
0 − 1

�2
0

d2↑
† : 2,2	 0 − 1

�2
0 − 1

�2

d2↓
† : 2,2	 − 1

�2
0 − 1

�2
0

0

2

4

6

8

10
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FIG. 3. �Color online� Gate voltage dependence of the renormal-
ized effective exchange splitting entering the conductance formula
�Eq. �46��. Notice the mirror symmetry of the 0↔1 with the 3↔4
curve and of the 1↔2 with the 2↔3 one.
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electron that can now interact with the exchange field, which
makes the spin precess and thus eases tunneling out of the
dot. Consequently, GNN+1�� ,���GNN+1�0,�� and the TMR
vanishes. Finally, Fig. 8 illustrates the angular dependence of
the normalized conductance for three different values of the
gate voltage. We detect a common absolute minimum for the
conductance at �=�, i.e., transport is weakened in the anti-
parallel case. The width of the curves is dependent on the
renormalized effective exchange ��Bi� / ��f�. The larger its
value, the narrower the curves because the spin precession
can equilibrate the accumulated spin for all angles but �
=�. Notice again the equivalence of the curves belonging to
�= �2	b	 for the 1↔2 resonance to the curves with �
= �2	b	 for the 3↔4 resonance.

2. Resonant regimes N=1^N=2 and N=2^N=3

For the resonant 1↔2 and 2↔3 transitions, qualitatively
analogous results as for the 0↔1 and 3↔4 transitions are
found. Thus, exemplarily, we only show the angular depen-

dence of the normalized conductance in Fig. 9, showing the
expected absolute conductance minimum at �=0.

V. NONLINEAR TRANSPORT

In this section, we present the numerical results deduced
from the general master equation �Eq. �21�� combined with
the current formula �Eq. �25��. We show the differential con-
ductance dI

dV �� ,Vbias� for the three distinct angles �=0, �
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= �
2 , and �=�, see Fig. 10, top, middle, and bottom, respec-

tively. The results confirm the electron-hole symmetry and
the symmetry upon bias voltage inversion I�� ,Vbias�=−I�� ,
−Vbias�. In all of the three cases, we can nicely see the ex-
pected three closed and the two half-open diamonds, where
the current is blocked and the electronic number of the
double-dot system stays constant. At higher bias voltages,
the contribution of excited states is manifested in the appear-
ance of several excitation lines. One clearly sees that transi-

tion lines present in the parallel case are absent in the anti-
parallel case. Moreover, in the case of noncollinear
polarization, �=� /2, negative differential conductance
�NDC� is observed.

In the following, we want not only to explain the origin of
these two features, but alongside also give another example
for spin-blockade effects, which play a decisive role in the
DD physics. As a starting point, we plot in Fig. 11 �top� the
current through the system for the three different angles �

= �0, �
2 ,�� at a fixed gate voltage �=4	b	 and positive bias

voltages. We recognize that for eVBias�2.4	b	, the current is
Coulomb blocked in all of the three cases. In this configura-
tion, exactly one electron stays in the double-dot. From about
eVbias�2.4	b	, the channel where the ground state energies
�1 and �2 are degenerate opens �	1e�
↔ 	2
 transition� and
the current begins to flow. With increasing bias, more and
more transport channels become energetically favorable. In
particular, for all the polarization angles �, we observe two
consecutive steps corresponding to 	0
↔ 	1e�
 and
	1e�
↔ 	2�
 transitions. The latter, occurring at about eVbias
=4	b	, involves the excited two-particle triplet states 	2��Sz�
.

The next excitation step, indicated with a circle in Fig. 11
�top�, belongs to the 	1o�
↔ 	2�
 transition. The associated
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line is missing for the antiparallel configuration, as well as
the lines corresponding to 	1o�
↔ 	2�
, 	1e�
↔ 	2�
,
	2
↔ 	3o�
, and 	1e�
↔ 	2�
. Crucially, in all of these tran-
sitions, a two-particle state with total spin zero is involved.
In order to explain the absence of these lines, let us, e.g.,
focus on the first missing step corresponding to the
	1o�
↔ 	2�
 resonance. In the parallel case �say, both con-
tacts polarized spin-up�, there is always an open channel cor-
responding to the situation in which the spin in the DD is
antiparallel to that in the leads �i.e., 	1o−
�. In the antiparallel
case �say, source polarized spin-up and drain polarized spin-
down�, originally a spin-down might be present in the dot.
An electron that enters the DD from the source must then be
spin-up �in order to form the 	2�
 state�, but as the drain is
down-polarized, it will be the spin-down electron that leaves
the DD, which corresponds to a spin flip. Now, the presence
of a spin-up electron in the DD prevents a majority �another
spin-up� electron from the source to enter the DD, such that
we end up in a blocking state. The transition is hence forbid-
den.

A similar yet different spin-blockade effect determines the
occupation probabilities for the triplet state �Fig. 11, bottom�.
Naturally, for all angles, the probability to be in the triplet
state increases above the resonance at eVbias=4	b	, but inter-
estingly, such probability is largest in the antiparallel case.
This is due to the fact that a majority spin in the parallel
configuration �spin-up� can be easily transmitted through the
DD via the triplet states 	2��1�
 or 	2��0�
. In the antiparallel
case, however, a blocking state establishes �say, again source
polarized spin-up and drain polarized spin-down�. Let ini-
tially a spin-down electron be present on the DD. From the
source electrode, most likely a majority electron �polarized
spin-up� will enter the dot. Now, just as in the previous case,
the consecutive tunneling event will cause a spin flip in the
DD because the spin-down electron �majority electron of the

drain� will leave the dot. So, the DD is finally in a spin-up
state, and once the next majority spin-up electron from the
source enters, the DD ends up in the triplet state 	2��+1�
 and
will remain there for a long time due to the fact that the
majority spins in the drain are down polarized. Hence, the
triplet state 	2��+1�
 acts as a trapping state.

Notice that the two distinct spin-blockade effects are dif-
ferent from the Pauli spin-blockade discussed in the DD
literature.46–49 Moreover, the second effect, relying on the
existence of degenerate triplet states, is also different from
the spin-blockade found in Ref. 30 for a single-level quan-
tum dot.

Finally, let us turn to the negative differential conduc-
tance, which occurs for noncollinearly polarized leads �see
the dashed blue lines in Fig. 11� and which we find to be-
come more evident for higher polarizations �not shown�. By
neglecting the exchange field, we would just expect the mag-
nitude of the current for the noncollinear polarizations to lie
somewhere in between the values for the parallel and the
antiparallel current because the noncollinear polarization
could, in principle, be rewritten as a linear combination of
the parallel and the antiparallel configuration. Now, the effect
of the exchange is to cause precession and therewith equili-
bration of the accumulating spin, which corresponds to shift-
ing the balance in favor of the parallel configuration, i.e.,
enhancing the current. The decisive point is that the ex-
change field is not only gate dependent but also bias voltage
dependent and reaches a minimum around eVbias�8	b	. This
explains the decrease of the current up to this point. After-
ward, the influence of the spin precession regains weight.
The same consideration applies for the other NDC regions
observed in Fig. 10, e.g., in the gate voltage region ��2	b	
involving the N=0↔N=1 transition, as described in Ref.
30.

VI. EFFECTS OF AN EXTERNAL MAGNETIC FIELD

In this section, we wish to discuss the qualitative changes
brought by an external magnetic field applied to the DD.
Specifically, the magnetic field is assumed to be parallel to
the magnetization direction of the drain. For simplicity, we
focus on the experimental standard case of parallel and anti-
parallel lead polarizations and of low-bias voltages. Then,
the magnetic field causes an energy shift �EZeeman depend-
ing on whether the electron spin is parallel or antiparallel,
respectively, to it. For collinear polarization angles, the
principal-part contributions vanish, and the equations for the
RDM are easily obtained. We exemplarily report results for
0↔1 and 1↔2 transitions. Let us then consider the param-
eter regime nearby the 0↔1 resonance and setup a system of
three equations with three unknown variables, W0, W1↑, and
W1↓. The first equation corresponds to the normalization con-
dition W1↑+W1↓+W0=1. The remaining equations are the
equations of motion for W1↑/↓, which can be written as

Ẇ1↑ = −
�

�
�

�=s,d
	t�	2�F�↑

− ��1↑�W1↑ − F�↑
+ ��1↑�W0� , �49�
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FIG. 11. �Color online� Current �top� and triplet occupation
�bottom� for the two collinear ��=0,�=�� cases and the perpen-
dicular case ��= �

2 � at a fixed gate voltage �=4	b	. Notice the oc-
currence of a pronounced negative differential conductance feature
for perpendicular polarization �=� /2.
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Ẇ1↓ = −
�

�
�

�=s,d
	t�	2�F�↓

− ��1↓�W1↓ − F�↓
+ ��1↓�W0� , �50�

where

�1↑/↓ = �1 � EZeeman, �51�

and F���

� �E�=D���
f��E�. D�↑/↓=D���

. On the other hand,
Ds↑/↓=Ds�s

and Dd↑/↓=Dd�d
in the antiparallel case.

Upon considering symmetric contacts �t1= t2= t, D1=D2
=D�, we find the following in the parallel case:

G01�� = 0�

=
�e2

8	
f�− �1↑�f�− �1↓�

�
p�f��1↑� − f��1↓�� + f��1↑� + f��1↓�

f�− �1↑�f��1↓� + f�− �1↑�f�− �1↓� + f��1↑�f�− �1↓�
.

�52�

For the antiparallel case, we obtain

G01�� = ��

= G01�� = 0�
1 − p2�f��1↑� + f��1↓��

p�f��1↑� − f��1↓�� + f��1↑� + f��1↓�
.

�53�

Analogously, we find the following for the 1↔2 transition:

G12�� = 0�

=
�e2k+

2

2	
f��2↑�f��2↓�

�
p�f�− �2↓� − f�− �2↑�� + f�− �2↑� + f�− �2↓�

f�− �2↑�f��2↓� + f�− �2↑�f�− �2↓� + f��2↑�f�− �2↓�
,

�54�

G12�� = ��

= G12�� = 0�

�
1 − p2�f�− �2↑� + f�− �2↓��

p�f�− �2↓� − f�− �2↑�� + f�− �2↑� + f�− �2↓�
.

�55�

The remaining resonances are analogously calculated. Figure
12 shows the four conductance resonances for the parallel
and antiparallel configurations. Strikingly, the applied mag-
netic field breaks the symmetry between tunneling regimes
0↔1 and 3↔4, as well as between 1↔2 and 2↔3 reso-
nances in case of parallel contact polarizations. The reason
for this behavior is the following: in the low-bias regime,
transitions between ground states dominate transport. In par-
ticular, the magnetic field removes the spin degeneracy of
	1e�
 and 	3o�
 states, such that states with spin aligned to
the external magnetic field are energetically favored. There-
fore, the transport electron in tunneling regime 0↔1 is a
majority spin carrier. For the case 3↔4, however, two of the
three electrons of the ground state 	3o↑
 have spin-up, such
that the fourth electron that can be added to the DD has to be

a minority spin carrier. Therefore, the conductance gets di-
minished with respect to the 0↔1 transition, and the mirror
symmetry present in the zero field case is broken. Analo-
gously, the broken symmetry in the case of the 1↔2 and
2↔3 transitions can be understood. Correspondingly, the
TMR can become negative for values of the gate voltages
around the 2↔3 and 3↔4 resonances. We observe that a
negative TMR has recently been predicted in Ref. 42 for the
case of a single impurity Anderson model with orbital and
spin degeneracies �see Fig. 13�. In that work, a negative
TMR arises due to the assumption that multiple reflections at
the interface cause spin-dependent energy shifts. In our ap-
proach, however, where the contribution from the reflection
Hamiltonian is treated to the lowest order, see Eq. �19�, such
spin-dependent energies originate from the magnetic-field-
induced Zeeman splitting.

VII. CONCLUSIONS

In summary, we have evaluated linear and nonlinear trans-
port through a double-quantum-dot �DD� coupled to polar-
ized leads with arbitrary polarization directions. Due to
strong Coulomb interactions, the DD operates as a single-
electron transistor, a F-SET, at low enough temperatures. A
detailed analysis of the current-voltage characteristics of the
DD and comparison with results of previous studies on other

0.08

0.06

0.04

0.02

-6 -4 -2 0 2 4 6

C
on

d
u
ct

an
ce

G
[e

2
/h

]

ξ[|b|]

0 ↔ 1

1 ↔ 2

2 ↔ 3

3 ↔ 4

FIG. 12. �Color online� Conductance vs gate voltage for parallel
�continuous line� and antiparallel �dashed lines� contact configura-
tions and Zeeman splitting EZeeman=0.05	b	. The magnetic field
breaks the mirror symmetry with respect to the gate voltage in the
parallel configuration.
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an external magnetic field. In contrast to the zero field case, the
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F-SET systems with noncollinear polarization �a single-level
quantum dot,30 a metallic island,28 and a carbon nanotube38�
brings us to the identification of universal behaviors of a
F-SET, i.e., a behavior shared by any of those F-SETs, inde-
pendent of the specific kind of conductor that is considered
as the central system, as well as system-specific features.

The presence of an interfacial exchange field together
with an interaction-induced one is universal. These exchange
fields can act only for noncollinear polarizations and cause
a precession of the accumulated spin on the dot and
therewith ease the tunneling. This effect has various impli-
cations. It determines, e.g., the gate and angular depen-
dences, as well as the height of single conductance peaks and
can yield negative differential conductance features. Another
universal feature is the occurrence of a negative tunneling
magnetoresistance—even in the weak-tunneling limit—if a
Zeeman-splitting exists.

The following features are specific to the DD system: in
the low-bias regime, the problem can be analytically solved,
and for tunneling regimes 0↔1 and 1↔2 �2↔3 and 3↔4,
respectively�, the system behaves equivalent to a single-level
quantum dot, where the Coulomb blockade peaks are found
to be mirror symmetric with respect to the charge neutrality
point. This mirror symmetry reflects the electron-hole sym-
metries of a system and is therefore typical for the DD, as
well as the ratio of the peak heights. An external magnetic
field lifts this symmetry and can cause a negative tunneling
magnetoresistance. In the nonlinear bias regime, the presence
of various excited states gives rise to interesting DD specific
features. For example, a suppression of several excitation
lines for an antiparallel lead configuration originates from a
spin-blockade effect. It occurs because a trapping state is
formed whenever a transition involves a two-electron state
with total spin zero. A second spin-blockade effect we de-
scribed involves the two-electron triplet state. The common
mechanism of these two spin-blockades is the following: in
both cases, a tunneling event can only occur if initially the
dot is populated with an unpaired electron possessing the
majority spin of the drain. The second step is that a majority
electron of the source will enter, forming a spin-zero state.

