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1. Introduction

In 1965 Gordon Moore predicted that the number of transistors in an integrated cir-
cuit would double every year for the next ten years [1]. This prediction became self
fulfilling and was labeled “Moore’s law“ later. It held for a much longer time than the
predicted ten years but as transistors get smaller quantum effects play a larger role and
thus Moore’s law will slow down [2]. To keep up technological progress it is, therefore,
necessary to find alternatives to the predominance of silicon based devices.
A possible solution to further downsize electronic devices is molecular electronics. The
size of molecules is on the (sub) nanoscale and they are perfectly reproducible. The
starting point for the research of molecular electronics was the proposal of a single
molecule rectifier by Aviram and Ratner [3]. However, it took 21 years until the first suc-
cessful electric contact with an individual molecule was reported by Joachim et. al. [4].
They used a scanning tunnelling microscope to measure the dependence of the cur-
rent flowing through a C60 molecule with respect to the tip-molecule distance. Seminal
experiments [5, 6] have boosted intense investigations in the transport properties of
single molecule junctions [7–10]. A very useful tool to probe single molecule junctions
is the scanning tunnelling microscope (STM). It was invented by Binnig and Rohrer
in 1982 [11] and is widely used to study surfaces with atomic resolution [12, 13], to
manipulate single atoms [14, 15] and to perform spectroscopy on single atoms [16]. It is
a very useful tool to realize single molecule junctions due to its high spatial resolution.
In semiconductors a widely used technique to obtain spectral information directly in
the time domain is THz-spectroscopy [17]. The reason is that in many-body systems
energy differences between relevant states are usually of the order of the energy of a
THz photon.
A new trend is to combine the ultrafast temporal resolution of THz spectroscopy with
the high spatial resolution of an STM [18–20].
In this thesis, we consider a single copper phthalocyanine molecule, from now on de-
noted as CuPc, in a THz-STM junction. We focus on the spin-orbit induced dynamics
in this junction and how to make a connection between them and charge measurements
in pump probe experiments.
In the second chapter we derive a many-body Hamiltonian able to describe CuPc and
analyse its spectrum. Furthermore, we explore how to model the leads of our single
molecule junction and describe the tunnelling processes.
The third chapter is used to derive a transport formalism for the THz-STM. We start
by deriving a transport formalism for the reduced density matrix and neglect the special
geometry and the effect of the THz laser pulses in the beginning. After having derived
our general transport formalism, we discuss how to incorporate these effects into the
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transport formalism.
The fourth chapter is dedicated to a simplified model of CuPc in the THz-STM set
up. We neglect the spin in this chapter and only model the molecule by two quasi
degenerate orbitals. We investigate the pseudospin dynamics of this model to gain a
better understanding of what to expect from the full model. Furthermore, we investi-
gate pump probe schemes to obtain a connection between the internal dynamics and
experimentally possible charge measurements.
In the fifth chapter the numerical investigation of the full model for the molecule in
the junction is presented. The spin orbit driven dynamics are investigated and again
pump probe schemes as a possible way for electronic measurements of the dynamics are
explored.
The sixth chapter is used to investigate the spin-orbit driven dynamics with an analyt-
ical approach. Therefore, we show how to expand the density matrix in its irreducible
components and how to get information about the spin and pseudospin dynamics from
this approach.
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2. Theoretical Model of Copper
Phthalocyanine

To describe any quantum mechanical system one needs to know its Hamiltonian. In
many-body problems it is quite a hard task to then solve the resulting Schrödinger equa-
tion since the possible solutions scale exponentially with the degrees of freedom. There
are many electrons in molecules so one needs to treat them in a many-body framework.
A useful tool to describe many-body problems is the second quantization formalism.
In the following chapter a scheme will be presented which allows the derivation of a
many-body molecular Hamiltonian, in second quantization, which can be treated with
analytical and numerical methods. We will present this scheme on the example of Cop-
per Phthalocyanine but there is no fundamental reason why it should not be applicable
to other molecules. Furthermore, we will discuss how to model the leads and tunnelling
processes for our transport calculations.

2.1. General many-body Hamiltonian

For a molecule with Ne electrons and Nn nuclei the general many-body Hamiltonian in
first quantization reads [21]

Ĥ = T̂n + T̂e + V̂n−n + V̂e−e + V̂e−n. (2.1)

The individual parts are the kinetic energy of the nuclei with mass Mn

T̂n =
Nn∑
k=1

P̂ 2
α

2Mn

, (2.2)

the kinetic energy of the electrons with the electron mass me

T̂e =
Ne∑
i=1

p̂2
i

2me

, (2.3)

the interactions between the nuclei

V̂n−n =
∑
k<l

vn−n|R̂α − R̂β|, (2.4)



2.1. General many-body Hamiltonian

the electron-electron interactions

V̂e−e =
∑
i<j

ve−e|r̂i − r̂j|, (2.5)

and the interactions between electrons and nuclei

V̂e−n =
∑
i,k

ve−n
∣∣∣r̂i − R̂α

∣∣∣ . (2.6)

R̂α and P̂α are the position and momentum operators of the nucleus α, whereas r̂i and
p̂i are the ones of the i-th electron. Unfortunately, solving the Schrödinger equation
for the Hamiltonian in Eq. (2.1) completely is not feasible for systems of realistic size.
The reason is that too many electrons and nuclei are involved and the resulting Hilbert
space is too big. To obtain a solvable problem we will concentrate on the valence
electrons and incorporate the core ones with the nuclei which are thus replaced by
atomic ions. Furthermore, a commonly used simplification is the Born-Oppenheimer
approximation.[22] It is based on the observation that the masses of the ions are much
larger than those of the electrons, i.e. Mi > me, which makes them move slower. This
fact allows us to decouple the movement of the ions from that of the electrons. We will
concentrate in this thesis on the electronic dynamics and assume the ions to be “frozen”
in equilibrium positions.

2.1.1. Second quantization formulation in the atomic basis

With the Born-Oppenheimer approximation and complete freezing of the ions, we can
write Eq. (2.1) in second quantization as [23]

Ĥ =
∑
αβ
ln

∑
σσ′
〈αlσ| p̂

2

2me

+
∑
γ

V̂γ|βnσ′〉d̂†αlσd̂βnσ′

+1
2
∑
αβγδ
mnpq

∑
σσ′

V mnpq
αβγδ d̂

†
αlσd̂

†
γpσ′ d̂δqσ′ d̂βnσ.

(2.7)

Here d̂†αlσ is the creation operator of an electron in an atomic valence orbital at position
rα with angular momentum l and spin σ. V̂γ is the nuclear (attractive) potential
stemming from the ion at position rγ. The Hamiltonian in Eq. (2.7) consists of a single
particle part and electron-electron interactions. Let us first focus on the single particle
part. We rewrite it as

H0 =
∑
αβ
ln

∑
σσ′

(
hαlσ,βnσ′ + V ion

αlσ,βnσ′

)
d̂†αlσd̂βnσ′ , (2.8)

4



2.1. General many-body Hamiltonian

accounting for the crystal field corrections with the single particle part,

V ion
αlσ,βnσ′ =

∑
γ

γ 6=α,β

〈αlσ|Vγ|βnσ′〉 . (2.9)

The single particle part can be represented in matrix notation by

hαlσ,βnσ′ = εαlσδαβδlnδσσ′ + bαlσ,βnσ′(1− δαβ). (2.10)

Here εαlσ is the on site energy and bαlσ,βnσ′ are the hopping integrals between atoms. To
set up the hopping integrals we use the linear combination of atomic orbitals (LCAO)
approach by Slater and Koster [24]. The hopping integrals then adopt the following
form

bαlσ,βnσ′ =
∑
ξ

Vlnξ(rαβ)fξ(ϕαβ). (2.11)

In this representation l and n are the sub-shells of the orbitals |αl〉 and |βn〉, ξ denotes
the character of the bond between the sub shells of orbitals l and n. The possible
values are ξ = σ, π, δ. To determine the type of a molecular bond one can take a cross
section along the bonding axis and compare it to the cross section of a s, p or d type
atomic orbital. A σ bond will resemble a s-orbital, a π bond a p-orbital and a δ bond
a d-orbital, in their respective cross section [25]. The matrix elements Vlnξ depend
only on the distance and can be calculated by the method proposed by Froyen and
Harrison [26]. The fξ(ϕαβ) depend on the angle ϕαβ which is the angle between the
vector connecting the two bonding atoms rαβ = rβ − rα and the different coordinate
axis corresponding to the involved orbitals. They can be found in the paper by Slater
and Koster [24].
The second part in Eq. (2.7) describes the Coulomb interaction between the electrons.
V mnpq
αβγδ is the matrix element of this interaction and has the following form

V mnpq
αβγδ =

∫
d3r1d3r2Φ∗αl(r1)Φβn(r1)V (r12)Φ∗γp(r2)Φδq(r2) (2.12)

Here V (r) = e2

4πε0r
is the Coulomb potential and r12 ≡ |r1 − r2| is the norm of the

difference between the positions r1 and r2. The wave functions are Φαl(r) = 〈r|αl〉
where we have omitted the spin indices.

2.1.2. Transformation to the molecular orbital basis

We assume that the states |αlσ〉 and |βnσ′〉 are orthogonal, i.e.

〈αlσ|βnσ′〉 = δαβδlnδσσ′ . (2.13)

This is not true in general since they can be centered on different atoms and thus have a
finite overlap. Numerical checks performed in Ref. [23] showed no qualitative difference
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2.2. A many-body Hamiltonian for Copper Phthalocyanine

by using this approximation because the overlaps are very small. Diagonalizing the
matrix h of elements hαlσ,βnσ′ yields the molecular orbital basis {|iσ〉} which can be
expressed in terms of the atomic basis as

|iσ〉 =
∑
αl

ciαl|αlσ〉, (2.14)

with the expansion coefficients ciαl. In this basis, the Hamiltonian from Eq. (2.7) is

Ĥmol =
∑
ijσ

(
εiδij + V ion

ij

)
d̂†iσd̂jσ

+1
2
∑
ijkl

∑
σσ′

Vijkld̂
†
iσd̂
†
kσ′ d̂lσ′ d̂jσ.