Then, the first electron can leave the dot, causing a spin flip.
If the triplet state is involved, the dot will be left in a trap-
ping state once a second majority electron from the source
enters. Otherwise, we are directly in a blocking state. Finally,
for noncollinear lead polarizations, negative differential con-
ductance can be observed. All in all, due to their universality
and the multiplicity of their properties, F-SETs based on DD
systems seem good candidates for future magnetoelectronic
devices.
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APPENDIX A: MATRIX ELEMENTS OF THE DOT
OPERATORS

Tables II–V show all the possible matrix elements
N−1	d���

	N
 and N	d���

† 	N−1
 with �= �1,2� and ��

= �↑ ,↓�, which occur in the master equations �Eqs. �B1� and
�B2��. Notice that we only need to illustrate either the matrix
elements N−1	d���

	N
 or N	d���

† 	N−1
 because they are
complex conjugated to each other.

APPENDIX B: MASTER EQUATION FOR THE REDUCED
DENSITY MATRIX IN THE LINEAR REGIME

We explicitly report here the coupled equations of motion
for elements 
̇nm

�N��t� and 
̇nm
�N+1��t� of the RDM to be solved in

the low-bias regime. They are obtained from the generalized
master equation �Eq. �21�� upon observing that �i� in the
linear regime, terms that couple states with particle numbers
unlike N and N+1 can be neglected; �ii� we can reduce the
sum over h and h� and over l , l� only to energy ground states.
In the remaining energy nonconserving terms, the sum has to
go also over excited states. With �N+1ªEN+1

�0� −EN
�0� being the

chemical potential, we finally arrive at the following two
master equations:


̇nm
�N��t� = −

�

�
�

�=s,d
	t�	2 �

��,���
� �

l�	N−1

, �

j�	EN
�0�,N


, �
h,h��	EN+1

�0� ,N+1


, �
ĥ�	N+1


�������
��

F����
��

+ ��N+1��d���
�nh�d��

��
† �hj
 jm

�N��t�

+ �����
��

i

�
P����

��
+ ��ĥ − � j��d���

�nĥ�d��
��

† �ĥ j
 jm
�N��t� − �����

��
� i

�
�P����

��
− �� j − �l� + R����

��
��d���

† �nl�d��
��

�lj
 jm
�N��t�

+ �����
��

F����
��

+ ��N+1�
nj
�N��t��d���

� jh�d��
��

† �hm − �����
��

i

�
P����

��
+ ��ĥ − � j�
nj

�N��t��d���
� jĥ�d��

��
† �ĥm

+ �����
��

� i

�
�P����

��
− �� j − �l� + R����

��
�
nj

�N��t��d���

† � jl�d��
��

�lm − 2�����
��

F����
��

− ��N+1��d���
�nh�
h�h

�N+1��t��d��
��

† �hm� ,

�B1�
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̇nm
�N+1��t� = −

�

�
�

�=s,d
	t�	2 �

��,���
� �

l̂�	EN,N


, �
l,l��	EN

�0�,N


, �
j�	EN+1

�0� ,N+1


, �
h�	EN+2,N+2
 �������

��
i

�
P����

��
+ ��h − � j�

��d���
�nh�d��

��
† �hj
 jm

�N+1��t� + �����
��

� F����
��

− ��N+1��d���

† �nl�d��
��

�lj
 jm
�N+1��t� − �����

��
� i

�
�P����

��
− �� j − �l̂� + R����

��
�

��d���

† �nl̂�d��
��

�l̂ j
 jm
�N+1��t� − �����

��
i

�
P����

��
+ ��h − � j�
nj

�N+1��t��d���
� jh�d��

��
† �hm + �����

��
� �F����

��
− ��N+1��
nj

�N+1��t�

��d���

† � jl̂�d��
��

�l̂m + �����
��

� i

�
�P����

��
− �� j − �l̂� + R����

��
�
nj

�N+1��t��d���

† � jl̂�d��
��

�l̂m − 2�����
��

� F����
��

+ ��N+1�

��d���

† �nl�
l�l
�N��t��d��

��
�lm� . �B2�

Notice that we kept the sums over excited states l , ĥ in Eq. �B1� and l̂ ,h in Eq. �B2�, which are responsible for the virtual
transitions.
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Symmetry fingerprints of a benzene single-electron transistor: Interplay between Coulomb
interaction and orbital symmetry

Georg Begemann, Dana Darau, Andrea Donarini, and Milena Grifoni
Theoretische Physik, Universität Regensburg, 93040 Regensburg, Germany

�Received 18 April 2008; published 29 May 2008�

The interplay between Coulomb interaction and orbital symmetry produces specific transport characteristics
in molecular single electron transistors �SETs� that can be considered as the fingerprints of the contacted
molecule. Specifically we predict, for a benzene SET, selective conductance suppression and the appearance of
negative differential conductance when changing the contacts from para to meta configuration. Both effects
originate from destructive interference in transport involving states with orbital degeneracy.

DOI: 10.1103/PhysRevB.77.201406 PACS number�s�: 85.65.�h, 73.63.�b

Understanding the conduction characteristics through
single molecules is one of the crucial issues in molecular
electronics.1 The dynamics of the electron transfer to and
from the molecule depends on the intrinsic electronic spec-
trum of the molecule as well as on the electronic coupling of
the molecule to its surroundings.

In recent years, the measurement of stability diagrams of
single electron transistor �SET� devices has become a very
powerful tool to do spectroscopy of small conducting sys-
tems via transport experiments. Thus the capability to per-
form three terminal measurements on single molecules2–10

has been a fundamental achievement for molecular electron-
ics. Such molecular transistors might display transport prop-
erties that are very different from those of conventional
SETs. In fact, vibrational or torsional modes7,10 and intrinsic
symmetries of the molecule can hinder or favor transport
through the SET, visible, e.g., in the absence or presence of
specific excitation lines in the stability diagram of the mo-
lecular SET, or in negative differential conductance features.
Many-body phenomena such as, e.g., the Kondo effect, have
been observed as well.2,3,5,10

Despite the experimental progress, the theoretical under-
standing of the properties of single organic molecules
coupled to electrodes is far from being satisfactory. On the
one hand, numerical approaches to transport based, e.g., on
the combination of Green’s function methods with density-
functional theory have become a standard approach to study
transport at the nanoscale.1 However, this technique is not
appropriate for the description of transport through a mol-
ecule weakly coupled to leads, due to the crucial role played
by the Coulomb interaction in these systems. Hence, in Ref.
11, an electronic structure calculation for a benzene molecule
was performed in order to arrive at an effective interacting
Hamiltonian for the � orbitals, to be solved to determine the
I-V characteristics of a benzene junction.

In this paper, we consider the electronic transport through
a benzene SET. Similar to Ref. 11, in order to devise a semi-
quantitative description, we start from an interacting Hamil-
tonian of isolated benzene where only the localized pz orbit-
als are considered and the ions are assumed to have the same
spatial symmetry as the relevant electrons. The Hamiltonian
for the isolated molecule possesses 46=4096 eigenstates, to
be calculated numerically, and whose symmetries can be es-
tablished with the help of group theory. Large degeneracies

of the electronic states occur. For example, while the six-
particle ground state �A1g symmetry� is nondegenerate, there
exist four seven-particle ground states due to spin and orbital
�E2u symmetry� degeneracy. When coupling the benzene
SET to leads in the meta and para configurations �see Fig. 1�,
these orbital symmetries lead to very different stability dia-
grams for the two configurations �see Fig. 2�. Striking are the
selective reduction of conductance �Fig. 3� and the occur-
rence of negative differential conductance �NDC� features
when changing from para to meta configuration. As shown in
Fig. 4, the NDC effect occurs due to the formation of a
blocking state at certain values of the bias voltage. The
blocking is clearly visible by monitoring the position-
dependent many-body transition probabilities, which, at
given values of the bias voltage, can exhibit nodes at the
same position as one of the contacts. NDC for benzene junc-
tions has been predicted also in Ref. 11, but in the para
configuration and only in the presence of a dissipative elec-
tromagnetic bath. In our work, NDC occurs despite the ab-
sence of the bath. Both of the effects we predict originate
from bias-dependent interference of orbitally degenerate
states: coherences, neglected in Ref. 11, are essential to cap-
ture interference effects when solving the equations for the
benzene’s occupation probabilities. Interference phenomena
in transport through benzene have been recently discussed
also in Refs. 12 and 13. The parameter regime is, however,
very different, as both discuss the strong tunneling limit,
where Coulomb blockade effects are not relevant.

We start from the total Hamiltonian H=Hben+Hleads+HT,
where the Hamiltonian for benzene reads

FIG. 1. �Color online� The two different setups for the benzene
SET considered in this paper.
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Hben = �0�
i�

di�
† di�

† + b�
i�

�di�
† di+1�

† + di+1�
† di�

† �

+ U�
i
�ni↑ −

1

2
��ni↓ −

1

2
�

+ V�
i

�ni↑ + ni↓ − 1��ni+1↑ + ni+1↓ − 1� . �1�

Here di�
† creates an electron of spin � in the pz orbital of

carbon i, i=1, . . . ,6 runs over the six carbon atoms of ben-
zene and ni�=di�

† di�
† . This Hamiltonian respects the D6h sym-

metry of benzene and also the particle-hole symmetry. Me-
chanical oscillations at this level are neglected and all the
atoms are considered in their equilibrium position. The pa-
rameters b, U, and V for isolated benzene are given in the
literature14 and are chosen to fit excitation spectra. Even if
the presence of metallic electrodes is expected to cause a
substantial renormalization of U and V, we do not expect the
main results of this work to be affected by this change. The
weak coupling suggests that the symmetry of the molecule
will remain unchanged and with it the structure of the Hamil-
tonian �1�. The gate voltage Vg is introduced by a renormal-
ized on-site energy �=�0−eVg and we conventionally set
Vg=0 at the charge-neutrality point. We represent source and
drain leads as two resevoirs of noninteracting electrons:
Hleads=��k���k−���c�k�

† c�k�
† , where �=L ,R and the chemi-

cal potentials �� of the leads depend on the applied bias
voltage �L,R=�0	

Vb

2 . In the following, we will measure the
energy starting from the equilibrium chemical potential
�0=0. The coupling to source and drain leads is described by

HT = t�
�k�

�d��
† c�k�

† + c�k�
† d��

† � , �2�

where we define d��
† as the creator of the electron in the

benzene carbon atom that is closest to the lead �. In particu-
lar, dR�

†
ªd4�

† ,d5�
† in the para and meta configurations, re-

spectively, while dL�
†
ªd1�

† in both setups. Due to the weak
coupling to the leads, we can assume that the potential drop
is all concentrated at the lead-molecule interface and is not
affecting the molecule itself. Given the high degeneracy of
the spectrum, the method of choice to treat the dynamics in
the weak coupling is the Liouville equation method already
used, e.g., in Refs. 15 and 16. The starting point is the Liou-
ville equation for the reduced density operator �̇=Trleads�
̇�
=− i

�Trleads��H ,
	�, where 
 is the density operator.17 Due to
the weak coupling to the leads, we treat the effects of HT to
the lowest nonvanishing order. The reduced density operator
� is defined on the Fock space of benzene, but coherences
between states with different particle number and different
energy can be neglected, the former because they are decou-
pled from the dynamics of the populations, the latter being
irrelevant due to their fast fluctuation �secular approxima-
tion�. As a result, we arrive at a generalized master equation
�GME� where coherences between degenerate states are re-
tained. This approach is robust against the small asymmetries
introduced in the molecule by the coupling to the leads or by
deformation as far as the energy splitting that lifts the orbital
degeneracy is comparable to the thermal energy. In particu-

lar, the results presented in this paper are robust against the
residual potential drop that even in weak coupling could af-
fect the molecule itself. The GME is conveniently expressed
in terms of the reduced density operator �NE=PNE�PNE,
where PNEª��� 
NE����NE�� 
 is the projection operator
on the subspace of N particles and energy E. The sum runs
over the orbital and spin quantum numbers � and �, respec-
tively. Eventually the GME reads

�̇ NE = − �
��

�

2
d��

† � f�
+�Hben − E� +

i

�
p��Hben − E��d ��

† � NE

+ d ��
† � f�

−�E − Hben� −
i

�
p��E − Hben��d��

† �NE + H.c.�
+ �

�� E�

�PNE�d ��
† f�

+�E − E���N−1E�d��
†

+ d��
† f�

−�E� − E�� N+1E�d ��
† �PNE, �3�

where L,R= 2�
� 
 tL,R
2DL,R is the bare transfer rates with the

constant densities of states of the leads DL,R.
Terms describing sequential tunneling from and

to the lead � are proportional to the Fermi function
f�x−���ª f�

+�x� and f�
−�x�=1− f�

+�x�, respectively. Still in the
sequential tunneling limit, but due to the presence of coher-
ences, also energy nonconserving terms appear in the gener-
alized master equation; they are proportional to the function
p��x�=−Re�� 1

2 + i�
2� �x−���	, where � is the digamma

function.16,17 Finally, we write the GME on the basis of the
energy eigenstates for isolated benzene and find numerically
the stationary solution.

A closer analysis of the master equation allows us also to
define a current operator �one per molecule-lead contact�

FIG. 2. �Color online� Stability diagram for the benzene SET
connected in the para �above� and meta �below� configuration.
White dot-dashed lines highlight the conductance cuts presented in
Fig. 3; the white dashed line shows the region corresponding to the
current trace presented in Fig. 4. The parameters used are U=4 
b
,
V=2.4 
b
, T=0.04 
b
, and =10−3 
b
.
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Î� = �
NE�

PNE �d��
† f�

+�Hben − E�d ��
† − d ��

† f�
−�E − Hben�d��

† 	PNE

�4�

and calculate the stationary current as the average IL

=Tr��statÎL�=−IR, with �stat the stationary density operator.
In Fig. 2, we present the stability diagram for the benzene
SET contacted in the para �upper panel� and meta position
�lower panel�. Bright ground-state transition lines delimit
diamonds of zero differential conductance typical of the
Coulomb blockade regime while a rich pattern of satellite
lines represents the transitions between excited states.
Though several differences can be noticed, most striking are
the suppression of conductance and the appearance of NDC
when passing from para to meta configuration.