(2.15)

It consists of the single particle eigenenergies εi, the transformed crystal field correc-
tions

V ion
ij =

∑
αβ
ln

c∗iαlcjβnV
ion
αl,βn (2.16)

and the matrix elements of the Coulomb interaction

Vijkl =
∫

d3r1d3r2ψ
∗
i (r1)ψj(r1)V (r12)ψ∗k(r2)ψl(r2). (2.17)

The molecular basis has some advantages over the atomic one. Firstly, we can take
the single particle energies of the molecule and fill the molecular orbitals according to
the Aufbau principle. By doing this we will obtain the energy of the highest occupied
orbital of the molecule and also an approximate solution to the electronic many-body
problem. Furthermore, it allows us to make a huge simplification in the calculations
by enabling us to choose an appropriate set of orbitals which are relevant to transport
and neglect the rest. We do this by splitting the orbitals in Nfr frozen orbitals and
Nd dynamical orbitals. In the frozen orbitals we include Nf orbitals which are always
double occupied, as well as Ne orbitals which are always empty. The occupation of
the Nd dynamical orbitals depends on the chemical potential of the molecule and the
possibility of exchange with the environment. In the smaller space of the dynamical
orbitals we will then incorporate electronic correlations in our calculations to obtain
the full solution of the many-body problem.

2.2. A many-body Hamiltonian for Copper
Phthalocyanine

Copper Phthalocyanine (from now an denoted as CuPc) is a planar organic macrocycle
which consists of an inner ring, made up by alternating nitrogen and carbon atoms.
It possesses four outer benzene rings which are covalently bond to the inner ring. In
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2.2. A many-body Hamiltonian for Copper Phthalocyanine

Carbon

Nitrogen

Copper

Hydrogen

Figure 2.1.: Schematic depiction of a CuPc molecule. Taken from Ref. [23].

the center sits a Copper atom, see Fig. 2.1. However, there are many other classes of
metal Phthalocyanines with a different atom in the center, e.g. Mn, Co, Fe etc. CuPc
possesses 195 valence electrons which come from the 1s, 2s and 2p orbitals of the organic
ligand, i.e. the nitrogen, carbon and hydrogen atoms and from the 3d and 4s orbitals
of the copper center. In this section we will make use of the molecular orbital basis
introduced in the previous section to derive a many-body Hamiltonian for CuPc which
is able to account for single particle energies, electron-electron correlations and also for
spin-orbit interaction. The general Hamiltonian will have the form

Ĥmol = Ĥ0 + V̂ee + V̂SO, (2.18)

with the single particle part Ĥ0, the electron-electron interactions V̂ee and the spin orbit
interaction V̂SO. Since this work is essentially an extension of the work done by Siegert
et al. [23, 27] we will closely follow this works in the following sections.

2.2.1. Single particle spectrum

Considering that we want to use the methodology introduced in the first two sec-
tions to build a Hamiltonian for the CuPc molecule, in the molecular orbital basis, the
first thing to do is to calculate the single particle Hamiltonian which was presented in
Eq. (2.10). We will use the LCAO schemes introduced by Slater-Koster [24] and Froyen-
Harrison [26] so we need to determine the bonding types between the valence electrons
of CuPc. The molecule is planar, thus its orbitals can be classified into a σ and π system
depending on their even or odd parity with respect to a reflection symmetry operation.
Accordingly the s, 2px, and 2px orbitals of the ligand are part of the σ system. The 2pz
orbitals are contained in the π system. The 3dxy, 3dx2−y2 , 3dz2 and 4s orbitals of the
copper atom are part of the σ system. The remaining two d-orbitals, namely 3dxz and
3dyz belong to the π system instead. Furthermore, we need the geometrical parameters
which were taken from [28] and the on site energies from [29]. Then, the single particle

7



2.2. A many-body Hamiltonian for Copper Phthalocyanine

Figure 2.2.: CuPc Single particle spectrum in the interesting
region. The color of the inner circle depicts the π ,black, or
the σ,grey, bonding character. The inner circle shows the type
of the orbital via its color and the weight on the metal center
via the diameter. The energies of the SOMO, HOMO and
the two LUMOs are marked by S, H, and Lxz/yz. Taken from
Ref. [23].

Figure 2.3.: Ground state configu-
ration in the frontier orbitals for the
neutral molecule. The arrows repre-
sent electrons with spin up and spin
down. Taken from Ref. [23].

Hamiltonian h can be numerically diagonalized to yield the single particle energies εi,
shown in Fig. 2.2, and also reveal the molecular orbital basis |i〉 = ∑

α ciα|α〉.
CuPc has 195 valence electrons, hence there is a molecular orbital which is occupied
by a single electron. By using the Aufbau principle we assume that this is the 98th
molecular orbital. Here we can see why using the single particle energies and the Auf-
bau principle is not enough to describe a many-body system, by anticipating results
from the next sections. The reason is that even though the 97th orbital has a lower
single particle energy its charging energy is much higher than the one of the 98th, see
Table 2.2.1. Therefore, in reality the 97th orbital is singly occupied, whereas the 98th is
doubly occupied. We will thus, like in the literature [30–32], refer to the 97th orbital as
SOMO (single occupied molecular orbital) and to the 98th as HOMO (highest occupied
molecular orbital). The next two orbitals which are degenerate in their single parti-
cle energy are the two lowest unoccupied molecular orbitals (LUMOxz and LUMOyx).
These four orbitals will form our dynamical orbitals, also called frontier orbitals, as
introduced in Sec. 2.1.2. They are displayed in Fig. 2.4. The single particle energies
of the frontier orbitals are εS = −12.0 eV, εH = −11.7 eV and εL± = −10.7 eV. This
means that we assume the lower 96 orbitals to be doubly filled at all times. Moreover,
we assume the orbitals above the two LUMOs to be empty. These two blocks of orbitals
will make up the set of frozen orbitals and will be ignored in our transport calculations
as discussed in Sec. 2.1.2. Following this analysis we can conclude that the number
of electrons in the frontier orbitals is, in the neutral state, N0 = 3. The filling of the
frontier orbitals in the neutral state can be seen in Fig. 2.3. We will see in the following
sections that by treating the full many-body problem this filling of the frontier orbitals
is the correct one.

8



2.2. A many-body Hamiltonian for Copper Phthalocyanine

Figure 2.4.: Images of the four dynamical orbitals: SOMO, HOMO, LUMOxz and LUMOyz. Taken
from Ref. [23].

We can see from figs. 2.2 and 2.4 that the frontier orbitals have different contributions
on the copper center and the ligand. To distinguish them we introduce | 〉Cu and | 〉Pc.
This discrimination will become useful in the analysis of spin-orbit effects. This allows
us to write

|Lxz/yz〉 =
√

1− c2
L|Lxz/yz〉Pc + cL|3dxz/yz〉Cu, (2.19)

where cL ≈ 0.097 is the contribution of the LUMOs, |Lxz〉 and|Lyz〉, on the 3dxz and
3dyz orbitals of the Copper atom. The SOMO can, in this notation, be expressed as

|S〉 =
√

1− c2
S|S〉Pc + cS|3dx2−y2〉Cu, (2.20)

where cS ≈ 0.9 is the contribution of the SOMO on the 3dx2−y2 orbital in the center. Due
to symmetry reasons the HOMO does not contribute to the metallic center. Therefore
it is just expressed as

|H〉 = |H〉Pc. (2.21)

2.2.2. Imaginary representation of the frontier orbitals

The four frontier orbitals can be represented in a rotationally symmetric basis. For
the SOMO and HOMO this representation is the same as before whereas the complex
LUMOs are obtained via a linear combination of the two degenerate LUMOs |Lxz/yx〉
yielding

|L±〉 = 1√
2

(|Lxz〉 ± i|Lyz〉) . (2.22)

The complex LUMO orbitals are depicted in Fig. 2.5. In the rotationally symmetric
basis we can classify them by the phase they acquire under a rotation of π

2 around a
main rotational symmetry axis, e.g. the x-axis. This phase is ΦS = π, ΦH = 0 and
ΦL± = ±π

2 , for the SOMO, HOMO and the LUMOs.
Let us take a look at the Coulomb interaction which was introduced in Eq. (2.17).
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2.2. A many-body Hamiltonian for Copper Phthalocyanine

Figure 2.5.: The LUMOs in their complex representation. The color describes the complex phase.
Taken from Ref. [23].

The potential
V (r12) = 1

4πε0

e2

|r1 − r2|
(2.23)

only depends on the distance between two electrons and is therefore rotationally in-
variant. We can define a rotation R which shall be again a rotation of π

2 around the
main rotational symmetry axis of the molecule with r′ = R−1r. This rotation has the
effect

R|j〉 = eiΦj |j〉, (2.24)

where {|j〉} are now the four dynamical orbitals. Under the action of R, the wave
functions acquire the phase

ψj(R−1r) = ψj(r′) = 〈r′|j〉 = 〈r|R|j〉 = eiΦj 〈r|j〉 = eiΦjψj(r). (2.25)

For the matrix elements of the Coulomb interaction one can deduce now

Vijkl =
∫

d3r1

∫
d3r2ψ

∗
i (r1)ψj(r1)V (r12)ψ∗k(r2)ψl(r2)

=
∫

d3r′1

∫
d3r′2ψ

∗
i (r′1)ψj(r′1)V (r′12)ψ∗k(r′2)ψl(r′2)

=
∫

d3r1

∫
d3r2ψ

∗
i (r1)e−iΦiψj(r1)eiΦjV (r12)ψ∗k(r2)e−iΦkψl(r2)eiΦl

= e−i(Φi−Φj+Φk−Φl)Vijkl.

(2.26)

This relation puts some constraints on the orbitals which can be coupled by the Coulomb
interaction. Their phases, under the rotation R, have to fulfill

Φi − Φj + Φk − Φl = 2nπ, n ∈ Z (2.27)

in order to have non-vanishing contributions. This constraint reduces the number of
matrix elements Vijkl to take into account in the calculations.

10



2.2. A many-body Hamiltonian for Copper Phthalocyanine

For the crystal field correction V ion
ij we see:

V ion = R−1V ion
ij R = R−1∑

γ

〈i|Vγ|j〉R = e−i(Φi−Φj)V ion
ij (2.28)

The phases of the frontier orbitals are all different so we can conclude from Eq. (2.28)
that the crystal field correction is diagonal in our basis.