A zero bias cut of the stability diagrams as a function of
the gate voltage Vg is plotted in Fig. 3. Only transitions be-
tween lowest energy states are relevant for the conductance.
The number of pz electrons on the molecule and the symme-
try of the many-body state corresponding to the conductance
valleys are reported. The conductance in the meta and para
configuration is the same for the N=11↔12 and N
=10↔11 transitions, while it is systematically suppressed in
all other cases. In other terms, transitions between states with
A or B symmetry, which do not have orbital degeneracy, are
invariant under configuration change; transitions that involve
both of the orbitally degenerate E symmetry states are sup-
pressed. Destructive interference between orbitally degener-
ate states explains the systematic conductance suppression.
The eight-particle ground state is antisymmetric11 �with re-
spect to the plane through the contact atoms and perpendicu-
lar to the molecular plane�, thus excluded from transport in
the para configuration and replaced by the first excited sym-
metric E2g state. This explains the peculiar position of the
7-8 and 8-9 resonances. By neglecting the energy noncon-

serving terms in Eq. �3�, we derived an analytical formula for
the conductance close to the resonance between N and
N+1 particle states,

GN,N+1��E�

= 2e2 LR

L + R


�
nm�

�N,n
dL�
† 
N + 1,m��N + 1,m
dR�

† 
N,n�
2

�
nm��

��N,n
d��
† 
N + 1,m��2

��−
f���E�

�SN+1 − SN�f��E� + SN
� , �5�

where �E=Eg,N−Eg,N+1+eVg is the energy difference be-
tween the benzene ground states with N and N+1 electrons
diminished by a term linear in the side gate; n and m label
the SN-fold and SN+1-fold degenerate ground states with N
and N+1 particles, respectively. Interference effects are con-
tained in the numerator of the third factor �overlap factor ��.
In order to make these more visible, we remind the reader
that dR�

† =R�
† dL�

† R�, where R� is the rotation operator of an
angle � and �=� for the para while �=2� /3 forthe meta
configuration. All eigenstates of Hben are eigenstates of the
discrete rotation operators with angles multiples of � /3 and
the eigenvalues are phase factors. The overlap factor now
reads

� = ��
nm�

��N,n
dL�
† 
N + 1,m��2ei�nm�2

, �6�

where �nm encloses the phase factors coming from the rota-
tion of the states 
N ,n� and 
N+1,m�. Interference is possible
only when SN or SN+1�1, that is, in the presence of degen-
erate states. It generates a considerable reduction by passing

FIG. 3. �Color online� Conductance of the benzene SET as a
function of the gate voltage in the para �above� and meta �below�
configurations. In the low conductance valleys, the state of the sys-
tem has a definite number of particles and symmetry as indicated.
Selective conductance suppression when changing from the meta to
the para configuration is observed.

FIG. 4. �Color online� Upper panel: Current through the ben-
zene SET in the meta configuration calculated at bias and gate
voltage conditions indicated by the dashed line of Fig. 2. A pro-
nounced NDC is visible. Lower panels: Transition probabilities be-
tween the six-particle and each of the two seven-particle ground
states for bias voltage values labeled a−e in the upper panel. The
transitions to a blocking state are visible in the upper �lower� part of
the e �a� panels.
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from the para to the meta configuration, as seen in Fig. 3.
Interference also affects nonlinear transport and produces

in the meta configuration NDC at the border of the six-
particle state diamond �Fig. 2�. The upper panel of Fig. 4
shows the current through the benzene SET contacted in the
meta configuration as a function of the bias voltage. The
current is given for parameters corresponding to the white
dashed line of Fig. 2. In this region, only the six- and seven-
particle ground states are populated. The six-particle ground
state is not degenerate. The seven-particle ground state is
fourfold degenerate, although the twofold spin degeneracy is
not important since spin coherences vanish in the stationary
limit and the Sz= 1

2 and − 1
2 density matrices are equal for

symmetry. At low bias, the six-particle state is mainly occu-
pied. As the bias is raised, transitions 6↔7 occur and current
flows. Above a certain bias threshold, a blocking state is
populated and the current is reduced. To visualize this, we
introduce the probability �averaged over the z coordinate and
the spin ��

P�x,y ; � �� = lim
L→�

�
�

1

2L
�

−L/2

L/2

dz��7g � �
��
†�r��
6g��2 �7�

for benzene to make a transition between the state 
6g� and
one of the states 
7g��� by adding or removing an electron in

position r� and spin �. Each of the lower panels of Fig. 4 is a
surface plot of P�x ,y ; ��� for the seven-particle basis that
diagonalizes the stationary density matrix at a fixed bias. The
upper plot of the e panel describes the transitions to the
blocking seven-particle state that accepts electrons from the
source lead �close to carbon 1� but cannot release electrons to
the drain �close to carbon 5�. The energy nonconserving rates
prevent the complete efficiency of the blocking by ensuring a
slow depopulation of the blocking state. At large negative
bias, the blocking scenario is depicted in panel a. We remark
that only a description that retains coherences between the
degenerate seven-particle ground states correctly captures
NDC at both positive and negative bias.

To summarize, we analyzed the transport characteristics
of a benzene-based SET. The interplay between Coulomb
interaction and orbital symmetry is manifested in a destruc-
tive interference involving orbitally degenerate states, lead-
ing to selective conductance suppression and negative differ-
ential conductance when changing the contacts from para to
meta configuration.

We acknowledge financial support from the DFG within
the research programs SPP 1243 and SFB 689.
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Interference effects on the transport characteristics of a benzene single-electron transistor

D. Darau, G. Begemann, A. Donarini, and M. Grifoni
Institut für Theoretische Physik, Universität Regensburg, 93035 Regensburg, Germany

�Received 14 October 2008; revised manuscript received 18 February 2009; published 9 June 2009�

Interference effects strongly affect the transport characteristics of a benzene single-electron transistor, and
for this reason we call it interference single-electron transistor �I-SET�. We focus on the effects of degeneracies
between many-body states of the isolated benzene. We show that the particular current blocking and selective
conductance suppression occurring in the benzene I-SET are due to interference effects between the orbitally
degenerate states. Further we study the impact of reduced symmetry due to anchor groups or potential drop
over the molecule. We identify in the quasidegeneracy of the involved molecular states the necessary condition
for the robustness of the results.

DOI: 10.1103/PhysRevB.79.235404 PACS number�s�: 85.65.�h, 85.85.�j

I. INTRODUCTION

Molecular electronics, due to perfect reproducibility and
versatile chemical tailoring of its basic components, repre-
sents one of the most promising answers to the increasing
miniaturization demand of information technology. A crucial
issue in molecular electronics is thus the understanding of
the conduction characteristics through single molecules.1

Single-molecule-transport measurements rely on the fab-
rication of a nanogap between source and drain electrodes
and the formation of a stable molecule-electrode contact. Na-
nogaps are nowadays routinely obtained using different tech-
niques including electromigration,2–10 mechanical
break-junction,11–14 and scanning tunneling microscopy.15–17

Also the challenging goal of effectively gating a nanometer-
sized molecule in the presence of macroscopic metallic leads
has been achieved.6,14,18

A stable contact between molecule and leads is commonly
realized with the mediation of anchor groups attached to the
molecule during its chemical synthesis. Also direct coupling
of the molecule to the electric leads, though, has been very
recently reported.13 One of the advantages of the first con-
necting method is some control over the contact configura-
tion of the molecule19 and the possibility of designing the
strength of the tunneling coupling by choosing specific an-
chor groups.6,17,20,21 All previous achievements combined
with the experience accumulated with semiconducting and
carbon-based single-electron transistors �SETs� allowed in
recent years to measure stability diagrams of single-molecule
transistor devices thus realizing molecular spectroscopy via
transport experiments.2–10

Single-molecule transistors display transport properties
which are very different from those of conventional single-
electron transistors. In fact, vibrational or torsional modes7,10

and intrinsic symmetries of the molecule can hinder or favor
transport through the molecular SET, visible, e.g., in the ab-
sence or presence of specific excitation lines in the stability
diagram or in negative differential conductance features.
Many-body phenomena as, e.g., the Kondo effect, have been
observed as well.2,3,5,10,22

Despite the experimental progress, the theoretical under-
standing of the properties of single organic molecules
coupled to electrodes is far from being satisfactory. On one

hand, numerical approaches to transport based on the com-
bination of Green’s-function methods with tight-binding
model or density functional theory have become standard in
the study of transport at the nanoscale.1 These methods are
appropriate to investigate quantum transport through mo-
lecular bridges strongly coupled to leads. In this regime vari-
ous groups have recently discussed the possibility of observ-
ing interference effects,23–26 e.g., in conjugated monocyclic
molecules as benzene or annulene.23,25 However, for the de-
scription of transport through a molecule weakly coupled to
leads, other methods are required. In the Coulomb blockade
regime, for example, due to the crucial role played by the
Coulomb interaction in these systems it is common to resort
to a Pauli rate equation27 or to a generalized master equation
for the reduced density matrix �RDM�. For example, in the
work of Hettler et al.,28 an electronic structure calculation
has been performed in order to construct an effective inter-
acting Hamiltonian for the � orbitals of benzene, and the I-V
characteristics of the corresponding molecular junction have
been calculated within the rate equation approach.

In the presence of degenerate states, however, coherences
of the density matrix influence the dynamics and a master
equation approach is appropriate.29–38 Such coherences can
give rise to precession effects in spin transport30,35 or cause
interference in a molecular single-electron transistor.32,35,37

In the present work we wish to generalize the discussion on
interference phenomena in a benzene interference SET pre-
sented in Ref. 37 to the case in which the perfect degeneracy
is broken due, e.g., to contact effects or to the applied exter-
nal bias. To this extent the master equation used in Ref. 37
will be generalized to treat the case of quasidegenerate states.
Conditions for the persistence of interference phenomena are
identified. We observe that the effects of quasidegenerate
states on transport have been very recently addressed also in
Ref. 38. We treat the transport through the benzene I-SET in
two different setups, the para and the metaconfiguration, de-
pending on the position of the leads with respect to the ben-
zene molecule �see Fig. 1�. Similar to Ref. 28, we start from
an interacting Hamiltonian of isolated benzene where only
the localized pz orbitals are considered and the ions are as-
sumed to have the same spatial symmetry as the relevant
electrons. We calculate the 46=4096 energy eigenstates of
the benzene Hamiltonian numerically.
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Subsequently, with the help of group theory, we classify
the eigenstates according to their different symmetries and
thus give a group-theoretical explanation to the large degen-
eracies occurring between the electronic states. For example,
while the six-particle ground state �A1g symmetry� is nonde-
generate, there exist four seven-particle ground states due to
spin and orbital �E2u symmetry� degeneracies. Fingerprints
of these orbital symmetries are clearly visible in the strong
differences in the stability diagrams obtained by coupling the
benzene I-SET to the leads in the meta and paraconfigura-
tion. Striking are the selective reduction conductance and the
appearance of regions of interference-driven current blocking
with associated negative differential conductance �NDC�
when changing from the para to the metaconfiguration.

NDC and current blocking for benzene junctions have
been predicted in Ref. 28 but also in the paraconfiguration
and in the presence of an external electromagnetic field. In
our work NDC occurs despite the absence of an external field
in the unperturbed setup and with no asymmetry in the tun-
neling rates. In fact, NDC and current blocking triggered by
interference take place any time a SET presents an N-particle
nondegenerate state and two degenerate N+1-particle states
such that the ratio between the transition amplitudes �i� �i
=1,2 , �=L ,R� between those N- and N+1-particle states
is different for tunneling at the left �L� and at the right �R�
lead,

�1L

�2L
�

�1R

�2R
. �1�

Notice that no asymmetry in the tunneling rates, which are
proportional to ��i��2, is implied by Eq. �1�. This fact ex-
cludes the interpretation of the physics of the interference-
SET in terms of standard NDC with asymmetric couplings.
Due to condition �1� there exist linear combinations of the
degenerate N+1-particle states which are coupled to one of
the leads but not to the other. The state that is decoupled
from the right lead represents a blocking state for the current
flowing L→R since electrons can populate this state by tun-
neling from the left lead but cannot tunnel out toward the
right lead. Vice versa the state decoupled from the left lead is
a blocking state for the current R→L. Typically these two
blocking states are not orthogonal and thus cannot form to-
gether a valid basis set. The basis set that diagonalizes the
stationary density matrix �what we call in the manuscript as

the “physical basis”� contains at large positive biases the L
→R blocking state and is thus different from the physical
basis at large negative biases which necessarily contains the
R→L blocking state. More generally the “physical basis”
depends continuously on the bias. Thus only a treatment that
includes coherences in the density matrix can capture the full
picture at all biases. By neglecting for simplicity the spin
degree of freedom, the seven-particle ground state of ben-
zene is two times degenerate while the six-particle one is
nondegenerate. If we choose for the seven-particle states the
eigenstates of the z projection of the angular momentum we
obtain the relation

�1L

�2L
=

�1R

�2R
e4i�, �2�

where � is the angle between the left and the right leads.
Thus in the metaconfiguration ��=2� /3� condition �1� is
fulfilled, while in the paraconfiguration ��=�� the amplitude
ratios are equal. This condition implies that in the paracon-
figuration one of the seven-particle states is decoupled from
both leads at the same time and can thus �in first approxima-
tion� be excluded from the dynamics. In contrast, in the
metaconfiguration, the linear combination of uniformly dis-
tributed eigenstates of the angular momentum creates states
with a peculiar interference pattern. The position of their
nodes allows to characterize them as different blocking
states.

This paper is outlined as follows: in Sec. II we introduce
the model Hamiltonian of the system and present a density
matrix approach setting up a generalized master equation de-
scribing the electron dynamics. We give the expression for
the current in the fully symmetric setup �the generalized
master equation �GME� and the current formula for the setup
under perturbation are given in Appendix A�. Further we
provide a detailed analysis of the symmetry characteristics of
the molecular eigenstates.

In Sec. III we present numerical and analytical results of
transport calculations for the unperturbed setup. We study the
occurring interference effects and provide an explanation of
the phenomena based on symmetry considerations.

In Sec. IV we present the results for the perturbed setup
including a detailed discussion of the transport in this case.
We identify in the quasidegeneracy of the contributing mo-
lecular states the necessary condition for the robustness of
the interference effects. Conclusions and remarks are pre-
sented in Sec. V.

II. MODEL HAMILTONIAN AND DENSITY MATRIX
APPROACH

A. Model Hamiltonian

For the description of the benzene molecule weakly
coupled to source and drain leads, we adopt the total Hamil-
tonian H=Hben

0 +Hleads+HT+Hben� . The first term is the inter-
acting Hamiltonian for isolated benzene,39–41

FIG. 1. �Color online� Schematic representation of the two dif-
ferent setups for the benzene I-SET considered in this paper. The
molecule, lying on a dielectric substrate, is weakly contacted to
source and drain leads as well as capacitively gated.
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Hben
0 = �0�

i�

di�
† di� + b�

i�

�di�
† di+1� + di+1�

† di��

+ U�
i

�ni↑ − 1
2��ni↓ − 1

2�

+ V�
i

�ni↑ + ni↓ − 1��ni+1↑ + ni+1↓ − 1� , �3�

where di�
† creates an electron of spin � in the pz orbital of

carbon i; i=1, . . . ,6 runs over the six carbon atoms of ben-
zene and ni�=di�

† di�.
Only the pz orbitals �one per carbon atom� are explicitly

taken into account, while the core electrons and the nuclei
are combined into frozen ions, with the same spatial symme-
try as the relevant electrons. They contribute only to the
constant terms of the Hamiltonian and enforce particle-hole
symmetry. Mechanical oscillations are neglected, and all at-
oms are considered at their equilibrium position.

This Hamiltonian for isolated benzene is respecting the
D6h symmetry of the molecule. Since for every site there are
four different possible configurations ��0� , �↑ � , �↓ � , �↑↓��, the
Fock space has the dimension 46=4096, which requires a
numerical treatment. Although the diagonalization of the
Hamiltonian is not a numerical challenge, it turns out to be
of benefit for the physical understanding of the transport pro-
cesses to divide Hben into blocks, according to the number N
of pz electrons �from 0 to 12�, the z projection Sz of the total
spin, and the orbital symmetries of benzene �see Table I�.

The parameters b, U, and V for isolated benzene are given
in the literature42 and are chosen to fit optical excitation
spectra. The presence of metallic electrodes and the dielec-
tric in the molecular I-SET, is expected to cause a substantial
renormalization of U and V.4,43 Nevertheless, we do not ex-
pect the main results of this work to be affected by this
change. We consider the benzene molecule weakly coupled
to the leads. Thus, to first approximation, we assume the
symmetry of the isolated molecule not to be changed by the
screening. Perturbations due to the lead-molecule contacts
reduce the symmetry in the molecular junction. They are
included in Hben� �see Eqs. �24� and �25�� and will be treated
in Sec. IV.

The effect of the gate is included as a renormalization of
the on-site energy �=�0−eVg �Vg is the gate voltage�, and we
conventionally set Vg=0 at the charge neutrality point.
Source and drain leads are two reservoirs of noninteracting
electrons: Hleads=��k���k−	��c�k�

† c�k�, where �=L ,R
stands for the left or right lead and the chemical potentials
	� of the leads depend on the applied bias voltage 	L,R

=	0

Vb

2 . In the following we will measure the energy start-
ing from the equilibrium chemical potential 	0=0. The cou-
pling to source and drain leads is described by the tunneling
Hamiltonian

HT = t�
�k�

�d��
† c�k� + c�k�

† d��� , �4�

where we define d��
† as the creator of an electron in the

benzene carbon atom which is closest to the lead �. In par-
ticular dR�

†
ªd4�

† ,d5�
† , respectively, in the para and metacon-

figuration, while dL�
†
ªd1�

† in both setups.

B. Dynamics of the reduced density matrix

Given the high degeneracy of the spectrum, the method of
choice to treat the dynamics in the weak coupling is the
Liouville equation method already used, e.g., in Refs. 32 and
34. In this section we shortly outline how to derive the equa-
tion of motion for the RDM to lowest nonvanishing order in
the tunneling Hamiltonian. For more details we refer to Refs.
34 and 35.

Starting point is the Liouville equation for the total den-
sity operator of molecule and leads � in the interaction pic-
ture, treating HT as a perturbation: i� d�I�t�

dt = �HT
I ,�I�t��. This

equation integrated over time and iterated to the second order
reads as

�̇I�t� = −
i

�
�HT

I �t�,�I�t0�� −
1

�2�
t0

t

dt�†HT
I �t�,�HT

I �t��,�I�t���‡ .

�5�

Since we are only interested in the transport through the
molecule, we treat from now on the time evolution of the
RDM �=Trleads	�I�t�
,44 which is formally obtained from Eq.
�5� by tracing out the lead degrees of freedom: �̇
=Trleads	�̇I
.

TABLE I. Overview of the six-particle states of benzene, sorted
by Sz and symmetry. Orbitals with A- and B-types of symmetry
show no degeneracy, while E-type orbitals are doubly degenerate.

N No. of ↑ No. of ↓ No. of states
No. of states with a

certain symmetry

6 6 0 1 1 B1u

4 A1g

2 A2g

5 1 36 26 E2g

4 B1u

2 B2u

26 E1u

16 A1g

20 A2g

4 2 225 236 E2g

22 B1u

17 B2u

239 E1u

38 A1g

30 A2g

3 3 400 266 E2g

38 B1u

30 B2u

266 E1u

2 4 225

1 5 36 ]

0 6 1
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In order to proceed, we make the following standard ap-
proximations:

�i� the leads are considered as reservoirs of noninteracting
electrons in thermal equilibrium. Hence we can factorize the
density matrix as �I�t�=��t��s�d=��t��leads.

�ii� Since the molecule is weakly coupled to the leads we
treat the effects of HT to the lowest nonvanishing order.

�iii� Due to the continuous interaction of the system with
the leads and at high enough temperature, it is legitimate to
apply the Markov approximation and obtain an equation for
�̇ which is local in time ���t� instead of ��t�� inside the
integral�. In particular the Markov approximation becomes
exact in the stationary limit �t→�� we will focus on. Since
we are interested in the long-term behavior of the system, we
set t0→−� in Eq. �5� and finally obtain the GME,

�̇�t� =
− 1

�2 �
0

�

dt� Trleads	†HT
I �t�,�HT

I �t − t��,��t��leads�‡
 .

�6�

The reduced density operator � is defined on the Fock space
of benzene, yet we can neglect coherences between states
with different particle number since they are decoupled from
the dynamics of the populations. For simplicity, we continue
here the derivation of the GME only for the symmetric case

with exact orbital degeneracy, i.e., neglecting Hben� �the per-
turbed case is presented in Appendix A�.

�iv� Further we also neglect coherences between states
with different energy �secular approximation�. They are irrel-
evant due to their fast fluctuation compared to the dynamics
of the system triggered by the tunneling coupling.

Under these considerations, it is convenient to express the
GME in terms of the reduced density operator �NE

=PNE�PNE, where PNEª����NE����NE��� is the projection
operator on the subspace of N particles and energy E. The
sum runs over the orbital and spin quantum numbers � and �,
respectively. The orbital quantum number � distinguishes be-
tween orbitally degenerate states. The exact meaning of �
will be illustrated in the next section. In Appendix A we
derive a GME that retains coherences also between quaside-
generate states. That approach treats with special care the
small asymmetries introduced in the molecule by the cou-
pling to the leads. In fact it interpolates between the degen-
erate case treated here and the fully nondegenerate case in
which the GME reduces to a master equation for populations
only. Equation �6� can be further manipulated by projection
into the subspace of N particle and energy E. Since we as-
sume the density matrix to be factorized and the leads to be
in thermal equilibrium, also the traces over the leads degree
of freedom can be easily performed. Eventually, the GME
for the degenerate case reads as

�̇NE = − �
��

��

2
�PNEd�� f�

+�Hben
0 − E� −

i

�
p��Hben

0 − E��d��
† �NE

+ PNEd��
†  f�

−�E − Hben
0 � −

i

�
p��E − Hben

0 ��d���
NE + H.c.�

+ �
��E�

��PNE	d��
† f�

+�E − E���N−1E�d�� + d��f�
−�E� − E��N+1E�d��

† 
PNE, �7�

where �L,R= 2�
� �tL,R�2DL,R are the bare transfer rates with the

constant densities of states of the leads DL,R. Terms describ-
ing sequential tunneling from and to the lead � are propor-
tional to the Fermi functions f�

+�x�ª f�x−	�� and f�
−�x�ª1

− f�
+�x�, respectively. Still in the sequential tunneling limit,

but only in the equations for the coherences, one finds also
the energy nonconserving terms, proportional to the function
p��x�=−Re �� 1

2 + i�
2� �x−	���, where � is the digamma func-

tion. Both the Fermi functions and the digamma function
result from the trace over the lead degrees of freedom.30,34,44

A closer analysis of the master equation allows also the
formulation of an expression for the current operator. We
start from the definition of the time derivative of the charge
on benzene,

d

dt
�Q� = Tr	N̂�̇
 = �IL + IR� , �8�

where Q=�i��di�
† di�−6� is the operator of the charge on ben-

zene, N̂ is the particle number operator, and IL,R are the cur-
rent operators at the left �right� contact. Conventionally, in
the definition of IL,R we assume the current to be positive
when it is increasing the charge on the molecule. Thus, in the
stationary limit, �IL+ IR� is zero. We write this expression in
the basis of the subspaces of N particles and energy E,

�IL + IR� = �
NE

Tr	N̂PNE�̇PNE
 = �
NE

Tr	N�̇NE
 . �9�
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Further we insert Eq. �7� in Eq. �9� and take advantage of the
cyclic properties of the trace to find

�IL + IR� = �
NE

�
��

N�� Tr�− �f�
+�Hben

0 − E�d��
† �NEd��

+ f�
−�E − Hben

0 �d���
NEd��

† � + �
E�

PNE�f�
+�E − E��

d��
† �N−1E�d�� + f�

−�E� − E�d���
N+1E�d��

† �� .

�10�

Notice that the energy nonconserving contributions drop
from the expression of the current. Still they contribute to the
average current via the density matrix. Since E and E� are
dummy variables, we can switch them in the summands con-
taining E�. Applying the relation

�
NE�

Tr	PNE�g�E��
 = Tr	g�Hben
0 �
 ,

where g�E�� is a generic function, we substitute E� with Hben
0

in Eq. �10�. Further we can conveniently rearrange the sum
over N, arriving at the expression for the current,

�IL + IR� = �
NE

�
��

�� Tr

	d��
† �NEd���− Nf�

+�Hben
0 − E� + �N + 1�f�

+�Hben
0 − E��

+ d���
NEd��

† �− Nf�
−�E − Hben

0 � + �N − 1�f�
−�E − Hben

0 ��
 .

�11�

This relation can be further simplified in order to identify the
current operators. The one corresponding to the left contact
is, e.g.,

IL = �L�
NE�

PNE�dL�fL
+�Hben

0 − E�dL�
† +

− dL�
† fL

−�E − Hben
0 �dL��PNE. �12�

With this relation we can calculate the stationary current as
the average �IL�=Tr	�statIL
=−�IR�, with �stat as the station-
ary density operator. The expression of the current operator
for the perturbed system is given in Appendix A.

C. Symmetry of the benzene eigenstates

In this section, we will review the symmetry characteris-
tics of the eigenstates of the interacting Hamiltonian of ben-
zene, focusing on the symmetry operations �v and Cn which
have a major impact on the electronic transport through the
molecular I-SET. Benzene belongs to the D6h point group.
Depending on their behavior under symmetry operations,
one can classify the molecular orbitals by their belonging to
a certain irreducible representation of the point group.

Table I shows an overview of the states of the neutral
molecule �the six-particle states� sorted by Sz and symme-
tries. The eigenstates of the interacting benzene molecule
have either A-, B-, or E-type symmetries. While orbitals hav-
ing A or B symmetries can only be spin degenerate, states

with an E symmetry show an additional twofold orbital de-
generacy, essential for the explanation of the transport fea-
tures occurring in the metaconfiguration.

Transport at low bias is described in terms of transitions
between ground states with different particle number. Table
II shows the symmetries of the ground states �and of some
first excited states� of interacting benzene for all possible
particle numbers. Ground-state transitions occur both be-
tween orbitally nondegenerate states �with A and B symme-
tries�, as well as between orbitally degenerate and nondegen-
erate states �E- to A-type states�.

The interacting benzene Hamiltonian commutes with all
the symmetry operations of the D6h point group; thus, it has
a set of common eigenvectors with each operation. The ele-
ment of D6h of special interest for the paraconfiguration is
�v, i.e., the reflection about the plane through the contact
atoms and perpendicular to the molecular plane. The molecu-
lar orbitals with A and B symmetries are eigenstates of �v
with eigenvalue of 
1; i.e., they are either symmetric or
antisymmetric with respect to the �v operation. The behavior
of the E-type orbitals under �v is basis dependent, yet one
can always choose a basis in which one orbital is symmetric
and the other one antisymmetric.

Let us now consider the generic transition amplitude
�N�d���N+1�, where d�� destroys an electron of spin � on the
contact atom closest to the � lead. It is useful to rewrite this
amplitude in the form

�N�d���N + 1� = �N��v
†�vd���v

†�v�N + 1� , �13�

where we have used the property �v
†�v=1. Since in the para-

configuration both contact atoms lie in the mirror plane �v, it

TABLE II. Degeneracy, energy, and symmetry of the ground
states of the isolated benzene molecule for different particle num-
bers. We choose the on-site and intersite Coulomb interactions to be
U=10 eV and V=6 eV, and the hopping to be b=−2.5 eV. No-
tice, however, that screening effects from the leads and the dielec-
tric are expected to renormalize the energy of the benzene many-
body states.

N Degeneracy
Energy�at �=0�

�eV� Symmetry
Symmetry behavior

under �v

0 1 0 A1g sym

1 2 −22 A2u sym

2 1 −42.25 A1g sym

3 4 −57.42 E1g 2 sym, �2 antisym�
4 �3� �−68.87� �A2g� �antisym�

2 −68.37 E2g 1 sym, �1 antisym�
5 4 −76.675 E1g 2 sym, �2 antisym�
6 1 −81.725 A1g sym

7 4 −76.675 E2u 2 sym, �2 antisym�
8 �3� �−68.87� �A2g� �antisym�

2 −68.37 E2g 1 sym, �1 antisym�
9 4 −57.42 E2u 2 sym, �2 antisym�

10 1 −42.25 A1g sym

11 2 −22 B2g sym

12 1 0 A1g sym
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follows that �vd��v
†=d�. If the participating states are both

symmetric or both antisymmetric under �v, Eq. �13� is
trivial. For states with different symmetry it is

�N,sym�d���N + 1,antisym� = − �N,sym�d���N + 1,antisym� ,

�14�

implying that the matrix element vanishes. In other terms,
there is a selection rule that forbids transitions between sym-
metric and antisymmetric states. Further, since the ground
state of the neutral molecule is symmetric, for the transport
calculations in the paraconfiguration we select the effective
Hilbert space containing only states symmetric with respect
to �v. Correspondingly, when referring to the N-particle
ground state we mean the energetically lowest symmetric
state. For example, in the case of four- and eight-particle
states it is the first excited state to be the effective ground
state. In the paraconfiguration also the orbital degeneracy of
the E-type states is effectively cancelled due to the selection
of the symmetric orbital �see Table II�.

Small violations of this selection rule, due, e.g., to mo-
lecular vibrations or coupling to an electromagnetic bath,
result in the weak connection of different metastable elec-
tronic subspaces. We suggest this mechanism as a possible
explanation for the switching and hysteretic behavior re-
ported in various molecular junctions. This effect is not ad-
dressed in this work.