V ion
ij = V ion

ij δij (2.29)

In our theory the crystal field corrections are four free parameters and need to be fitted
to experimental data. This gives us a way to express the first two terms of Eq. (2.18)
in the frontier orbital basis of CuPc. Those terms then read:

Ĥ
(1)
mol =

∑
i

(εi + δi) n̂i +
∑
i

Uin̂i↑n̂i↓ + 1
2
∑
[ij]
Uijn̂in̂j

− 1
2
∑
[ij]

∑
σ

Jex
ij

(
n̂iσn̂jσ − d̂†iσd̂

†
jσ̄d̂iσ̄d̂jσ

)

+ 1
2
∑
[ij]

∑
σ

JPij d̂
†
iσd̂
†
iσ̄d̂jσ̄d̂jσ

+ 1
2
∑
[ijk]

∑
σ

(
J̃Pijkd̂

†
iσd̂
†
iσ̄d̂jσ̄d̂kσ + h.c.

)
(2.30)

The indices i,j and k denote the frontier orbitals SOMO, HOMO and the LUMOs,
whereas σ stands for the spin. We assume a constant shift for the crystal field corrections
with value δ = δi = 1.83 eV. The notation [ijk] denotes that the indices have to run
over different orbitals and n̂i counts the number of electrons in an orbital irrespective
of its spin. We introduced some abbreviations for the Coulomb matrix elements in
Eq. (2.30) which are the following: Ui = Viiii denotes the orbital Coulomb interaction,
Uij = Viijj the Coulomb interaction between different orbitals, Jex

ij = Vijji the exchange
interaction, JPij = Vijij is the pair hopping contribution and lastly the split pair hopping
is J̃Pijk = Vijik. The Coulomb integrals with four different indices are very small and
are thus neglected. The values for the integrals have been taken from Ref. [23] where
they have been calculated by Monte Carlo integration. The values of the non vanishing
integrals can be seen in table 2.2.1. We can see that the charging energy of the SOMO,
US, is more than five times larger than the one of the HOMO, UH, thus it becomes clear
why the HOMO is doubly occupied although it has a higher single particle energy.

11



2.2. A many-body Hamiltonian for Copper Phthalocyanine

US 11.352 eV Jex
HL = −J̃PH+− 548 meV

UH 1.752 eV Jex
+− 258 meV

U+/− = U+− 1.808 eV JP+− 168 meV
USH 1.777 eV Jex

SL = −J̃PS+− 9 meV
USL 1.993 eV Jex

SH = JPSH 2 meV
UHL 1.758 eV

Table 2.2.1.: Coulomb integrals between the frontier orbitals, SOMO(S), HOMO(H), LUMO+ (+)
and LUMO- (-). Taken from Ref. [23].

2.2.3. Spin-orbit interaction in the frontier orbital basis

In this section we will derive the last missing part of our Hamiltonian in Eq. (2.18),
which is the spin-orbit interaction (from now on SOI). The SOI operator reads in the
atomic basis

V̂SO =
∑
α,lα

ξlαL̂αŜα, (2.31)

with α running over all atoms and lα denoting the shells of atom α. Since, ξlα is
negligible for the H,C, and N atoms we evaluate Eq. (2.31) only on the central copper
atom, i.e. α = Cu and l = 2 corresponding to the d-orbitals, we obtain in second
quantization

V̂SO = ξCu

 2∑
m=−2

m

2
(
d̂†m↑d̂m↑ − d̂

†
m↓d̂m↓

)

+
√

3
2
(
d̂†0↓d̂−1↑ + d̂†1↓d̂0↑ + h.c.

)

+
(
d̂†2↓d̂1↑ + d̂†−1↓d̂−2↑ + h.c.

).
(2.32)

The operator d̂†mσ creates an electron with spin σ on the copper atom in the orbital
with the set of quantum numbers (l = 2,m). The parameter ξCu can be found in the
literature [33] and is set to ξCu ≈ 100 meV. Like all other operators we project Eq (2.32)
on the frontier orbital basis set {S, H, L±}. By doing this we obtain

V̂SO =λ1
∑
τ=±

τ
(
d̂†Lτ↑d̂Lτ↑ − d̂†Lτ↓d̂Lτ↓

)
+λ2

(
d̂†S↑d̂L−↓ + d̂†L+↑d̂S↓ + h.c.

)
.

(2.33)

We get effective SOI constants λ1 = 1
2ξCu|cL|2 = 0.47meV and λ2 = ξCu

cScL√
2 = 6.16meV.

Thereby all the pieces necessary to write Eq. (2.18) in the basis of our frontier orbitals

12



2.3. Low energy spectrum of CuPc

are there. It then reads in full glory

Ĥmol =
∑
i

(εi + δ) n̂i +
∑
i

Uin̂i↑n̂i↓ + 1
2
∑
[ij]
Uijn̂in̂j

− 1
2
∑
[ij]

∑
σ

Jex
ij

(
n̂iσn̂jσ − d̂†iσd̂

†
jσ̄d̂iσ̄d̂jσ

)

+ 1
2
∑
[ij]

∑
σ

JPij d̂
†
iσd̂
†
iσ̄d̂jσ̄d̂jσ (2.34)

+ 1
2
∑
[ijk]

∑
σ

(
J̃Pijkd̂

†
iσd̂
†
σ̄d̂σ̄d̂kσ + h.c.

)
+ λ1

∑
τ=±

τ
(
d̂†Lτ↑d̂Lτ↑ − d̂†Lτ↓d̂Lτ↓

)
+ λ2

(
d̂†S↑d̂L−↓ + d̂†L+↑d̂S↓ + h.c.

)
.

Through numerical diagonalization of Ĥmol it is now possible to obtain many-body
eigenenergies ENk and eigenstates |N, k〉 which are categorized by the number of particles
and the state index k. The Fock space spanned by Ĥmol has a dimension of 44 = 256
and thus the corresponding Liouville space a dimension of 2562 which makes it difficult
to deal with if one wants to keep coherences. Since in our transport calculations we
will work at low energies only many-body eigenstates with low energies are assumed to
play a role in transport. Thus, we will truncate the Fock space quite heavily as will be
discussed in later sections. Now we will focus on the low energy spectrum of CuPc in
the many-body basis.

2.3. Low energy spectrum of CuPc

The first thing to realize is that Ĥmol as given in Eq. (2.34) possesses three different
energy scales. They are sorted by U > J > λ. Here, U is a collection of all Hubbard
like parameters (Ui, Uij), J represents the exchange parameters (Jex

ij , J
P
ij , J̃

P
ijk) and λ

represents the SOI parameters (λ1, λ2). To clarify the effect these parameters have on
the spectrum we will set J, λ = 0 in the beginning and determine the ground states for
the neutral and anionic case. Then in two different steps we will analyse what happens
if we let J, λ 6= 0.
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2.3. Low energy spectrum of CuPc

Figure 2.6.: The anionic low energy spectrum of CuPc with the number of degenerate states d. With
only Hubbard like interaction (U) there is an eightfold degenerate ground state. The exchange interac-
tion introduces a splitting between the two sets of singlets and triplets. SOI introduces further splitting
in the triplet states yielding the spectrum on the right which is used in the numerical calculations.
Adapted from Ref. [23].

2.3.1. Neutral low energy spectrum

First we define the state |Ω〉 as

|Ω〉 := d̂†H↑d̂
†
H↓|0〉, (2.35)

where |0〉 is the molecule with zero particles in the frontier orbitals. |Ω〉 is therefore
the state in which the HOMO is the only occupied orbital. The neutral ground states
found by full numerical diagonalization are

|N0, σ〉 = d̂†Sσ|Ω〉, (2.36)

which are two spin degenerate states and N0 = 3, like already concluded in Sec. 2.2.1.
We will refer to them by

|D↑0〉 = d̂†S↑|Ω〉
|D↓0〉 = d̂†S↓|Ω〉.

(2.37)

The reason for that configuration is like presented in Sec. 2.2.2 that US >> UH. There-
fore, these configurations are energetically the most favourable. One of the two possible
configurations can be seen in Fig. 2.3. We denote the energy of those states as Eg

N0 .
These ground states are not affected by SOI. There are some exchange terms in Ĥmol
which create admixtures in these ground states, e.g. J̃PHL+L−. However, these admixtures
are very small and do not affect transitions between neutral and anionic states and can
therefore be neglected here. We talk about them in a bit more detail in App. A.1.
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2.3. Low energy spectrum of CuPc

Figure 2.7.: Schematic depiction of the states |T+1
− 〉 and |S+〉. The four frontier orbitals are shown

and the arrows indicate occupation by an electron with spin up or down.

2.3.2. Anionic low energy spectrum

With J, λ = 0 the anionic ground state is eightfold degenerate and reads

|N0 + 1, τσσ′〉 = d̂†Sσd̂
†
Lτσ′|Ω〉. (2.38)

Here τ = ± denotes which LUMO is occupied and σ and σ′ are the spin indices of the
SOMO and LUMO respectively. The spectrum and its evolution with respect to the
energy scales is depicted in Fig. 2.6. We label the energy in the same way as for the
neutral ground state with Eg

N0+1. There are two possible spin values for the electron in
the SOMO and the LUMO has 4 possible configurations (2 for the spin and 2 for the
orbital part) since the LUMO+ and LUMO- are degenerate. This leads to the eightfold
degeneracy of the ground state. To obtain also eigenstates of the operators Ŝ2 and Ŝz
we rewrite the ground states as

|Sτ 〉 = 1√
2
(
d̂†S↑d̂

†
Lτ↓ − d̂

†
S↓d̂
†
Lτ↑

)
|Ω〉, (2.39a)

|T+1
τ 〉 = d̂†S↑d̂

†
Lτ↑|Ω〉, (2.39b)

|T0
τ 〉 = 1√

2
(
d̂†S↑d̂

†
Lτ↓ + d̂†S↓d̂

†
Lτ↑

)
|Ω〉, (2.39c)

|T−1
τ 〉 = d̂†S↓d̂

†
Lτ↓|Ω〉. (2.39d)

In this representation one can see that there are two sets of singlets, which have zero
total spin, and two sets of triplets, with total spin equal to one. The two sets arise
because there is orbital degeneracy in the LUMOs. Without exchange effects and SOI
they are degenerate. Analogous to the neutral ground states the split pair hopping
introduces small admixtures and a slight energy shift of all states. Since, the admix-
tures are small and the energy shift is the same for all states we neglect them here.
The effects of the split pair hopping on the anionic states can be seen in App. A.1. A
schematic depiction of the states |T+1