For a simpler analysis of the different transport character-
istics it is useful to introduce a unified geometrical descrip-
tion of the two configurations. In both cases, one lead is
rotated by an angle � with respect to the position of the other
lead. Hence we can write the creator of an electron in the
right contact atom dR�

† in terms of the creation operator of the
left contact atom and the rotation operator,

dR�
† = R�

† dL�
† R�, �15�

where R� is the rotation operator for the anticlockwise rota-
tion of an angle � around the axis perpendicular to the mo-
lecular plane and piercing the center of the benzene ring; �
=� for the paraconfiguration and �= �2� /3� for the meta-
configuration.

The energy eigenstates of the interacting Hamiltonian of
benzene can be classified also in terms of their quasiangular
momentum. In particular, the eigenstates of the z projection
of the quasiangular momentum are the ones that diagonalize
all operators R� with angle multiples of � /3. The corre-
sponding eigenvalues are phase factors e−i�� where ��, the
quasiangular momentum of the state, is an integer multiple
of �. The discrete rotation operator of an angle �=� �C2
symmetry operation� is the one relevant for the paraconfigu-
ration. All orbitals are eigenstates of the C2 rotation with the
eigenvalue of 
1.

The relevant rotation operator for the metaconfiguration
corresponds to an angle �=2� /3 �C3 symmetry operation�.
Orbitals with an A or B symmetry are eigenstates of this
operator with the eigenvalue of +1 �angular momentum �
=0 or �=3�. Hence we can already predict that there will be
no difference based on rotational symmetry between the
paraconfiguration and the metaconfiguration for transitions

between states involving A- and B-type symmetries. Orbitals
with E symmetry however behave quite differently under the
C3 operation. They are the pairs of states of angular mo-
menta �= 
1 or �= 
2. The diagonal form of the rotation
operator on the twofold degenerate subspace of E symmetry
reads as

C3 = �e−i���2�/3 0

0 ei���2�/3 � . �16�

For the twofold orbitally degenerate seven-particle ground
states ���=2. This analysis in terms of the quasiangular mo-
mentum makes the calculation of the fundamental interfer-
ence condition �Eq. �2�� given in Sec. I easier. In fact the
following relation holds between the transition amplitudes of
the six- and seven-particle ground states:

��R � �7g���dR�
† �6g� = �7g���R�

† dL�
† R��6g� = e−i����L,

�17�

and Eq. �2� follows directly.

III. TRANSPORT CALCULATIONS:
FULLY SYMMETRIC SETUP

With the knowledge of the eigenstates and eigenvalues of
the Hamiltonian for the isolated molecule, we implement Eq.
�7� and look for a stationary solution. The symmetries of the
eigenstates are reflected in the transition amplitudes con-
tained in the GME. We find numerically its stationary solu-
tion and calculate the current and the differential conduc-
tance of the device. In Fig. 2 we present the stability diagram
for the benzene I-SET contacted in the paraconfiguration
�upper panel� and metaconfiguration �lower panel�. Bright
ground-state transition lines delimit diamonds of zero differ-
ential conductance typical for the Coulomb blockade regime,

FIG. 2. �Color online� Stability diagram for the benzene I-SET
contacted in the para �above� and metaconfiguration �below�. Dot-
dashed lines highlight the conductance cuts presented in Fig. 3, the
dashed lines mark the regions corresponding to the current traces
presented in Figs. 4 and 6, and the dotted line is the region corre-
sponding to the current trace presented in Fig. 5. The parameters
used are U=4�b� , V=2.4�b� , kBT=0.04�b� , ��L=��R=10−3�b�.

DARAU et al. PHYSICAL REVIEW B 79, 235404 �2009�

235404-6



while a rich pattern of satellite lines represents the transitions
between excited states. Though several differences can be
noticed, most striking are the suppression of the linear con-
ductance, the appearance of negative differential conduc-
tance �NDC�, and the strong suppression of the current at the
right �left� border of the seven- �five-� particle diamond when
passing from the para to the metaconfiguration. All these
features are different manifestations of the interference be-
tween orbitally degenerate states and ultimately reveal the
specific symmetry of benzene.

A. Linear conductance

We study the linear transport regime both numerically and
analytically. For the analytical calculation of the conductance
we consider the low-temperature limit where only ground
states with N and N+1 particles have considerable occupa-
tion probabilities, with N fixed by the gate voltage. Therefore
only transitions between these states are relevant and we can
treat just the terms of Eq. �7� with N and N+1 particles and
the ground-state energies Eg,N and Eg,N+1, respectively. A
closer look at Eq. �7� reveals that the spin coherences are
decoupled from the other elements of the density matrix.
Thus we can set them to zero, and write Eq. �7� in a block
diagonal form on the basis of the ground states of N and N
+1 particles. Additionally, since the total Hamiltonian H is
symmetric in spin, the blocks of the GME with the same
particle but different spin quantum number � must be iden-
tical. Finally, since around the resonance the only populated
states are the N- and N+1-particle states, the conservation of
probability implies that

1 = �
n

�nn
N + �

m

�mm
N+1, �18�

where �nn
N is the population of the N-particle ground state

and n contains the orbital and spin quantum numbers. With
all these observations we can reduce Eq. �7� to a much
smaller set of coupled differential equations, which can be
treated analytically. The stationary solution of this set of
equations can be derived more easily by neglecting the en-
ergy nonconserving terms in Eq. �7�. These are contained in
the elements of the GME describing the dynamics of the
coherences between orbitally degenerate states. With this
simplification we derive an analytical formula for the con-
ductance close to the resonance between N- and
N+1-particle states as the first order coefficient of the Taylor
series of the current in the bias,

GN,N+1��E� = 2e2 �L�R

�L + �R
�N,N+1

−
SNSN+1f���E�

�SN+1 − SN�f��E� + SN
� , �19�

where �E=Eg,N−Eg,N+1+eVg is the energy difference be-
tween the benzene ground states with N and N+1 electrons
diminished by a term linear in the gate voltage. Interference
effects are contained in the overlap factor �N,N+1,

�N,N+1 =
��

nm�

�N,n�dL��N + 1,m��N + 1,m�dR�
† �N,n��2

SNSN+1 �
nm��

��N,n�d���N + 1,m��2
,

where n and m label the SN-fold and SN+1-fold degenerate
ground states with N and N+1 particles, respectively. In or-
der to make the interference effects more visible we remind
that dR�

† =R�
† dL�

† R�, with �=� for the paraconfiguration
while �=2� /3 for the metaconfiguration. Due to the behav-
ior of all eigenstates of Hben

0 under discrete rotation operators
with angles multiples of � /3, we can rewrite the overlap
factor as

�N,N+1 =
��

nm�

��N,n�dL��N + 1,m��2ei�nm�2

SNSN+12�
nm�

��N,n�dL��N + 1,m��2
, �20�

where �nm encloses the phase factors coming from the rota-
tion of the states �N ,n� and �N+1,m�.

The energy nonconserving terms neglected in Eq. �19�
influence only the dynamics of the coherences between or-
bitally degenerate states. Thus, Eq. �19� provides an exact
description of transport for the paraconfiguration, where or-
bital degeneracy is cancelled. Even if Eq. �19� captures the
essential mechanism responsible for the conductance sup-
pression, we have derived an exact analytical formula also
for the metaconfiguration, and we present it in Appendix B.

In Fig. 3 we present an overview of the results of both the
para and the metaconfiguration. A direct comparison of the
conductance �including energy nonconserving terms� in the
two configurations is displayed in the upper panel. The lower
panel illustrates the effect of the energy nonconserving terms

FIG. 3. �Color online� Conductance of the benzene I-SET as a
function of the gate voltage. Clearly visible are the peaks corre-
sponding to the transitions between ground states with N and N
+1 particles. In the low conductance valleys the state of the system
has a definite number of particles and symmetry as indicated in the
upper panel for the para; in the lower for the metaconfiguration.
Selective conductance suppression when changing from the meta to
the paraconfiguration is observed.
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on the conductance in the metaconfiguration. The number of
pz electrons on the molecule and the symmetry of the lowest
energy states corresponding to the conductance valleys are
reported. The symmetries displayed in the upper panel be-
long to the �effective� ground states in the paraconfiguration;
the corresponding symmetries for the metaconfiguration are
shown in the lower panel.

Figure 3 shows that the results for the para and the meta-
configuration coincide for the 10↔11 and 11↔12 transi-
tions. The ground states with N=10,11,12 particles have A-
or B-type symmetries. They are therefore orbitally nonde-
generate, no interference can occur, and thus the transitions
are invariant under configuration change. For every other
transition we see a noticeable difference between the results
of the two configurations �Fig. 3�. In all these transitions one
of the participating states is orbitally degenerate. First we
notice that the linear conductance peaks for the 7↔8 and
8↔9 transitions in the paraconfiguration are shifted with
respect to the corresponding peaks in the metaconfiguration.
The selection of an effective symmetric Hilbert space asso-
ciated to the paraconfiguration reduces the total degeneracy
by canceling the orbital degeneracy. In addition, the ground-
state energy of the four- and eight-particle states is different
in the two configurations since in the paraconfiguration the
effective ground state is in reality the first excited state. The
degeneracies SN,SN+1 of the participating states as well as
the ground-state energy are both entering the degeneracy
term of Eq. �19�,

� = −
f���E�

�SN+1 − SN�f��E� + SN
, �21�

and determine the shift of the conductance peaks.
Yet, the most striking effect regarding transitions with or-

bitally degenerate states participating is the systematic sup-
pression of the linear conductance when changing from the
para to the metaconfiguration. The suppression is appreciable
despite the conductance enhancement due to the energy non-
conserving terms �see Fig. 3, lower panel�. Thus, we will for
simplicity discard them in the following discussion.

The conductance is determined by the combination of two
effects: the reduction to the symmetric Hilbert space in the
paraconfiguration and the interference effects between de-
generate orbitals in the metaconfiguration. The reduction to
the symmetric Hilbert space implies also a lower number of
conducting channels �see Table III�. One would expect a sup-
pression of transport in the paraconfiguration. The actual op-
posite behavior is partially explained by �max �see Table III�
which is higher in the paraconfiguration.

The second effect determining transport is the interference
between the E-type states, which is accounted for in the
overlap factor �. The overlap factor is basis independent;
thus, we can write the transition probabilities for the 6↔7
transition as ��6g�dL��7g����2=C, where � and � are the spin
and the quasiangular momentum quantum number, respec-
tively. The transition probabilities have the same value since
all four seven-particle states are in this basis equivalent �see
Appendix C�. Under the C2 rotation the symmetric seven-
particle ground state does not acquire any phase factor. Un-
der the C3 rotation, however, the two orbitally degenerate

states acquire different phase factors, namely, ei4�/3 and
e−i4�/3, respectively. Thus the overlap factors � for the 6↔7
transition are

�para =
1

2 · 8C
�4C�2 = C ,

�meta =
1

4 · 8C
�2Ce+i4�/3 + 2Ce−i4�/3�2 =

1

8
C .

The linear conductance is determined by the product among
the number of conducting channels, the overlap factor, and
the degeneracy term. Yet, it is the destructive interference
between degenerate E-type orbitals, accounted for in the
overlap factor �, that gives the major contribution to the
strong suppression of the conductance in the metaconfigura-
tion.

B. NDC and current blocking

Interference effects between orbitally degenerate states
are also affecting nonlinear transport, producing in the meta-
configuration current blocking and thus NDC at the border of
the six-particle state diamond �Fig. 2�. The upper panel of
Fig. 4 shows the current through the benzene I-SET con-
tacted in the metaconfiguration as a function of the bias volt-
age. The current is given for parameters corresponding to the
white dashed line of Fig. 2. In this region only the six- and
seven-particle ground states are populated.

At low bias the six-particle state is mainly occupied. As
the bias is raised, transitions 6↔7 occur and current flows.
Above a certain bias threshold a blocking state is populated
and the current drops. For the understanding of this nonlinear
current characteristics, we have to take into account energy
conservation, the Pauli exclusion principle, and the interfer-
ence between participating states. For the visualization of the
interference effects, we introduce the transition probability
�averaged over the z coordinate and the spin ��,

P�x,y ;n,�� = lim
L→�

�
�

1

2L
�

−L/2

L/2

dz��7gn����
†�r��6g��2,

�22�

for the physical seven-particle basis, i.e., the seven-particle
basis that diagonalizes the stationary density matrix at a fixed

TABLE III. Number of channels participating to transport, over-
lap factor, and resonance value of the degeneracy term in the para
and the metaconfiguration for the 6↔7 transition peak. It is C
= ��6g�dL��7g����2, where � and � are the spin and the quasiangular
momentum quantum numbers, respectively. The values of �max are
given for kBT=0.04�b�.

No. of channels
SNSN+1

Overlap factor
�

Degeneracy term
�max

�1 /kBT�

PARA 2 C 0,17

META 4 1
8C 0,11
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bias. Here � is the spin quantum number; n=1,2 labels the
two states of the physical basis which are linear combina-
tions of the orbitally degenerate states �7g��� and can be
interpreted as conduction channels. Each of the central pan-
els of Fig. 4 are surface plots of Eq. �22� at the different bias
voltages a-c. The seven-particle ground states can interfere
and thus generate nodes in the transition probability at the
contact atom close to one or the other lead but, in the meta-
configuration, never at both contact atoms at the same time.

Energetic considerations are illustrated in the lower panels
of Fig. 4 for two key points of the current curve at positive
biases. The left panel corresponds to the resonance peak of
the current. Due to energy conservation, electrons can enter
the molecule only from the left lead. On the contrary the exit
is allowed at both leads. The current is suppressed when
transitions occur to a state which cannot be depopulated �a
blocking state�. Since, energetically, transmissions to the six-
particle state are allowed at both leads, each seven-particle
state can always be depopulated and no blocking occurs.

The current blocking scenario is depicted in the lower
right panel of Fig. 4. For large positive bias the transition
from a seven-particle ground state to the six-particle ground
state is energetically forbidden at the left lead. Thus, for
example, the c panel in Fig. 4 visualizes the current blocking
situation yielding NDC: while for both channels there is a
nonvanishing transition probability from the source lead to
the molecule, for the upper channel a node prevents an elec-
tron from exiting to the drain lead. In the long time limit the
blocking state gets fully populated while the nonblocking
state is empty. At large negative bias the blocking scenario is
depicted in panel a that shows the left-right symmetry ob-
tained by a reflection through a plane perpendicular to the
molecule and passing through the carbon atoms 6 and 3.

The temperature sets the scale of the large bias condition,
and, correspondingly, the width of the current peak presented
in Fig. 4 grows with it. The peak is not symmetric though. Its
shape depends also on the energy renormalization introduced
by the coupling to the leads45 �principal part contribution in
the GME Eq. �7��. The result is a nonlinear dependence of
the peak width with the temperature. We remark that only a
description that retains coherences between the degenerate
seven-particle ground states correctly captures NDC at both
positive and negative biases.

In contrast to the 6→7 transition, one does not observe
NDC at the border of the seven-particle Coulomb diamond
but rather a strong suppression of the current. The upper
panel of Fig. 5 shows the current through the benzene I-SET
contacted in the metaconfiguration as a function of the bias
voltage corresponding to the white dotted line of Fig. 2. The
middle panels show the transition probabilities between each
of the seven-particle and the six-particle ground states.

The lower panel of Fig. 5 shows a sketch of the energetics
at positive bias corresponding to the “expected” resonance
peak. Here electrons can enter the molecular dot at both
leads, while the exit is energetically forbidden at the left
lead. Thus, if the system is in the seven-particle state which
is blocking the right lead, this state cannot be depopulated,
becoming the blocking state.

On the other hand, transitions from the six-particle ground
state to both seven-particle ground states are equally prob-
able. Thus the blocking state will surely be populated at
some time. The upper plot of the b panel in Fig. 5 shows the
transition probability to the blocking state that accepts elec-
trons from the source lead but cannot release electrons to the
drain.

We just proved that in this case the current blocking situ-
ation occurs already at the resonance bias voltage. For a
higher positive bias, the transition probability from the
blocking state at the drain lead increases and current can

FIG. 4. �Color online� Upper panel—current through the ben-
zene I-SET in the metaconfiguration calculated at bias and gate
voltage conditions indicated by the dashed line of Fig. 2. A pro-
nounced NDC with current blocking is visible. Middle panels—
transition probabilities between the six-particle and each of the two
seven-particle ground states for bias voltage values labeled a-c in
the upper panel. The transition to a blocking state is visible in the
upper �lower� part of the c �a� panels. Lower panels—sketch of the
energetics for the 6→7 transition in the metaconfiguration at bias
voltages corresponding to the resonance current peak and current
blocking as indicated in the upper panel of this figure.
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flow. This effect, though, can be captured only by taking into
account also the energy nonconserving terms in Eq. �7�.

In the paraconfiguration, the current as a function of the
bias voltage is shown in Fig. 6. The current is given for
parameters corresponding to the white dashed line of Fig. 2.
In this case, no interference effects are visible. We see in-
stead the typical steplike behavior of the current in the Cou-
lomb blockade regime.

The panels on the right are the surface plots of

P�x,y ;�� = lim
L→�

�
�

1

2L
�

−L/2

L/2

dz��7g�;�a�sym���
†�r��6g��2.

�23�

The upper plot shows the transition probability to the sym-
metric seven-particle state and the lower to the antisymmet-
ric. Remember that in the paraconfiguration only the sym-
metric states contribute to transport. Evidently the symmetric
state is in the paraconfiguration nonblocking. Additionally,
since the coherences between orbitally degenerate states and
therefore the energy nonconserving terms do not play any
role in the transport, the physical basis states are not bias
dependent. Thus in the paraconfiguration there are always
nonblocking states populated and no NDC can occur.

IV. REDUCED SYMMETRY

In this section we study the effect of reduced symmetry
on the results presented previously. We generalize the model
Hamiltonian by taking into account the perturbations on the
molecule due to the contacts and the bias voltage. The con-
tact between molecule and leads is provided by different an-
chor groups. These linkers are coupled to the contact carbon
atoms over a � bond thus replacing the corresponding ben-
zene hydrogen atoms. Due to the orthogonality of � and �
orbitals, the anchor groups affect in first approximation only
the � orbitals of benzene. In particular the different electron
affinities of the atoms in the linkers imply a redistribution of
the density of � electrons. Assuming that transport is carried
by � electrons only, we model the effect of this redistribution
as a change in the on-site energy for the pz orbitals of the
contact carbon atoms,

Hben� ª Hcontact = �c�
��

d��
† d��, � = L,R , �24�

where R=4,5, respectively, in the para and metaconfigura-
tion and L=1 in both setups.

FIG. 5. �Color online� Upper panel—current through the ben-
zene I-SET in the metaconfiguration calculated at bias and gate
voltage conditions indicated by the dotted line of Fig. 2. No NDC is
visible. Middle panels—transition probabilities between each of the
seven-particle and the six-particle ground state for bias voltage val-
ues labeled as a-c in the upper panel. Lower panel—sketch of the
energetics for the 7→6 transition in the metaconfiguration at bias
voltage corresponding to the expected resonance peak. �compare to
Fig. 4�.

FIG. 6. �Color online� Left panel—current through the benzene
I-SET in the paraconfiguration calculated at bias and gate voltage
conditions indicated by the dashed line of Fig. 2. No interference
effects are visible. Right panels—transition probabilities between
the six-particle and the symmetric and antisymmetric seven-particle
ground states.
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We also study the effect of an external bias on the ben-
zene I-SET. In particular we release the strict condition of
potential drop all concentrated at the lead-molecule interface.
Nevertheless, due to the weak coupling of the molecule to
the leads, we assume that only a fraction of the bias potential
drops across the molecule, similar to Hettler et al.28 For this
residual potential we take the linear approximation Vb�r�=
−

Vb

a �r · r̂sd /a0�, where we choose the center of the molecule
as the origin and r̂sd is the unity vector directed along the
source to drain direction. a0=1.43 Å is the bond length be-
tween two carbon atoms in benzene; a is the coefficient de-
termining the intensity of the potential drop over the mol-
ecule. Since the pz orbitals are strongly localized, we can
assume that this potential will not affect the intersite hopping
but only the on-site term of the Hamiltonian,

Hben� ª Hbias = e�
i�

�bi
di�

† di� �25�

with �bi
=�drpz�r−Ri�Vb�r�pz�r−Ri�.

Under the influence of the contacts or the bias potential,
the symmetry of the molecule changes. Table IV shows the
point groups to which the molecule belongs in the perturbed
setup. This point groups have only A- and B-type irreducible
representations. Thus the corresponding molecular orbitals
do not exhibit orbital degeneracy.

No interference effects influence the transport in the para-
configuration. Thus we do not expect its transport character-
istics to be qualitatively modified by the new setup with the
corresponding loss of degeneracies.

In the metaconfiguration, on the other hand, interferences
between orbitally degenerate states play a crucial role in the
explanation of the occurring transport features. Naïvely one
would therefore expect that neither conductance suppression
nor NDC and current blocking occur in a benzene I-SET
with reduced symmetry. Yet we find that, under certain con-
ditions, the mentioned transport features are robust under the
lowered symmetry.

The perturbations due to the contacts and the bias lead to
an expected level splitting of the former orbitally degenerate
states. Very different current-voltage characteristics are ob-
tained depending on the relation between the energy splitting
�E and other two important energy scales of the system: the
tunneling rate � and the temperature T. In particular, when
�E���T, interference phenomena persist. In contrast,
when ���E�T, interference phenomena disappear despite
the fact that, due to temperature broadening, the two states
still cannot be resolved. In this regime, due to the asymmetry
in the tunneling rates introduced by the perturbation, stan-
dard NDC phenomena �see Fig. 8� occur.

In the absence of perfect degeneracy, we abandon the
strict secular approximation scheme that would discard the
coherences in the density matrix between states with differ-
ent energies. We adopt instead a softer approximation by
retaining also coherences between quasidegenerate states.
Since they have Bohr frequencies comparable to the tunnel-
ing rate, they influence the stationary density matrix. Formu-
las for the GME and the current taking into account these
coherence terms are presented in Appendix A.

Figure 7 shows from left to right close-up views of the
stability diagram for the setup under the influence of increas-
ing contact perturbation around the 6↔7 resonance. The
orbital degeneracy of the seven-particle states is lifted, and
the transport behavior for the 6↔7 transition depends on the
energy difference between the formerly degenerate seven-
particle ground states. In panel a the energy difference is so
small that the states are quasidegenerate: �E����kBT. As
expected, we recover NDC at the border of the six-particle
diamond and current suppression at the border of the seven-
particle diamond, such as in the unperturbed setup.

Higher on-site energy shifts correspond to a larger level
spacing. Panel b displays the situation in which the latter is
of the order of the level broadening but still smaller than the
thermal energy ��E����kBT�: no interference causing
NDC and current blocking can occur. Yet, due to thermal
broadening, we cannot resolve the two seven-particle states.

Eventually, panel c presents the stability diagram for the
case �E�kBT���: the level spacing between the seven-
particle ground and first excited state is now bigger than the
thermal energy; thus, the two transition lines corresponding
to these states are clearly visible at the border of the six-
particle stability diamond.

Figure 8 shows close-up views of the stability diagram for
the setup under the influence of the bias perturbation at the
border of the six- and seven-particle diamonds. The same
region is plotted for different strengths of the external poten-
tial over the molecule. In contrast to the contact perturbation,
the amount of level splitting of the former degenerate states

TABLE IV. Point groups to which the molecule belongs under
the influence of the contacts and the external bias potential.

PARA META

Contact perturb. D2h C2v

Bias perturb. C2v C2v

FIG. 7. �Color online� Close-up views of the stability diagram
around the 6↔7 resonance for the system under contact perturba-
tion. The perturbation strength grows from left to right The param-
eter that describes the contact effect assumes the values �c

=0.15� ,2� ,15T from left to right, respectively, and T=10�.
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is here bias dependent. This fact imposes a bias window of
interference visibility. The bias must be small enough for the
seven-particle states to be quasidegenerate and at the same
time bigger than the thermal energy so that the occurring
NDC is not obscured by the thermally broadened conduc-
tance peak. A strong electrostatic potential perturbation
closes the bias window and no interference effect can be
detected.

Panel a of Fig. 8 represents the weak perturbation regime
with no qualitative differences with the unperturbed case.
The typical fingerprints of interference �NDC at the border of
the six-particle diamond and current blocking for the 7→6
transition� are still visible for intermediate perturbation
strength �panel b� but this time only in a limited bias win-
dow. Due to the perturbation strength, at some point in the
bias, the level splitting is so big that the quasidegeneracy is
lifted and the interference effects are destroyed. In panel c
the quasidegeneracy is lifted in the entire bias range. There is
NDC at the border of the six-particle diamond, but it is not
accompanied by current blocking as proven by the excitation
line at the border of the seven-particle diamond �see arrow�:
no interference occurs. The NDC is here associated to the
sudden opening of a slow current channel, the one involving
the six-particle ground state and the seven-particle �nonde-
generate� excited state �standard NDC�.

Figure 9 refers to the setup under both the bias and con-
tact perturbations. The left panel shows the energy of the
lowest seven-particle states as a function of the bias. In the
right panel we present the stability diagram around the 6↔7
resonance. NDC and current blocking are clearly visible only
in the bias region where, due to the combination of bias and
contact perturbation, the quasidegeneracy of the two seven-
particle states is reestablished. Also the fine structure in the
NDC region is understandable in terms of interference if in
the condition of quasidegeneracy we take into account the
renormalization of the level splitting due to the energy non-
conserving terms.

Interference effects predicted for the unperturbed benzene
I-SET are robust against various sources of symmetry break-
ing. Quasidegeneracy, �E����kBT, is the necessary con-
dition required for the detection of the interference in the
stability diagram of the benzene I-SET.

V. CONCLUSIONS

In this paper we analyze the transport characteristics of a
benzene I-SET. Two different setups are considered, the para
and the metaconfiguration, depending on the position of the
leads with respect to the molecule.

Within an effective pz orbital model, we diagonalize ex-
actly the Hamiltonian for the molecule. We further apply a
group-theoretical method to classify the many-body molecu-
lar eigenstates according to their symmetry and quasiangular
momentum. With the help of this knowledge we detect the
orbital degeneracy and, in the paraconfiguration, we select
the states relevant for transport.

We introduce a generic interference condition �Eq. �1�� for
I-SETs in terms of the tunneling transitions amplitudes of
degenerate states with respect to the source and drain leads.
By applying it to the benzene I-SET we predict the existence
of interference effects in the metaconfiguration In order to
study the dynamics of the molecular I-SET, we use a density
matrix approach which starts from the Liouville equation for
the total density operator and which enables the treatment of
quasidegenerate states.

The stability diagrams for the two configurations show
striking differences. In the linear regime a selective conduc-
tance suppression is visible when changing from the para to
the metaconfiguration. Only transitions between ground
states with well-defined particle number are affected by the
change in the lead configuration. With the help of the group-
theoretical classification of the states we recognize in this
effect a fingerprint of the destructive interference between
orbitally degenerate states. We derive an analytical formula
for the conductance that reproduces exactly the numerical

FIG. 8. �Color online� Close-up views of the stability diagram
around the 6↔7 resonance for the system under the effect of the
bias potential, displayed for different strengths of the electrostatic
potential drop over the molecule. The parameter that describe the
strength of the electrostatic drop over the molecule assumes the
values a=25,12,0.6 from left to right, respectively.

FIG. 9. �Color online� Combination of the bias and contact per-
turbations. Left panel—energy levels of the seven-particle ground
and first excited state as functions of the bias voltage. Right panel—
stability diagram around the 6↔7 resonance. The perturbation pa-
rameters are in this case �c=2� and a=12.
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result and supports their interpretation in terms of interfer-
ence. Other interference effects are also visible in the non-
linear regime where they give rise to NDC and current block-
ing at the border of the six-particle Coulomb diamond as
well as to current suppression for transitions between seven-
and six-particle states.

We provide a detailed discussion of the impact of the
reduced symmetry due to linking groups between the mol-
ecule and the leads or to an electrostatic potential drop over
the molecule. We classify different transport regimes and set
up the limits within which the discussed transport features
are robust against perturbations. We identify in the quaside-
generacy of the molecular states the necessary condition for
interference effects.
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APPENDIX A: GME AND CURRENT IN THE
NONSECULAR APPROXIMATION

The bias and the contact perturbations in our model for a
benzene I-SET lower the symmetry of the active part of the
junction and consequently lift the degeneracy that appeared
so crucial for the interference effects. The robustness of the
latter relies on the fact that the necessary condition is rather
quasidegeneracy, expressed by the relation �E���.