− 〉 and |S+〉 can be seen in Fig. 2.7.
We explore now the effect of including exchange coupling in the analysis of the spec-
trum. Since, there are two unpaired spins in the ground state (one in the SOMO and
LUMO) only one term of the exchange coupling part in Eq. (2.34) has an effect on the
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2.3. Low energy spectrum of CuPc

spectrum, which is
−
∑
τσ

Jex
SL

(
n̂Sσn̂Lτσ − d̂†Sσd̂

†
Lτσ′ d̂Sσ′ d̂Lτσ

)
. (2.40)

This is the combination of the terms with i = S, j = L and i = L, j = S. They can
be written in one term by applying Jex

SL = Jex
LS and using anticommutator relations for

fermionic creation and annihilation operators. This term lifts the degeneracy between
the singlets and the triplets. The energy of the singlets is raised while the triplets
experience a downshift

ES = Eg
N0+1 + Jex

SL,

ET = Eg
N0+1 − Jex

SL.
(2.41)

Finally, we will take a closer look at the influence of V̂SO on the anionic low energy
spectrum. Since the SOI constants are much smaller than the Coulomb interaction
terms one can treat the contribution of λ in the framework of perturbation theory. To
analyse the effect of SOI on the states |T+1

− 〉 and |T−1
+ 〉 we will separately take a look

at the effect of the terms corresponding to λ1 and λ2 in Eq. (2.34). The λ1-term is just
a counting term and shifts the energy by

∆ET+1
−

= ∆ET−1
+

= −λ1. (2.42)

If we apply the λ2 term to |T−1
+ 〉 we get

|ã〉 = λ2d̂
†
L+↓d̂

†
L+↑|Ω〉 (2.43)

and for |T+1
− 〉

|b̃〉 = λ2d̂
†
L−↓d̂

†
L−↑|Ω〉. (2.44)

The states |ã〉 and |b̃〉 are not eigenstates of the full Hamiltonian but are coupled by
the pair-hopping term

1
2J

P
+−
∑
σ

(
d̂†L+σd̂

†
L+σ′ d̂L−σ′ d̂L−σ + h.c.

)
. (2.45)

To obtain eigenstates of the full Hamiltonian we can form their linear combinations

|a〉 = 1√
2
(
|ã〉 − |b̃〉

)
,

|b〉 = 1√
2
(
|ã〉+ |b̃〉

)
.

(2.46)

With this we conclude that also for |T+1
− 〉 and |T−1

+ 〉 the formation of linear combinations
is necessary to obtain the correct eigenstates

|T1〉 = 1√
2
(
|T−1

+ 〉 − |T+1
− 〉

)
,

|T2〉 = 1√
2
(
|T−1

+ 〉+ |T+1
− 〉

)
.

(2.47)
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2.3. Low energy spectrum of CuPc

The energy of |T1〉 and |T2〉 without λ2 is

ET1 = ET2 = 2EH + ES + EL + 4δ + UH − Jex
SL − λ1. (2.48)

The energy of |a〉 is

Ea = 2EH + 2EL + 4δ + UH + UL + 4UHL − JP+− (2.49)

and the one of |b〉
Eb = Ea + 2JP+−. (2.50)

To capture the effect of the λ2-term we write an effective Hamiltonian in the basis
{|T1〉, |a〉, |T2〉, |b〉}, with subtraction of a constant background

∆E = 2EH + ES + EL + 4δ + UH, (2.51)

it reads
H =

(
H1a 0

0 H2b

)
, (2.52)

with
H1a =

(
−Jex

SL − λ1 λ2
λ2 Ea

)
, (2.53)

and
H2b =

(
−Jex

SL − λ1 λ2
λ2 Eb

)
. (2.54)

Through diagonalization we obtain four states but we only look at the two interesting
ones for the low energy spectrum, namely

|1〉 = 1√
1− γ2

a

(|T1〉+ γa|a〉) ,

|2〉 = 1√
1− γ2

b

(|T2〉+ γb|b〉) ,
(2.55)

with γa/b ≈ −λ2
Ea/b+Jex

SL
. Their energies are

E1 ≈ −λ1 −
λ2

2
Ea + Jex

SL + λ1

E2 ≈ −λ1 −
λ2

2
Eb + Jex

SL + λ1
.

(2.56)

The admixtures are very small and thus we will neglect them in further parts of this
thesis. They are however present in our numerical calculations. Nevertheless, with this
analysis we can conclude that T1 and T2 are the lowest lying states of the anionic
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2.3. Low energy spectrum of CuPc

molecule with an approximate energy splitting of

∆ET1T2 ≈
2λ2

2J
P
+−

E2
a

≈ 20 µeV, (2.57)

which corresponds well to the values observed in the full numerical diagonalization. We
write thus in the notation |N, k〉, introduced in the end of Sec. 2.2.3

|4, 0〉 = |T1〉 = 1√
2
(
|T−1

+ 〉 − |T+1
− 〉

)
, (2.58a)

|4, 1〉 = |T2〉 = 1√
2
(
|T−1

+ 〉+ |T+1
− 〉

)
. (2.58b)

In the full numerical calculations also other admixtures are present but they do not
introduce a qualitative difference to this analysis and can therefore be ignored here.
The state |T0

+〉 is coupled via λ2 to

d̂†L+↓d̂
†
L−↓|Ω〉, (2.59)

whereas |T0
−〉 to

d̂†L+↑d̂
†
L−↑|Ω〉. (2.60)

Therefore, they stay degenerate also under the influence of V̂SO and experience a shift
in energy [23]

∆E0
T0

+
= ∆E0

T0
−

= − λ2
1

2Jex
SL
− λ2

2
∆1 − Jex

SL
, (2.61)

where ∆1 is the energy corresponding to the states defined in eqs. (2.59) and (2.60).
This energy shift is very small since its dependence on the SOI parameters is quadratic.
We can now write the next excited states as

|4, 2〉 = |T0
+〉, (2.62a)

|4, 3〉 = |T0
−〉, (2.62b)

by neglecting very small admixtures.
The λ1 term of V̂SO changes the energy of |T+1

+ 〉 and |T−1
− 〉, with respect to ET , by

∆ET+1
+

= ∆ET−1
−

= λ1. (2.63)

To shorten the notation in the following we introduce two additional states

|L+ ↑,L− ↓〉 ≡ d̂†L+↑d̂
†
L−↓|Ω〉, (2.64)

|S ↑, S ↓〉 ≡ d̂†S↑d̂
†
S|↓|Ω〉. (2.65)

The application of the λ2 term on |T+1
+ 〉 yields

λ2
(
d̂†S↑d̂L−↓ + d̂†L+↑d̂S↓ + h.c.

)
|T+1

+ 〉 = λ2|S ↑, S ↓〉 − λ2|L+ ↑,L− ↓〉 (2.66)
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and on |T−1
− 〉

λ2
(
d̂†S↑d̂L−↓ + d̂†L+↑d̂S↓ + h.c.

)
|T−1
− 〉 = −λ2|S ↑, S ↓〉+ λ2|L+ ↑,L− ↓〉 (2.67)

We can conclude that the linear combination

|α〉 = 1√
2
(
T+1

+ + T−1
−

)
(2.68)

is an eigenstate of Ĥmol. The last missing eigenstate is

|β〉 = 1√
2
(
T+1

+ −T−1
−

)
+ 2λ2

∆1 + Jex
SL
|L+ ↑,L− ↓〉 − 2λ2

∆2 + Jex
SL
λ2|S ↑, S ↓〉, (2.69)

with ∆1 being the energy of |L+ ↑,L− ↓〉 and ∆2 the one of |S ↑, S ↓〉. The energy of
|α〉 is not influenced by λ2 and thus the energy shift, once again with respect to ET, is
the one given in Eq. (2.63). The energy shift for |β〉 reads

∆Eβ = λ1 − 4λ2

(
1

∆1 + Jex
SL

+ 1
∆2 + Jex

SL

)
. (2.70)

Thus, we write

|4, 4〉 = |β〉 = 1√
2
(
T+1

+ −T−1
−

)
, (2.71a)

|4, 5〉 = |α〉 = 1√
2
(
T+1

+ + T−1
−

)
, (2.71b)

where we have omitted the small admixtures to |β〉. Finally, the analysis of the Singlets,
|S+〉 and |S−〉, is very similar to the one of |T0

+〉 and |T0
+〉. They stay degenerate and

their energy is shifted, now with respect to ES, by

∆ES+ = ∆ES− = λ2
1

2Jex
SL
− λ2

2
∆1 − Jex

SL
. (2.72)

To finalize the discussion of the anionic low energy spectrum we write

|4, 6〉 = |S+〉, (2.73a)
|4, 7〉 = |S−〉. (2.73b)
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We can capture the effects of the SOI on the unperturbed triplet states by an effective
Hamiltonian, in the basis {|T+1

+ 〉, |T0
+〉, |T−1

+ 〉, |T+1
− 〉, |T0

−〉, |T−1
− 〉, },

Ĥeff ≡ α516 +



α1/2 0 0 0 0 α2
0 α4 0 0 0 0
0 0 −α1/2 α3 0 0
0 0 α3 −α1/2 0 0
0 0 0 0 α4 0
α2 0 0 0 0 α1/2


. (2.74)

The parameters α1 - α5 can be obtained from our numerical calculations and are α1 =
0.860 meV, α2 = 2.26 × 10−2 meV, α3 = 1.66 × 10−2 meV, α4 = −1.01 × 10−2 meV,
and α5 = −13.1 eV. This Hamiltonian is able to reproduce the correct energy changes
and correct linear combinations corresponding to the ones we got by our analysis of the
anionic low energy spectrum.

2.4. Modelling of the leads and tunnelling processes

To describe transport through our system we need to clarify how we should treat the
leads which are connected to the system and how we describe tunnelling. In this thesis
we will model the leads as non-interacting Fermi seas which can be described by a
Hamiltonian of the following form

Ĥlead =
∑
kσ
εkσ ĉ

†
kσ ĉkσ, (2.75)

with εkσ being the energy of an electron with momentum k and spin σ, ĉ†kσ creates an
electron in the lead. Since, they are considered to be large reservoirs we describe their
density matrix as

ρ̂ = e−β(Ĥlead−µN̂)
Z

, (2.76)

where β = 1
kBT , N̂ is the particle number operator and Z the canonical partition

function.
To describe the tunnelling between our system and the leads we use a Hamiltonian
according to Bardeen’s tunnelling theory which reads [34]

Ĥtun =
∑
ηi
σk

tηikĉ
†
ηkσd̂iσ + h.c.. (2.77)

In Eq. (2.77) η denotes the different leads, ĉ†ηkσ is the creation operator for the lead
η, whereas d̂†iσ creates an electron on the system in the orbital i with spin σ. The
last part are the tηik which are the tunnelling matrix elements between lead η and
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2.4. Modelling of the leads and tunnelling processes

the system. They are calculated as the overlap between the states in the lead |ηkσ〉
and the molecular orbitals |iσ〉 renormalized by the single particle eigenenergies of the
molecule [35]

tηik = εiσ 〈ηkσ|iσ〉 . (2.78)
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3. A Transport Formalism For The
THz-STM

In this chapter we will derive a transport formalism for the THz-STM. Firstly, we will
deduce a general transport formalism without taking the special geometry of the STM
into account. Then we will make a short excursion into the general functioning of an
STM and how to describe it within our transport formalism. In the end we will explore
what effects the THz laser pulses will have on the treatment of the transport problem.

3.1. Transport within the density matrix formalism

In this section we will derive a general transport formalism in the density matrix frame-
work. We will follow refs. [36, 37] for this purpose.

3.1.1. Liouville equation for the reduced density matrix

The density operator can describe a mixture of states |ψn〉 (n ∈ N) with statistical
weights Wn. The most general form is

ρ̂ =
∑
n

Wn|ψn〉〈ψn|. (3.1)

To obtain a matrix representation of this operator we choose an orthonormal basis set,
{|Φm〉}. The states |ψn〉 can then be expressed in terms of this basis set as

|ψn〉 =
∑
m

anm|Φm〉. (3.2)

By plugging Eq. (3.2) into Eq. (3.1) we obtain

ρ̂ =
∑
nmm′

Wnanma
∗
nm′ |Φm〉〈Φm′ |. (3.3)

This is the matrix representation of the density operator in the basis of the Hilbert space.
We will now start to develop a transport formalism for it. The necessary building blocks



3.1. Transport within the density matrix formalism

of an Hamiltonian able to describe transport through a system are

Ĥ = Ĥmol + Ĥleads + Ĥtun, (3.4)

namely the central system part Ĥmol, which in our case is a molecule, the leads Ĥleads and
the tunnelling Hamiltonian Ĥtun. They will have the form introduced in the previous
chapter. Let us for now assume that the Hamiltonian Ĥ in Eq. (3.4) is time independent.
Then we can write the time evolution operator as

Û(t) = e− i
~ Ĥ(t). (3.5)

This operator transforms a state |ψ(0)〉 into a state |ψ(t)〉

|ψ(t)〉 = Û(t)|ψ(0)〉. (3.6)

The time evolution of the density operator is given by

ρ̂(t) = Û(t)ρ̂0Û
†(t). (3.7)

Here, ρ̂0 denotes the density matrix at time t = 0, i.e. ρ̂0 = ρ̂(t = 0). Differentiation of
Eq. (3.7) with respect to time yields

dρ(t)
dt = − i

~
Ĥρ̂(t) + i

~
ρ̂(t)Ĥ

= − i
~
[
Ĥ, ρ̂(t)

]
.

(3.8)

This equation is called the Liouville-von Neumann equation, which we will call in short
Liouville equation. It is the most fundamental equation in density matrix theory. We
assume the tunneling part in Eq. (3.4) to be a small perturbation to our full system,
i.e. the coupling between the system and the leads is weak (weak coupling limit), and
rewrite the Hamiltonian as

Ĥ = Ĥ0 + Ĥtun. (3.9)

We define Û0(t) := e− i
~ Ĥ0t to transfer the density matrix into the interaction picture

ρ̂I(t) = Û †0 ρ̂(t)Û0. (3.10)

By using eqs. (3.8) and (3.10) we deduce the Liouville equation in the interaction
picture

˙̂ρI(t) = d
dtÛ

†
0(t)ρ̂(t)Û0(t) =

+ i
~
Û †0(t)Ĥ0ρ̂(t)Û0(t)− i

~
Û †0(t)Ĥρ̂(t)Û0(t)

+ i
~
Û †0(t)ρ̂(t)ĤÛ0(t)− i

~
Û †0(t)ρ̂(t)Ĥ0Û0(t)

= − i
~
[
ĤI

tun(t), ρ̂I(t)
]
,

(3.11)
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with
ĤI

tun(t) = Û †0(t)ĤtunÛ0(t) =
∑
ηi
σk

(
tηikσ ĉ

†
ηkσ e i

~ εηkt d̂Iiσ(t) + h.c.
)
. (3.12)

The time evolution of the density operator in the interaction picture only depends on
ĤI

tun. Since we assume the tunnelling Hamiltonian to be a small perturbation to our
system we are able to solve Eq. (3.11) in the framework of time dependent perturbation
theory. The formal solution of the Liouville equation (3.11) is

ρ̂I(t) = ρ̂I(t0)− i
~

∫ t

t0
dt′
[
ĤI

tun(t), ρ̂I(t′)
]
. (3.13)

By substituting the formal solution Eq. (3.13) back into the Liouville equation we
obtain

˙̂ρI(t) = − i
~
[
ĤI
tun(t), ρ̂I(t0)

]
− 1

~2

∫ t

t0
dt′
[
ĤI
tun(t),

[
ĤI
tun(t′), ρ̂I(t′)

]]
. (3.14)

We now rename the variables in Eq. (3.13) so that it reads

ρ̂I(t′) = ρ̂I(t)− i
~

∫ t′

t
dt′′

[
ĤI

tun(t′′), ρ̂I(t′′)
]

(3.15)

and reinsert it once again into Eq. (3.14) to obtain

˙̂ρI(t) =− i
~
[
ĤI
tun(t), ρ̂I(t0)

]
− 1

~2

∫ t

t0
dt′
[
ĤI
tun(t),

[
ĤI
tun(t′), ρ̂I(t)

]]
+ i

~3

∫ t

t0
dt′
∫ t′

t
dt′′

[
ĤI

tun(t),
[
ĤI

tun(t′),
[
ĤI

tun(t′′), ρ̂I(t′′)
]]]

.

(3.16)

3.1.2. Time local Master Equation

Up to this point everything in our analytical treatment was exact but now we will start
to make some approximations. We will restrict ourself to sequential tunnelling in this
thesis, i.e. we will treat the dynamics in second order perturbation theory with respect
to Ĥtun. Therefore, we drop the last term in Eq. (3.16). Due to this we obtain an
equation which is time local, i.e. the evolution of ρ̂ at time t only depends on its value
at time t and not on its past. Equation (3.16) describes the dynamics of the whole
system. We are, however, interested in the central system and not the leads. Therefore,
we introduce the reduced density matrix,

ρ̂I� = Trleads
{
ρ̂I(t)

}
, (3.17)

which we get by tracing out the lead degrees of freedom. Furthermore, this helps in
making the calculations more feasible. If we apply the trace over the leads to Eq. (3.16)
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3.1. Transport within the density matrix formalism

and drop the 3rd therm we obtain

˙̂ρI� = − 1
~2

∫ t

t0
dt′Trleads

{[
ĤI

tun(t),
[
ĤI

tun(t′), ρ̂I(t)
]]}

. (3.18)

The first term is vanishing since ĤI
tun(t) does not conserve particle number in the leads,

whereas the trace is particle conserving. At t0 = 0 the leads and the system are
uncorrelated, this allows us to factorize the total density matrix in a system and a leads
part

ρ̂I(t0) = ρ̂�(t0)ρ̂leads(t0). (3.19)

However, we can always write the density matrix as

ρ̂I(t) = ρ̂I�(t)ρ̂Ileads(t) + ∆ρ̂I , (3.20)

where ∆ρ̂I is of the order of Ĥtun, see page 277 of Ref. [36]. Thus, we neglect it in our
second order treatment and factorize the density matrix at all times

ρ̂I(t) = ρ̂I�(t)ρ̂Ileads, (3.21)

where we have dropped the time dependence in the density matrix of the leads because
they are large reservoirs and thus have so many degrees of freedom that the interaction
with the central system is negligible. The density matrix used to describe them was
introduced in Eq. (2.76). By expanding the commutator in Eq. (3.18) we obtain

˙̂ρI�(t) = − 1
~2

∑
ηk

∑
iσ
jσ′

∫ t

t0
dt′
[

tηikt
η∗
jkd̂

I
iσ(t)d̂†Ijσ′(t′)ρ̂I�(t′) e i

~ εηk(t−t′) f+
η (εk)

+tη∗ikt
η
jkd̂
†I
iσ(t)d̂Ijσ′(t′)ρ̂I�(t′) e− i

~ εηk(t−t′) f−η (εk)
−tηikt

η∗
jkd̂

I
iσ(t)ρ̂I�(t′)d̂†Ijσ′(t′) e i

~ εηk(t−t′) f−η (εk)
+tη∗ikt

η
jkd̂
†I
iσ(t)ρ̂I�(t′)d̂Ijσ′(t′) e− i

~ εηk(t−t′) f+
η (εk)

+h.c.
]
,

(3.22)

with f+
η (εk) = Trleads

{
ĉ†ηkσ ĉηk′σ′ ρ̂leads

}
being the Fermi distribution in the lead η which

has a chemical potential of µη and f−η (εk) = 1− f+
η (εk). We use

ρ̂I�(t) = e i
~ Ĥmolt ρ̂�(t) e− i

~ Ĥmolt (3.23)

to transform Eq. (3.22) back into the Schrödinger picture. Furthermore, we substitute
t′′ = t − t′ in the integral and let t0 go to −∞. This is, in this way of deriving the
time local master equation, a part of our model but can also be derived in the Markov
approximation, see for example refs. [36–38]. With all this we obtain the reduced density
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3.1. Transport within the density matrix formalism

matrix in the Schrödinger picture

˙̂ρ�(t) =− i
~
[
Ĥmol, ρ̂�(t)

]
− 1

~2

∫ ∞
0

dt′
∑
ηk

∑
iσ
jσ′

[

tηikt
η∗
jkd̂iσd̂

†I
jσ′(−t′)ρ̂�(t) e i

~ εηkσt
′
f+
η (εkσ)

+tη∗ikt
η
jkd̂
†
iσd̂

I
jσ′(−t′)ρ̂�(t) e− i

~ εηkσt
′
f−η (εkσ)