Nevertheless, if the perfect degeneracy is violated, the
secular approximation applied to obtain Eq. �7� does not cap-
ture this softer condition. We report here the general expres-
sion for the generalized master equation and the associated
current operator in the Born-Markov approximation and un-
der the only further condition �exact in absence of supercon-
ductors� that coherences between states with different par-
ticle number are decoupled from the populations and vanish
exactly in the stationary limit,

�̇EE�
N = −

i

�
�E − E���EE�

N − �
��F

��

2
PNE�d��

† −
i

�
p��F − Hben

0 � + f�
−�F − Hben

0 ��d��

+ d��−
i

�
p��Hben

0 − F� + f�
+�Hben

0 − F��d��
† ��FE�

N

− �
��F

��

2
�EF

N �d��
† +

i

�
p��F − Hben

0 � + f�
−�F − Hben

0 ��d��

+ d��+
i

�
p��Hben

0 − F� + f�
+�Hben

0 − F��d��
† �PNE�

+ �
��FF�

��

2
PNE�d��

† �FF�
N−1d��+

i

�
p��E� − F�� + f�

+�E� − F�� −
i

�
p��E − F� + f�

+�E − F��
+ d���FF�

N+1d��
† +

i

�
p��F� − E�� + f�

−�F� − E�� −
i

�
p��F − E� + f�

−�F − E���PNE�, �A1�

where �EE�
N is, different from Eq. �7�, in the Schrödinger

picture. Equation �7� represents a special case of Eq. �A1� in
which all energy spacings between states with the same par-
ticle number are either zero or much larger than the level
broadening ��. The problem of a master equation in the
presence of quasidegenerate states in order to study transport
through molecules has been recently addressed in the work
of Schultz and von Oppen.38 The authors claimed in their
work that the singular coupling limit should be used in order
to derive an equation for the density matrix in the presence
of quasidegenerate states. Equation �A1� is derived in the
weak coupling limit and bridges all the regimes as illustrated
by Figs. 7–9.

The current operators associated to the master equation
just presented read as:

I� =
��

2 �
NEF�

PNE�d��
† +

i

�
p��E − Hben

0 � + f�
−�E − Hben

0 ��d��

+ d��
† −

i

�
p��F − Hben

0 � + f�
−�F − Hben

0 ��d��

− d��+
i

�
p��Hben

0 − E� + f�
+�Hben

0 − E��d��
†

− d��−
i

�
p��Hben

0 − F� + f�
+�Hben

0 − F��d��
† �PNF,

�A2�

where �=L ,R indicates the left or right contact. Neverthe-
less, within the limits of derivation of the master equation,
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this formula can be simplified. Actually, if E−F���, then F
can be safely substituted with E in the argument of the prin-
cipal values and of the Fermi functions, with an error of
order E−F

kBT �
��
kBT which is negligible �the generalized master

equation that we are considering is valid for ���kBT�. The
approximation E�F breaks down only if E−F�kBT, but
this implies that E−F��� which is the regime of validity of
the secular approximation. Consequently, in this regime,
terms with E�F do not contribute to the average current
because they vanish in the stationary density matrix. Ulti-
mately we can thus reduce the current operators to the sim-
pler form,

I� = ���
NE�

PNE	+ d��
† �f�

−�E − Hben
0 ��d��,

− d���f�
+�Hben

0 − E��d��
† , �A3�

which is almost equal to the current operator corresponding
to the secular approximation. The only difference is here the

absence of the second projector operator that allows contri-
butions to the current coming from coherences between dif-
ferent energy eigenstates.

APPENDIX B: ANALYTICAL FORMULA FOR THE
LINEAR CONDUCTANCE INCLUDING THE ENERGY

NONCONSERVING TERMS

In the derivation of the conductance formula �20� we ne-
glected the energy nonconserving terms in Eq. �7�. Since in
the GME they appear only in the dynamics of the coherences
between orbitally degenerate states, Eq. �20� is exact for the
paraconfiguration, where the orbital degeneracy is cancelled.
This is not the case in the metaconfiguration where the or-
bital �quasi-�degeneracy is essential for the description of
interference. Thus we derived a generic analytical formula
for the conductance, taking into account the energy noncon-
serving terms. It reads as

GN,N+1��E� = e2��N,N+1−
SNSN+1f���E�

�SN+1 − SN�f��E� + SN
��1 +

aux�SN,SN+1�3P2

16�N,N+1
2 �SNSN+1�2�f
��E��2 + P2� . �B1�

Here, it is �=�L=�R. �N,N+1 is the overlap factor introduced
in Sec. III A, Eq. �21�. The auxiliary function aux�SN,SN+1�
in the correction term is zero if there are no orbitally degen-
erate ground states involved in the transition. If one of the
participating states is orbitally degenerate it is
aux�SN,SN+1�=1. The sign in f
��E� is defined as follows:
f+��E� has to be used if the N-particle ground state is orbit-

ally degenerate. If instead the N+1-particle ground state ex-
hibits orbital degeneracy, f−��E� has to be inserted. The en-
ergy nonconserving terms are included in the factor P
=PL �Vbias=0=PR �Vbias=0. It is defined only if a degenerate state
is participating transport. In case that, e.g., the N-particle
ground state is orbitally degenerate, P� with �=L ,R read as

P� = �
E�,l

�
nm
 i

�
p��Eg,N − E����N − 1,E�l�d���Ng,n��Ng,m�d��

† �N − 1,E�l�

+ �
E�,l

�
nm
 i

�
p��E� − Eg,N���N + 1,E�l�d��

† �Ng,n��Ng,m�d���N + 1,E�l� , �B2�

where p��x�=−Re �� 1
2 + i�

2� �x−	��� and � is the digamma
function, as defined in Sec. II B.

APPENDIX C: TRANSITION PROBABILITIES FOR THE
6^7 TRANSITION

In the calculation of the overlap factor � in Sec. III A we
used the relation

��6g�dL�7g,� = 2��2 = ��6g�dL�7g,� = − 2��2 �C1�

for the transition probabilities between the six-particle
ground state and the seven-particle ground states �7g ,��,
where � is the eigenvalue of the quasiangular momentum.
This relation is now to be proven.

Again, we take advantage of the symmetry properties of
the molecular states with respect to the �v operation and to
the rotation operator R� for rotations about a discrete angle
�= n�

3 , as introduced in Sec. II C. The starting point is the
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generic relation between these two operators,

R��v = �vR−�. �C2�

We can now apply both sides of this relation to the seven-
particle ground states �7g ,�= 
2�,

R��v�7g,� = 
 2� = �vR−��7g,� = 
 2� . �C3�

The seven-particle ground states �7g ,�= 
2� are eigenstates
of each R�, and the corresponding eigenvalues are phase
factors,

R��7g,� = 
 2� = e�2i��7g,� = 
 2� . �C4�

Thus, Eq. �C3� becomes

R���v�7g,� = 
 2�� = e
2i���v�7g,� = 
 2�� . �C5�

Yet, according to Eq. �C4�, this equation can only be valid if

�v�7g,� = 
 2� = ��7g,� = � 2� �C6�

and, since �v
2=1, � can only be a phase factor. For the cal-

culation of the transition probabilities we use further the
property �v

†�v=1. Since the left contact atom �atom 1� lies in
the reflection plane �v, it is �vdL�v

†=dL. Also, since the sym-
metry of the six-particle ground state is A1g, it is �v�6g�
= �6g�. Under these considerations, we can write for the tran-
sition probability to the state �7g ,�=2�

��6g�dL�7g,� = 2��2 = ��6g��v
†�vdL�v

†�v�7g,� = 2��2

= ��6g�dL�v�7g,� = 2��2

= ��6g�dL�7g,� = − 2��2. �C7�
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ABSTRACT

Single particle interference lies at the heart of quantum mechanics. The archetypal double-slit experiment1 has been repeated with electrons
in vacuum2,3 up to the more massive C60 molecules.4 Mesoscopic rings threaded by a magnetic flux provide the solid-state analogues.5,6

Intramolecular interference has been recently discussed in molecular junctions.7-11 Here we propose to exploit interference to achieve all-
electrical control of a single electron spin in quantum dots, a highly desirable property for spintronics12-14 and spin-qubit applications.15-19

The device consists of an interference single electron transistor,10,11 where destructive interference between orbitally degenerate electronic
states produces current blocking at specific bias voltages. We show that in the presence of parallel polarized ferromagnetic leads the interplay
between interference and the exchange interaction on the system generates an effective energy renormalization yielding different blocking
biases for majority and minority spins. Hence, by tuning the bias voltage full control over the spin of the trapped electron is achieved.

The all-electrical solutions to the challenge of single spin
control that have been proposed15-18 and realized19,20 are
based either on spin-orbit coupling15-19 or on tunneling-
induced spin splitting in the Kondo regime.20 Our proposal
relies on the current blocking occurring in an interference
single electron transistor (ISET) due to interference between
degenerate states. The conditions for interference blocking
are very generic11 and admit several different realizations.
We consider here for clarity a benzene and a triple-dot ISET,
Figure 1. Both are described by the Hamiltonian

where Hsys represents the central system and also contains
the energy shift operated by a capacitively coupled gate
electrode at the potential Vg. The Hamiltonian Hsys is in both
cases invariant with respect to a discrete set of rotations
around the vertical axis passing through the center of the
system. This fact allows a classification of its eigenstates in
terms of the z component of the angular momentum l and
also ensures the existence of degenerate states with different
l. Then, a generic eigenstate is represented by the ket |NlσE〉
where N is the number of electrons on the system, σ is the
spin, and E the energy of the state. When degenerate states
participate to transport, they interfere since, like the two paths
of the double-slit experiment, they are occupied simulta-
neously by the traveling electron, but in different superposi-
tions under diverse transport conditions. Hlead describes the
ferromagnetic leads with equal (for simplicity) parallel
polarization P and with a difference eVb between their
electrochemical potentials. Finally, HT accounts for the weak
tunneling coupling between the system and the leads,

characteristic of SETs, and we consider the tunneling events
restricted to the atoms or to the dots closest to the corre-
sponding lead (Figure 1). We explicitly consider the Coulomb
interaction only in the central part of the device (see the
Supporting Information) due to the strong confinement
experienced there by the electrons while, apart from the
polarization assumption, we assume a noninteracting ap-
proximation for the leads. In the weak coupling regime the
current through the ISET essentially consists of sequential
tunneling events at the source and drain lead that increase
or decrease by 1 the number of electrons on the system. The
different panels of Figure 2 and Figure 3 show the current
through the benzene and triple dot ISET, respectively, as a
function of bias and gate voltage. As in all SETs at low bias,
so-called Coulomb diamonds, where transport is energetically
forbidden, occur. Within the diamonds the particle number
is fixed as indicated in the figures. The only exceptions are
the charge degenerate points where two diamonds meet. Here
the energy difference of two ground states with consecutive

H ) Hsys + Hleads + HT (1)

Figure 1. Two examples of interference single electron transistors
(ISETs): a benzene molecular junction contacted in the meta
configuration (a) and a triple quantum dot artificial molecule (b).
The source and drain are parallel polarized ferromagnetic leads.
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particle numbers is equal to the equilibrium chemical
potential of the leads. At finite bias the incoming electrons
have enough energy to overcome the level spacing and the
Coulomb repulsion and the current flows. As a signature of
the new states that enter the bias window, by increase of the
voltage the current typically increases steplike.

In ISETs an exception to this picture is represented by
the interference blockade where the current decreases for
increasing bias generating negative differential conduc-
tance (NDC) and eventually vanishes (see green lines in
the panels b and c of Figure 2 and Figure 3). Panels b in
the same figures indicate moreover that, for a given gate
voltage and in absence of polarization in the leads, the current
is blocked only at one specific bias voltage. For parallel
polarized leads, however, at a given gate voltage, the current
is blocked at two specific bias voltages, one for each spin
configuration (panels c). As demonstrated below, the block-
ing of the minority electrons occurs for the smaller bias
voltages. As such full control of the spin configuration in
the ISET can be electrically achieved. The interference
blockade and its spin selectivity are also demonstrated in

panels a and b of Figure 4. Along the dotted (dashed) line a
majority (minority) spin electron is trapped into the molecule.
The molecular spin state can thus be manipulated simply by
adjusting the bias across the ISET. In the following we
discuss the physics of the spin-selective interference blocking
and present the necessary ingredients for its occurrence.

This novel blocking is explained by the presence of an
N-particle nondegenerate state and two degenerate N + 1
particle states that simultaneously contribute to transport. It
also requires that the ratio between the transition amplitudes
γRi (i ) 1, 2, R ) L,R) between those N and N + 1 particle
states is different for tunneling at the left (L) and at the right
(R) lead11

This condition is fulfilled in both cases presented in Figure 1
due to the geometrical configuration of the left and right lead.
Due to condition (2), the degenerate states interfere among

Figure 2. Benzene ISET: polarized vs unpolarized configuration. Panel a. Current vs bias and gate voltage for unpolarized leads. Panel d.
Current vs bias and gate voltage for polarized leads (polarization P ) 0.85). Panels b and c. Blow up of the 6 f 7 particle transition for
both configurations. The unpolarized case shows a single current blocking line and the trapped electron has either up or down polarization.
The polarized case shows two current blocking lines, corresponding to the different spin of the trapped electron. The current is given in
units of eΓ where Γ is the bare average rate (Supporting Information), and the temperature kBT ) 0.01b where b is the hopping parameter
(Supporting Information).

γL1

γL2
*

γR1

γR2
(2)
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themselves such to form pairs of blocking and nonblocking
states. The blocking state is only coupled to the source lead
(panels c and d of Figure 4) while the nonblocking one to
both source and drain. An electron that populates the
blocking state can neither leave toward the drain nor, at high
enough bias, return to the source since all energetically
available states are there filled. The nonblocking state is thus
excluded from the dynamics and the current vanishes.

As such we would conclude that the interference
blocking is a threshold effect and the current remains
blocked until a new excited state participates to the
transport. However, as shown in Figure 2 and Figure 3,
the current is blocked only at specific values of the bias
voltage. The explanation of this phenomenon relies on two
observations: (i) The blocking state (Figure 4) must be
antisymmetric with respect to the plane perpendicular to the
system and passing through its center and the atom (quantum
dot) closest to the drain; this state is thus also an eigenstate
of the projection of the angular momentum in the direction
of the drain lead.21 At positive (negative) bias voltages we
call this state the R(L)-antisymmetric state |ψR(L),a〉. (ii) The

coupling between the system and the leads not only generates
the tunneling dynamics described so far but also contributes
to an internal dynamics of the system that leaves unchanged
its particle number. In fact the equation of motion for the
reduced density matrix F of the system can be cast, to lowest
nonvanishing order in the coupling to the leads, in the form

The commutator with Hsys in eq 3 represents the coherent
evolution of the system in absence of the leads. The operator
Ltun describes instead the sequential tunneling processes and
is defined in terms of the transition amplitudes γRi between
the N and N + 1 particle states like the ones introduced in
eq 2. Finally Heff renormalizes the coherent dynamics
associated to the system Hamiltonian. It reads

Figure 3. Triple dot ISET: polarized vs unpolarized configuration. Panel a. Current vs bias and gate voltage for unpolarized leads. Panel
d. Current vs bias and gate voltage for polarized leads (polarization P ) 0.7). Panels b and c. Blow up of the 6 f 5 particle transition for
both configurations. The selective spin blocking is analogous to the one of the benzene ISET (Figure 2).