−tηikt
η∗
jkd̂iσρ̂�(t)d̂†Ijσ′(−t′) e i

~ εηkσt
′
f−η (εkσ)

−tη∗ikt
η
jkd̂
†
iσρ̂�(t)d̂Ijσ′(−t′) e− i

~ εηkσt
′
f+
η (εkσ)

+h.c.
]
,

(3.24)

where we have renamed t′′ to t′. As an example we will now focus on the second line in
Eq. (3.24) to see how to proceed in the calculation. We can write for the time dependent
creation operator

d̂†Ijσ′(−t) = e− i
~ Ĥmolt d̂†jσ′ e

i
~ Ĥmolt =∑

N
EE′

∑
iσ
lσ′′

e− i
~ (EN−E′N+1)t〈N + 1Eiσ|d̂†jσ′|NE ′lσ′′〉 |N + 1Eiσ〉〈NE ′lσ′′|. (3.25)

We then need to solve integrals of the form
∑
ηk

∫ ∞
0

dt′tηikt
η∗
jk e− i

~ (EN−E′N−1−εηkσ)t′ f+
η (εkσ)

= lim
λ→0+

∑
ηk
−i~tηikt

η∗
jk

f+
η (εkσ)

(EN − E ′N+1︸ ︷︷ ︸
=∆E

−εηkσ)− iλ

= lim
λ→0+

∑
ηk

∫
dε− i~δ(ε− εkσ)tηikt

η∗
jk

f+
η (ε)

∆E − ε− iλ

(3.26)

We identify the tunnelling rate matrices

Γησi,σj = 2π
~
∑
k

tηikt
η∗
jkδ(ε− εkσ), (3.27)
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3.1. Transport within the density matrix formalism

Figure 3.1.: The block diagonal form of the density matrix with respect to three different particle
numbers. The white space is zero whereas the red spaces contain elements different from zero.

which vary slowly with respect to the energy integration. We can now rewrite Eq. (3.26)
as

−
∑
η

~2Γησi,σj
2 lim

λ→0+

i
π

∫
dεf+

η (ε) ∆E − ε+ iλ
(∆E − ε)2 + λ2 =

−
∑
η

~2Γησi,σj
2 lim

λ→0+

(∫
dε
( −λf+

η (ε)
π[(∆E − ε)2 + λ2]︸ ︷︷ ︸

δλ(∆E−ε)f+
η (ε)

+ i(∆E − ε)2

[(∆E − ε)2 + λ2]
f+
η (ε)

π(∆E − ε)

))
=

∑
η

~2Γησi,σj
2

(
f+
η (∆E)− i

π
P
∫

dε
f+
η (ε)

∆E − ε

)
,

(3.28)
where P

∫
denotes Cauchy’s principal value integration. The result of this integral is

P
∫

dε
f+
η (ε)

∆E − ε = <Ψ(0)(1
2 + iβ

2π (∆E − µη)), (3.29)

the real part of the Digamma function, see Ref. [39]. We will denote this from now on
as pη(x) = <ψ(0)(1

2 + i
2π (x−µη)). The density matrix is block diagonal with respect to

the number of particles, N , on the central system, as illustrated in Fig. 3.1. Therefore,
we introduce the projector

PNE :=
∑
iσ

|NEiσ〉〈σiEN |, (3.30)

which projects ρ̂� on the subspace with N particles and energy E. The sum over the
indices i and σ distinguishes between degenerate states. In the following we use the
notation

ρNEE′ = PNE ρ̂�PNE′ . (3.31)
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3.1. Transport within the density matrix formalism

Collecting the results obtained in the previous paragraph enables us to solve the time
integral in Eq. (3.24) which then becomes

ρ̇NEE′ =− i
~

(E − E ′)ρNEE′

−
∑
ηF

∑
iσ
jσ′

Γησi,σj
2 PNE

d̂†iσ
[
− i
π

pη(F − Ĥmol) + f−η (F − Ĥmol)
]
d̂jσ′

+ d̂jσ′
[
− i
π

pη(Ĥmol − F ) + f+
η (Ĥmol − F )

]
d̂†iσ

ρNFE′
−
∑
ηF

∑
iσ
jσ′

Γησi,σj
2 ρNEF

d̂†iσ
[
+ i
π

pη(F − Ĥmol) + f−η (F − Ĥmol)
]
d̂jσ′ (3.32)

+ d̂jσ′
[ i
π

pη(Ĥmol − F ) + f+
η (Ĥmol − F )

]
d̂†iσ

PNE′
+
∑
ηFF ′

∑
iσ
jσ′

Γησi,σj
2 PNE

d̂†iσρN−1
FF ′ d̂jσ′

[ i
π

pη(E ′ − F ′) + f+
η (E ′ − F ′)

]
+ h.c.

+ d̂jσ′ρ
N+1
FF ′ d̂

†
iσ

[ i
π

pη(F ′ − E ′) + f−η (F ′ − E ′)
]

+ h.c.

PNE′ .
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3.2. Scanning Tunnelling Microscopy

3.1.3. Interference blocking due to degenerate states

Figure 3.2.: Conceptional depiction of
the blocking states. The coupled state (c)
is connected to the N0 state via the tip
and the substrate. The decoupled state
(d) though is only coupled via the sub-
strate. The y-axis shows the grandcan-
nonical energy of the states.

In this section we will take a short detour from
the development of the transport formalism to in-
troduce the concept of a blocking state. The first
prerequisite for a blocking state to occur is a N
particle non-degenerate state and a two degenerate
N + 1 particle state. The condition of degeneracy
can be softened a bit in the sense that the energy
splitting between the two states is smaller than the
tunnelling rates. The second condition regards the
transition amplitudes between the system and the
leads. The ratio of these transition amplitudes at
the source (substrate) and the drain (tip) must not
be equal

γ1sub

γ2sub
6= γ1tip

γ2tip
, (3.33)

where the subscript 1 denotes a transition N0 →
N0 + 1 and 2 vice versa. Due to Eq. (3.33) there
exists a linear combination of the N0 + 1 particle

states which is coupled to one of the leads but not the other. [40] In STMs the condi-
tion (3.33) is met since the tip and substrate have quite different transition amplitudes
as we will see in the following chapters. It can be shown that the blocking state in an
STM set-up is decoupled from the tip [41]. A state which is decoupled from the tip
acts as a blocking state for current flowing from the substrate to the tip, since it can be
populated via a substrate → molecule transition but not depopulated via the tip. This
effect can be for example seen as negative differential conductance in single electron
transistors. [40]

3.2. Scanning Tunnelling Microscopy

The scanning tunnelling microscope (STM) was invented at the IBM laboratories in
Zürich by Gerd Binnig and Heinrich Rohrer in 1982 [11]. They were awarded a Nobel
prize for the development in 1986. The fundamental physical mechanism behind the
STM is quantum tunnelling. The system one wants to investigate is deposited on a
substrate. The system can be for example a surface or an individual molecule. A
metallic tip is positioned over the system with a distance of a few Å. If a bias is applied
between the tip and the substrate tunnelling processes can occur between the substrate
and the system and also between the system and the tip, thus, leading to a tunnel
current. The tunnelling probability is dependent on the overlap of the corresponding
wave functions and thus it is highly dependent on the distance of the tip and the
substrate. In the original paper [11] Binnig and Rohrer used the so called “constant-
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3.2. Scanning Tunnelling Microscopy

Figure 3.3.: Schematic picture of an STM single molecule junction. We see the insulating layer above
the copper substrate which the molecules couples to with the rate Γsub. The tip couples with the rate
Γtip. Taken from Ref. [23].

current” mode to obtain a surface topography of an Au (110) surface. In this method
one moves the tip in all three spatial dimensions over the surface while keeping the
current voltage at a constant value. Since the current is dependent on the distance
of substrate and tip one can measure a surface topography by keeping the current
constant and measuring the necessary movements of the tip in the z-dimension. The
STM is dependent on a nonzero conductance in its tunnelling junction. Therefore, for
almost 20 years STM studies of single molecules where limited to deposit the molecules
directly on metals and semiconductors. In this case tough the electronic structure
of the molecule is disturbed due to electronic coupling between the molecule and the
substrate [42]. This problem can be solved by depositing a molecule on a thin insulating
layer. Repp et al. [43] were able to obtain electronic images of unperturbed Pentacene
orbitals by evaporating two mono-layers of NaCl onto Cu(111) and then adsorbing
individual molecules onto the substrate. We will show in the following section how
to describe transport across an STM junction, which can be seen in Fig. 3.3, on an
insulating layer within the formalism presented in the previous section.
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3.2. Scanning Tunnelling Microscopy

3.2.1. The Hamiltonian of an STM junction

The complete Hamiltonian to describe transport in an STM setup is

Ĥ = Ĥmol + Ĥic + Ĥsub + Ĥtip + Ĥtun, (3.34)

with Ĥmol describing the central system as introduced in Eq. (3.4), Ĥsub and Ĥtip
describing the substrate and tip. They are corresponding to the leads in an STM setup
and are described by Eq. (2.75). Ĥtun describes the tunnelling between the molecule and
the tip/substrate. The additional term with respect to Eq. (3.4), Ĥic, describes image
charge effects which are renormalizing the molecular Hamiltonian Ĥmol. These effects
are quite generic and appear also in single molecule junctions with different geometries
, see e.g. the work by Kaasbjerg et al. [44]. We incorporate these effects with the
effective Hamiltonian

Ĥic = −δic
(
N̂ −N0

)2
, (3.35)

where N̂ is the particle number operator, N0 = 3 the number of electrons on the
neutral molecule and δic ≈ 0.32 eV is the strength of the renormalization. This value
can be obtained by modelling the tip, molecule and substrate as capacitors and then
comparing the average values of the electrostatic energies with the addition energy of
the isolated molecule. An STM with an insulating layer between the molecule and the
substrate is highly asymmetrical regarding the effect of the bias across the junction
on the chemical potential, µη of the tip and substrate. The leads are kept at a quasi
equilibrium chemical potential

µη(t) = µ0
η + cη|e|Vbias(t), (3.36)

where cη is the parameter describing how much of the bias voltage Vbias drops at the
lead η. The dependence of the Fermi and principal functions on the chemical potential
sets the regimes where transport can happen. We will assume in this thesis that the
equilibrium chemical potential is the same for the tip and the substrate with value
µ0 = −4 eV. To obtain the values for cη and to also justify the strength of the image
charge effect we will consider some electrostatic interactions between the molecule and
its environment in the next section.

3.2.2. Electrostatic interactions

The following considerations concerning the electrostatic interactions in the junction
can also be found in Ref. [45]. Depending on the geometry of the setup of a single
molecule junction a substantial part of the applied bias voltage can drop across the
molecule with

|csub|+ |ctip|+ |cmol| = 1. (3.37)
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3.2. Scanning Tunnelling Microscopy

We model the tip and substrate as parallel plate capacitors

Ctip = ε0
A

h
,

Csub = ε0εr
A

d
,

(3.38)

where ε0 is the vacuum permittivity, εr = 5.9 is the permittivity of NaCl, h is the
tip-molecule distance, d the thickness of the NaCl layer and A = 144Å is an estimate
of the CuPc surface. The addition (charging) energy of the neutral molecule is

U0 = EN0+1 − 2EN0 + EN0−1, (3.39)

from which we deduce a capacitance of the molecule as

Cmol = e2

U0
, (3.40)

where the e2 in the nominator accounts for the fact that U0 is an energy in the units of
eV. If we connect these three capacitors in series we obtain an estimate of the potential
drop at each one

csub/tip/mol = Ctot

Csup/tip/mol
, (3.41)

with C−1
tot = C−1

sub + C−1
tip + C−1

mol being the total capacitance of the junction. Deriving
from these considerations we can calculate that for h = 5Å, d = 8Å and U0 = 2.7 eV
about a quarter of the bias is dropping across the molecule. For the relative drops at
the substrate and tip we will use

csub = 0.16,
ctip = −0.59.

(3.42)

The strength of the image charge renormalization can be obtained with the same model
if one assumes the substrate and tip to be grounded and then brings an elementary
charge into the junction. For a more careful description we refer the interested reader
to Ref. [45].

3.2.3. The single particle rate matrices

In this section we explain how we form the single particle rate matrices Γησi,σj, introduced
in Eq. (3.27), for the tip and the substrate. The subscripts σ, σ′ denote spin indices
of the molecule and i, j are the orbitals. We allow the tip and substrate to be spin
polarized. We express this by a measure P σ

η of the strength of the polarization with
0 ≤ P σ

η ≤ 1, where P σ
η = 0 means that the lead η is completely unpolarized, whereas

P σ
η = 1 expresses complete polarization. The direction of the polarization is expressed
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3.2. Scanning Tunnelling Microscopy

with the azimuth ϕ and the inclination θ. We choose the z-axis to be the one of the
CuPc molecule, as can be seen by the coordinate system in Fig. 3.3. We can thus write
for the spin polarization vector

Pσ
η = P σ

η

sin(θη) cos(ϕη)
sin(θη) sin(ϕη)

cos(θη)

 . (3.43)

Furthermore, we introduce the vector of Pauli matrices

σ =

σxσy
σz

 , (3.44)

which are defined by

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (3.45)

The rate matrices consist of two parts, the spin part and the angular momentum
part,i.e.

Γησi,σj = Γησσ′ ⊗ Γηij, (3.46)

where the spin part is the same for the substrate and tip and is only depending on the
polarization of the substrate (tip)

Γησσ′ = ~
2
(
12 + Pσ

η · σ
)
σσ′

(3.47)

In the angular momentum part Γηij exist some differences which we explore now. We
will start with the substrate

Γsub
ij = 2π

~
∑

k
tsub∗
ik tsub

jk δ (εηkσ −∆E) . (3.48)

We introduce the rotation RΦ of a symmetry angle Φ around the main symmetry axis.
The frontier orbitals will under this transformation acquire a phase which is

RΦ|i〉 = e−iliΦ, (3.49)

where li is the angular momentum of the orbital |i〉. With this we can rewrite Eq. (3.48)
as

Γsub
ij = 2π

~
∑

k
A 〈i|R†ΦRΦ|k〉 〈k|R†ΦRΦ|j〉 δ(εηkσ −∆E), (3.50)

where A = εiσεjσ. If we relabel k′ = RΦ|k〉 this becomes

Γsub
ij = 2π

~
∑
k′
A eiΦ(li−lj) 〈i|k′〉 〈k′|j〉 δ(εηkσ −∆E) = eiΦ(li−lj) Γsub

ij . (3.51)
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3.3. The THz-STM

Since the frontier orbitals all have different angular momentum values we can conclude
from Eq. (3.51) that the orbital part of the substrate tunnelling rate matrix will be
diagonal, i.e.

Γsub
ij = δijΓsub

ij . (3.52)

The tip however is completely localized. Therefore, we model the angular momentum
part as the overlap of the wave functions of the frontier orbitals at the tip position

Γtip
ij (rtip) = ψ∗i (rtip)ψj(rtip). (3.53)

With all this we write for the complete tunnelling rate matrices

Γsub
iσ,jσ′ = ~

2 Γ̃sub
0

(
12 + Pσ

sub · σ
)
σσ′
⊗ 14,

Γtip
iσ,jσ′(rtip) = ~

2 Γ̃tip
0

(
12 + Pσ

tip · σ
)
σσ′
⊗ ψ∗i (rtip)ψj(rtip),

(3.54)

with Γ̃sub
0 and Γ̃tip

0 being fitting parameters in the theory.

3.3. The THz-STM

To advance nanotechnology it is crucial to understand excitations happening at the
nanoscale. In semiconductors a very successful tool to do this is terahertz spectroscopy.
A system is usually excited via a first (pump) THz laser pulse. After a time delay, tdel,
a second (probe) pulse is applied to gather information about the excitations caused by
the first pulse, see refs. [46, 47]. There has been a lot of effort to integrate femtosecond
lasers into STM setups with the goal of investigating optically excited vibrational and
electronic states while still having the spatial resolution of an STM [48]. Cocker et
al. managed in 2013 to couple terahertz pulses to an STM [19]. They excited InAs
nanodots which were grown on GaAs by an optical pump pulse. For t ≈ 1 − 2 ps
after the photoexcitations the nanodots are negatively charged. For tdel ≈ 0.5 − 1 ps
they observed an enhancement in the signal. In 2016 the THz-STM was used for the
first time to observe the mechanical oscillations of a Pentacene molecule directly in
the time domain [20]. A pump-probe scheme where both pulses where THz pulses
tuned in resonance with the Pentacene HOMO was used. The measured current was
periodic with respect to the time delay between the two pulses and Fourier analysis
revealed a distinct peak around a frequency of 0.5 THz. Their interpretation is that
due to tunnelling of an electron from the molecule to the tip the molecule experiences
an impulse, based on the abrupt change to Coulomb and van der Waals forces, which
drives a dominantly vertical vibration. This changes the relative tip-molecule distance
and thus manifests in different currents depending on tdel. Principally, this method
should also open a door to probe electrical properties directly in the time domain.
We will explore this method in a theoretical way in this thesis with the formalism
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3.3. The THz-STM

presented in the previous section. The bias voltage as presented in Eq. (3.36)

µη(t) = µ0
η + cη|e|Vbias(t), (3.55)

will be generated by a laser pulse impinging into the STM junction. We still assume the
chemical potential to be in quasi equilibrium because the change in the large reservoirs
is of adiabatic nature with respect to their decay times. Equipped with a model for the
CuPc molecule and a transport formalism for the THz-STM we will now start to focus
on how to treat this system with numerical and analytical methods. The focus will be
on spin-orbit induced dynamics in CuPc and how to make them accessible in electrical
measurements.
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4. The Two Orbital Model

We will now start to explore the dynamics of the CuPc-THz-STM junction. We will
at first take a step back though, and use a simplified model to describe the molecule,
to get a feeling which dynamics to expect from the molecule. In this model we will
just take the two degenerate LUMOs of CuPc into account and completely neglect the
spin.

4.1. Theoretical description of the model

We model the molecular Hamiltonian as

Ĥmol =
∑
`z=±1

(
ε+ `z

~ω
2

)
n̂`z + U

2 N̂
(
N̂ − 1

)
, (4.1)

with ε = 0.2eV the single particle energy of the LUMO orbitals. We introduce an arti-
ficial splitting between them via `z ~ω2 = `z50µeV, which is dependent on their angular
momentum. The Coulomb interaction is included via the parameter U = 1eV. The
particle number operator n̂`z counts the number of particles in the orbital with angular
momentum `z and N̂ counts the total number of electrons on the molecule, i.e.

N̂ =
∑
`z

n̂`z . (4.2)

The tunneling Hamiltonian will be the one as described in Eq. (2.77)

Ĥtun =
∑
ηi
σk

tηikĉ
†
ηkσd̂iσ + h.c. (4.3)

and the leads are described by

Ĥη =
∑
ηk

(
ε0
ηk + cηe∆Vbias(t)

)
n̂ηk, (4.4)

where the bias change, ∆Vbias, is generated by a laser pulse. We assume the energy
change to be adiabatic with respect to the decay times in the leads. This yields a



4.1. Theoretical description of the model

Figure 4.1.: Schematic view of the tunnelling events allowed from/to each lead. The tunnelling from
and to the substrate is basis independent coupled to all states whereas the tunnelling from and to the
tip is decoupled from some states.

quasi-equilibrium chemical potential

µη = µ0 + cηeVbias(t), (4.5)

with µ0 being the equilibrium chemical potential which is the same for each lead and
η denotes the tip or substrate. We choose the equilibrium chemical potential to be
µ0 = ε+U

2 = 0.7eV and we will work in the Coulomb blockade regime, i.e. kBT� U . For
this simplified model we set csub = 0.15 and ctip = −0.85 to account for the asymmetry
in the bias drop across the junction and neglect the bias drop at the molecule. The
single particle rates will be described by the angular momentum part introduced in
eqs. (3.52) and (3.53) and read

Γtip
`z`′z

(rtip) = Γ̃0
tipψ

∗
`z(rtip)ψ`′z(rtip),

Γsub
`z`′z

= Γ̃0
subδ`z`′z ,

(4.6)

with Γ̃0
tip = Γ̃0

sub = 10−3 eV. Since Γsub
`z`′z

is diagonal in any basis the substrate is coupled
to all states in the molecule. The tip, however, is decoupled from certain states and thus
the system can end up in a blocking state as introduced in Sec. 3.1.3. The Hamiltonian
in Eq. (4.1) can be easily diagonalized to obtain the four eigenstates and corresponding
eigenenergies

|0〉 → E0 = 0, (4.7)

|1`−1〉 → E`−1 = ε− ~ω
2 , (4.8)

|1`+1〉 → E`+1 = ε+ ~ω
2 , (4.9)

|2〉 → E2 = 2ε+ U. (4.10)
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4.2. Many-body tunnelling rates

As a next step we will now focus on the many-body tunneling rate matrices of the
system. The tunnelling rates between many-body states represent a natural tool for
the description of transport phenomena in interacting nanojunctions. They play a
fundamental role in the Master equation (3.32) and, as we will see in the next section,
they are calculated starting from the single particle rate matrices introduced above.