Ḟ ) - i
p

[Hsys, F] - i
p

[Heff, F] + LtunF (3)

Heff ) ∑
Rσ

ωRσ LR (4)
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where LR is the projection of the angular momentum in the
direction of the lead R and, for paramagnetic systems, it does
not depend on the spin degree of freedom σ. Moreover, ωRσ

is the frequency renormalization given to the states of spin
σ by their coupling to the R lead. Similar effective dynamics
has been mapped into the precession of a pseudospin around
a pseudoexchange field.22,23 In our case the presence of
parallel polarized leads mixes the orbital and the spin degrees
of freedom. Nevertheless, for what concerns the spin, Heff is
diagonal and thus spin accumulation due to precession24 of
the spin degree of freedom is excluded. Yet, in the presence
of polarized leads, the spin up and the spin down undergo
different effective dynamics. Equation 3 is an example of
Bloch-Redfield equation describing the dynamics of a
system coupled to thermal baths. A more detailed version
of (3) is presented in the Supporting Information.

For sake of simplicity we give in the following the explicit
form of the transition amplitudes γRi, of the operator LR and
of the associated frequency ωRσ only for the benzene ISET
and for the ground state transition 6g f 7g that is character-
ized by interference blocking. The argumentation is never-
theless very general and can be repeated for all the systems
exhibiting rotational symmetry. The transition amplitudes
read

where |7glσ〉 are the orbitally degenerate 7 particle ground

states, l ) (2 the z projection of the angular momentum in
units of p, and dMσ destroys an electron of spin σ in a
reference carbon atom M placed in the middle between the
two contact atoms. Moreover, φR is the angle of which we
have to rotate the molecule to bring the reference atom M
into the position of the contact atom R. The present choice
of the reference atom implies that φL ) -φR ) π/3. In the
Hilbert space generated by the 2-fold orbitally degenerate
|7glσ〉 the operator LR reads

For a derivation of (6) see Supporting Information. The
frequency ωRσ is defined in terms of transition amplitudes
to all the states of neighbor particle numbers

where the compact notation |N{E}〉 indicates all possible
states with particle number N and energy E, pR(x) )
-Reψ[(1/2) + (i�/2π)(x - µR)] where � ) 1/kBT, T is the
temperature and ψ is the digamma function. Moreover ΓRσ′

0

) (2π/p)|t|2DRσ′ is the bare tunneling rate to the lead R of an
electron of spin σ′, where t is the tunneling amplitude and
DRσ′ is density of states for electrons of spin σ′ in the lead
R at the corresponding chemical potential µR. Due to the
particular choice of the arbitrary phase of the 7 particle
ground states, ωRσ is real and does not depend on the orbital
quantum number l. It depends instead on the bias and gate
voltage through the energy of the 6,7-ground and 8 particle
states. In Figure 5 the black curve depicts ωLσ as a function
of the bias in absence of polarization: the frequencies
corresponding to the two spin species coincide and thus
vanish at the same bias. The condition

determines the bias at which the current is completely blocked.
In fact, at that bias the effective Hamiltonian contains only the
projection of the angular momentum in the direction of the right
lead (the drain) and the density matrix corresponding to the
full occupation of the 7 particle R-antisymmetric state
(F ) |ψR,a〉〈ψR,a|) is the stationary solution of eq 3. As we leave
the blocking bias the effective Hamiltonian contains also the
projection of the angular momentum in the direction of the
left lead and the R-antisymmetric state is no longer an
eigenstate of Heff. The corresponding density matrix is not a
stationary solution of (3) and current flows through the
system. The L T R symmetry of the system implies, for
negative biases, the blocking condition ωRσ ) 0.

All-electric-spin control is achieved, in an ISET, only
in the presence of ferromagnetic leads (or more generally

Figure 4. Spin control. Panel a. Current (in units of eΓ) through
the benzene ISET vs bias and polarization at the 6 f 7 electron
transition. Panel b. Population of the majority spin 7 particle state.
The two zero current lines at high bias correspond to the maximum
or minimum population of the 7 particle majority spin state and
thus identify the spin state of the trapped electron on the molecule.
Panels c and d. Schematic representation of the spin selective
blocking corresponding to the dashed (c) and dotted (d) lines of
panels a and b.

γRl ) 〈6g00|dMσ|7glσ〉e-ilφR (5)

LR ) p
2(1 ei2|l|φR

e-i2|l|φR 1 ) (6)

ωRσ )
1
π ∑

σ ′{E}

ΓRσ ′
0 [〈7glσ|dMσ ′|8{E}〉〈8{E}|dMσ ′

† |7g -lσ〉pR(E - E7g)

+ 〈7glσ|dMσ ′
† |6{E}〉〈6{E}|dMσ ′|7g -lσ〉pR(E7g - E)] (7)

ωLσ ) 0 (8)
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a spin injection source) and with exchange interaction on
the system, i.e., an interaction which yields a singlet-triplet
splitting on the isolated system. By manipulating (7) it is
possible to show that the frequency splitting ωRv - ωRV is
proportional to the polarization in the R lead but vanishes
in the absence of exchange interaction on the system capable
to lift the singlet-triplet degeneracy of the 6 and 8 particle
states (see the Supporting Information). In Figure 5 we show
the frequencies ωLσ ) 0 vs bias voltage also for finite values
of the polarization P calculated for the benzene ISET, where
exchange splitting is ensured by the Coulomb interaction on
the system. The interference blocking conditions ωLσ ) 0
for the Lf R current are satisfied at different biases for the
different spin species. The dotted and dashed lines in Figure
4 are the representation of the relations ωLv ) 0,ωLV ) 0 as
a function of the bias and polarization, respectively.

The distance between the two blocking biases is of the
same energy scale of the addition energy ∆E ) µ8 - µ7,
as can be seen in Figure 5. In fact, even if the splitting in
the renormalization frequencies is of order ΓL, the distance
between the two points in which the up and the down
renormalization frequencies vanish depends on the particular
dependence of those frequencies on bias. Their dependence
is roughly linear in the interesting region (Figure 5) and with
a slope given approximately by ΓL/∆E. The bias splitting
corresponding to a frequency splitting of order ΓL is thus in
the same energy scale of the addition energy.

The realization of a triple dot ISET with injection of spin-
polarized carriers is feasible even if experimentally demanding.
We suggest graphene for the realization of the triple-dot system
due to the possibility of easily evaporating ferromagnetic leads
and to the intrinsically low spin-orbit coupling. Graphene has
been already successfully contacted with ferromagnetic leads,26

while the possibility of defining mesoscopic structures in
graphene sheets electrostatically25 or by etching27 has also
already been demonstrated. For these reasons we think that the

realization of the proposed all-electrical spin control in ISETs
in graphene devices is perhaps the most promising even if still
experimentally challenging. Spin injection in semiconductor
heterostructures is at least as challenging, and the relevance of
intrinsic spin-orbit effect also represents a drawback. On the
other hand the high control reached in heterostructure fabrication
should not be forgotten, such that also semiconducting triple
dots are possible candidates for ISETs.

In previous studies11 we have shown that the interference
current blocking does not depend on the perfect symmetry of
the system but rather relies on the existence of quasi-degenerate
states in which the energy splitting is smaller than the tunneling
coupling to the source and drain leads. In the proposed structures
the degeneracy is associated with the rotational symmetry and
it has the advantage of a simple geometrical realization of the
interference conditions (2). Nevertheless the effect is more
general and any other structure exhibiting orbital degeneracy
is a good candidate for an ISET.
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The system Hamiltonian

The Hamiltonian that describes both systems represented in Fig. 1 reads

Hsys = ξ0 ∑
iσ

d†
iσ diσ +b∑

iσ

(
d†

iσ di+1σ +d†
i+1σ diσ

)

+U ∑
i

(
ni↑− 1

2

)(
ni↓− 1

2

)

+V ∑
i

(
ni↑+ni↓−1

)(
ni+1↑+ni+1↓−1

)
,

(1)

where d†
iσ creates an electron of spin σ in the pz orbital of carbon i or in the ground state of

the quantum dot i and i = 1, . . . , 6(3) runs over the six carbon atoms (three quantum dots) of the

system. Moreover niσ = d†
iσ diσ . The effect of the gate is included as a renormalization of the

on-site energy ξ = ξ0−eVg (Vg is the gate voltage) and we conventionally set Vg = 0 at the charge

neutrality point. The parameters that we have used are b =−2.5eV, U = 10eV, V = 6eV.

The generalized master equation

We describe the dynamics of the system with a generalized master equation (GME) for the reduced

density matrix ρ . This equation is obtained from the Liouville equation for the full density matrix

as a perturbation to the lowest non vanishing order in the coupling to the leads by tracing out the

leads degrees of freedom. A generic formulation of the GME for a SET in presence of degeneracies

or quasi-degeneracies can be found elsewhere e.g.1 We concentrate here on the range of gate and

bias voltages at which the dynamics is restricted to transitions involving the |6g00〉 and |7g`σ〉
many particle states of the benzene ISET.

The seven particle states are spin and orbital degenerate. The general theory of the GME would

require a priori to keep a full 4x4 density matrix describing the 7 particle subspace. In presence

of parallel polarized leads, though, the coherences between different spin degrees of freedom can

be neglected since spin is always conserved by the electrons while travelling through the device.

The GME can thus be written in terms of the nine variables collected in the 1x1 matrix ρ6g and

2
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the two 2x2 matrices ρ7gσ with σ =↑, ↓. Due to the rotational symmetry of the system it is more

convenient to refer to another set of variables, namely to describe the dynamics in terms of the

occupation probabilities W6, W7σ and the expectation values of the different projections of the

angular momentum for the system. The new set of variables is:

W6 = ρ6g,

W7σ = Tr{ρ7gσ},

Lασ = Tr{Lαρ7gσ},

Lzσ = Tr{Lzρ7gσ}.

(2)

The operator Lz is the generator of the set of discrete rotations around the axis perpendicular to the

plane of the benzene molecule that bring the molecule into itself and can be written within the 7

particle Hilbert space spanned by the vectors |7g`σ〉 as Lz = −h̄|`|σz, where σz is the third Pauli

matrix. The operator Lα generates, in the same space, the discrete rotations around the axis in the

molecular plane and passing through the center and the atom closest to the contact α . Finally, the

dynamics for the variables introduced in Eq. (2) is given by the equations:

Ẇ6 =2∑
ασ

Γασ
[− f +

α (∆E)W6 + f−α (∆E)Lασ
]
,

Ẇ7σ =2∑
α

Γασ
[

f +
α (∆E)W6− f−α (∆E)Lασ

]
,

L̇ασ =−2Γασ f−α (∆E)Lασ +2
{

Γασ f +
α (∆E)+Γᾱσ f +

ᾱ (∆E)cos2[|`|(φα −φᾱ)]
}

W6

+Γᾱσ f−ᾱ (∆E)sin2[|`|(φα −φᾱ)]W7σ −Γᾱσ f−ᾱ (∆E)(Lασ +Lᾱσ )+
sin[2|`|(φα −φᾱ)]

4
ωᾱσ Lzσ ,

L̇zσ =−∑
α

Γασ f−α (∆E)Lzσ −2tan[|`|(φL−φR)](ωLσ −ωRσ )(W7σ −LLσ −LRσ )

−2cot[|`|(φL−φR)](ωLσ +ωRσ )(LLσ −LRσ ),

(3)

where Γασ = Γ0
ασ |〈6g00|dασ |7g`σ〉|2 is the tunnelling rate at the lead α involving the ground

states with 6 and 7 particles. Terms describing sequential tunnelling from and to the lead α are

3
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proportional to the Fermi functions f +
α (x) := f (x− µα) and f−α (x) := 1− f +

α (x), respectively,

and ∆E = E6g − E7g + eVg where E6g and E7g are the energies of the 6 and 7 particle ground

states. Finally with ᾱ we mean the lead opposite to the lead α . By using the expression |`|
(to be substituted with 2 for the 6 → 7 particle transition) we maintained the generality of the

equations. The replacement |`| = 2 → 1 and the appropriate redefinition of ∆E is enough to treat

the 6→ 5 transition. Another important generalization concerns the position of the leads. The para

(φL−φR = π) and ortho (φL−φR = π/3) configuration are also treated within the same equations.

In particular one can see that all the terms containing the renormalization frequencies drop from

the equations in the para configuration and that the equations for the ortho and meta configuration

coincide.

Matrix form of the operator Lα

The explicit form of Lα is given in Eq. (6). We give here its derivation. It is convenient, for this

purpose, to choose the arbitrary phases of the states |7g`σ〉 in such a way that the rotation of π

around the axis passing through a reference atom M and the center of the molecule transforms

|7g`σ〉 into −|7g− `σ〉. In other terms

exp(iπ LM
h̄ ) =−σx, (4)

where σx is the first Pauli matrix. The relation is in fact an equation for LM and the solution reads:

LM =
h̄
2




1 1

1 1


 . (5)

Eventually we obtain Lα by rotation of LM in the molecular plane, namely:

Lα = e−
i
h̄ φα LzLMe

i
h̄ φα Lz =

h̄
2




1 ei2|`|φα

e−i2|`|φα 1


 , (6)
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where φα is the angle of which we have to rotate the molecule to bring the reference atom M into

the position of the contact atom α .

The spin splitting of the renormalization frequencies

The spin splitting of the renormalization frequencies is obtained from Eq. (7). By introducing the

average bare rate Γ =
Γ0

α↑+Γ0
α↓

2 , for simplicity equal in both leads, and using the fact that benzene

is paramagnetic we get:

ωα↑−ωα↓ = 2ΓPα
1
π ∑
{E}

[
〈7g` ↑ |dM↑|8{E}〉〈8{E}|d†

M↑|7g− ` ↑〉pα(E−E7g)

+〈7g` ↑ |d†
M↑|6{E}〉〈6{E}|dM↑|7g− ` ↑〉pα(E7g−E)

−〈7g` ↑ |dM↓|8{E}〉〈8{E}|d†
M↓|7g− ` ↑〉pα(E−E7g)

−〈7g` ↑ |d†
M↓|6{E}〉〈6{E}|dM↓|7g− ` ↑〉pα(E7g−E)

]
,

(7)

where one appreciates the linear dependence of the spin splitting on the lead polarization Pα . The

first and the third term of the sum would cancel each other if the energy of the singlet and triplet

8 particle states would coincide. An analogous condition, but this time on the 6 particle states,

concerns the second and the fourth terms. For this reason the exchange interaction on the system

is a necessary condition to obtain spin splitting of the renormalization frequencies and thus the full

all-electric spin control.
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