4.2. Many-body tunnelling rates

We define the many-body tunnelling rate matrices as

ΓηN→N+1 :=
∑
``′
〈N + 1|d̂†`′|N〉 〈N |d̂`|N + 1〉Γη`′`. (4.11)

In this section we will mainly focus on the description of the tip tunnelling. Since this
process is responsible for coherences in our set-up and thus determines the dynamics
we want to investigate. To simplify the notation we will drop the z subscript from the
angular momentum quantum number ` because we always refer to the z component
in this chapter. Furthermore, we will not explicitly write the position dependence of
the tunneling rate matrices for the tip if it is not needed to understand the presented
equations. For our simplified model the only transitions surviving in the Master equa-
tion (3.32) are the 1 → 0 and 2 → 1 transitions. We define the many-body tunneling
matrix elements for the 1→ 0 transition(

Γtip
01

)
`′`

:= 〈1`′|d̂†`′ |0〉 〈0|d̂`|1`〉Γ
tip
`′` = Γtip

`′` (4.12)

and for the 2→ 1 transition(
Γtip

12

)
`′`

:= 〈1`′|d̂ ¯̀′ |2〉 〈2|d̂†¯̀|1`〉Γtip
¯̀¯̀′ , (4.13)

with the notation ¯̀= −`. In the following we will use the subscripts + and − to refer
to the LUMO with angular momentum ` = +1 and ` = −1 respectively. Analysing the
single particle tunnelling matrix yields for the diagonal elements

Γtip
++(rtip) = Γ̃0

tipψ
∗
+(rtip)ψ+(rtip)

=
Γ̃0

tip

2
(
ψx(rtip)− iψy(rtip)

)(
ψx(rtip) + iψy(rtip)

)
= Γ̃0

tipψ−(rtip)ψ∗−(rtip) = Γtip
−−(rtip),

(4.14)

where we have used the decomposition of the imaginary representation of the LUMOs
into the real orbitals as introduced in Sec. 2.2.1 and depicted in Fig. 4.2.
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4.2. Many-body tunnelling rates

Figure 4.2.: Real representation of the LUMOs.

For the off-diagonal elements we find we find

Γtip
+−(rtip) = Γ̃0

tipψ
∗
+(rtip)ψ−(rtip)

=
Γ̃0

tip

2
(
ψx(rtip)− iψy(rtip)

)(
ψx(rtip)− iψy(rtip)

)
= Γ̃0

tip

(
ψ∗−(rtip)ψ+(rtip)

)∗
=
(
Γtip
−+(rtip)

)∗
.

(4.15)

Γtip
``′ is therefore a hermitian matrix with equal elements on the diagonal. We turn our

attention now to the matrix elements appearing in Eq. (4.13). We find

〈1± |d̂∓|2〉 〈2|d̂†∓|1±〉 =
∣∣∣〈2|d̂†∓|1±〉∣∣∣2 = 1,

〈1 + |d̂−|2〉︸ ︷︷ ︸
−1

〈2|d̂†+|1−〉︸ ︷︷ ︸
1

=
(
〈1− |d̂+|2〉 〈2|d̂†−|1+〉

)∗
= −1. (4.16)

This can be brought in the more compact form

〈1`′|d̂¯̀′ |2〉 〈2|d̂†¯̀|1`〉 = sgn(``′) =

1, if ` = `′

−1, if ` 6= `′
(4.17)

Putting together eqs. (4.13) - (4.17) we obtain(
Γtip

12

)
++

= Γtip
++(

Γtip
12

)
−−

= Γtip
−−(

Γtip
12

)
+−

= −Γtip
+−(

Γtip
12

)
−+

= −Γtip
−+.

(4.18)

The description of the substrate tunnelling rate matrices is trivial

Γsub
01 = Γsub

21 = Γ̃0
sub12 =: Γsub. (4.19)
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4.3. Dynamics of the system

We are now equipped with the necessary tools to explore the dynamics of our simplified
model. This will be done in the next sections.

4.3. Dynamics of the system

To describe the dynamics of this simplified model we express the Master eq. (3.32)
in the basis of the molecular Hamiltonian, defined in Eq. (4.7). We use the matrix
structure of the many-body tunnelling rates described in the previous section. We
analyse the blocks of our Master equation (3.32) as visualized in Fig. 3.1. Furthermore
we introduce

Ĥ1 = ε12 + ~ω
2 σz, (4.20)

which is the Hamiltonian describing the one particle sub block. The zero particle sub
block contains one element and is described by

ρ̇0 =− Tr
[
Γsubf+

sub(Ĥ1 − E0) + Γtip
01 f

+
tip(Ĥ1 − E0)

]
ρ0

+ Tr
[
Γsubf−sub(Ĥ1 − E0)ρ1

]
+ 1

2 Tr
[
f−tip(Ĥ1 − E0)

{
Γtip

01 , ρ
1
}]

+ i
2π Tr

[
ptip(Ĥ1 − E0)

[
Γtip

01 , ρ
1
]]
,

(4.21)

with {•, •} being the anticommutator and [•, •] the commutator. The two particle sub
block also has only one element and the equation has a similar form

ρ̇2 =− Tr
[
Γsubf−sub(E2 − Ĥ1) + Γtip

12 f
−
tip(E2 − Ĥ1)

]
ρ2

+ Tr
[
Γsubf+

sub(E2 − Ĥ1)ρ1
]

+ 1
2 Tr

[
f+

tip(E2 − Ĥ1)
{

Γtip
12 , ρ

1
}]

+ i
2π Tr

[
ptip(E2 − Ĥ1)

[
Γtip

12 , ρ
1
]]
.

(4.22)

The one particle sub block is a 2× 2 matrix and has the following form

ρ̇1 =− i
~
[
Ĥ1, ρ

1
]

−
∑
η

{
Γη01
2

[
f−η (Ĥ1 − E0)− i

π
pη(Ĥ1 − E0)

]
ρ1 + h.c.

}

−
∑
η

{
Γη12
2

[
f+
η (E2 − Ĥ1)− i

π
pη(E2 − Ĥ1)

]
ρ1 + h.c.

}
(4.23)

+
∑
η

1
2

{{
f+
η (Ĥ1 − E0),Γη01

}
+ i
π

[
pη(Ĥ1 − E0),Γη01

] }
ρ0

+
∑
η

1
2

{{
f−η (E2 − Ĥ1),Γη12

}
+ i
π

[
pη(E2 − Ĥ1),Γη12

] }
ρ2.
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4.3. Dynamics of the system

Figure 4.3.: Pseudo spin dynamics of the two orbitals model. (a) The populations of the different
states can be seen. (b) The bias change in the substrate and tip due to the laser pulse are shown. The
red line shows the threshold for the 1 → 0 tip transition and the green line for the 1 → 2 substrate
transition. (c) Eigenvalues of the density matrix. (d) Evolution of the pseudospin due to the principal
parts is depicted.

Since, the zero and two particle sub blocks of ρ only describe the population of the
system no internal dynamics will take place if the system is populated with zero or two
particles. The one particle block has the dynamics of a two level system with (pseudo)
spin 1/2. It contains the populations of the states |1+〉 and |1−〉 and also coherences
between these states which can drive dynamics.
A numerical simulation of this system, with the tip located at x = 5Å and y = 0Å,
can be seen in Fig. 4.3. In the beginning the system is in thermal equilibrium, i.e.
one particle is on the molecule with an equal probability to be in the ` = + or ` = −
state. This can be seen in the depiction of the populations in Fig. 4.3(a) and also
the eigenvalues of the density matrix Fig. 4.3(c). After roughly 60 ps the bias pulse
is applied and opens a 1 → 0 tip transition, see Fig. 4.3(b). Consequently we can
observe in Fig. 4.3(a) that the system takes an excursion into the zero particle state
but decays back to the one particle state before the transition is closed. The state in
which the system is trapped in is the one particle blocking state of the type introduced
in Sec. 3.1.3. Fig. 4.3(c) visualizes that the blocking state is a pure state because one
of the eigenvalues of the density matrix is one. Anticipating the next section we just
report here that we see pseudospin dynamics in Fig. 4.3(d). These dynamics enable the
system to leave the blocking state after no more bias is applied.
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4.4. Pseudo spin formulation of the two orbital model

4.4. Pseudo spin formulation of the two orbital model

We now want to reformulate our equations of motion (4.21)- (4.23) in terms of a
pseudospin. Therefore, we firstly introduce the pseudospin operators

τ̂x := 1
2σx, τ̂y := 1

2σy, and τ̂z := 1
2σz, (4.24)

with σi being the Pauli matrices. We can decompose the one particle sub block of the
density matrix

ρ1 = P1

2 12 + τxσx + τyσy + τzσz = P1

2 12 + τ · σ, (4.25)

where we have introduced the populations

P1 = Tr ρ1 (4.26)

and the expectation values of the pseudospin operators

τi = 1
2 Tr

{
ρ1σi

}
= 〈τ̂i〉 . (4.27)

To get a concise formulation we will express all matrices as a decomposition in terms
of the Pauli matrices. We start with the many-body tunnelling rate matrices of the
tip

Γtip
01 = Γ̃0

tip

(
|ψ+|2 ψ∗+ψ−
ψ∗−ψ+ |ψ−|2

)
=

Γ̃0
tip

2

(
ψ2
x + ψ2

y ψ2
x − ψ2

y − 2iψxψy
ψ2
x − ψ2

y + 2iψxψy ψ2
x + ψ2

y

)

=
Γ̃0

tip

2
[(
ψ2
x + ψ2

y

)
1 +

(
ψ2
x − ψ2

y

)
σx + 2ψxψyσy

]
(4.28)

and

Γtip
12 = Γ̃0

tip

(
|ψ+|2 −ψ∗+ψ−
−ψ∗−ψ+ |ψ−|2

)
=

Γ̃0
tip

2
[(
ψ2
x + ψ2

y

)
1−

(
ψ2
x − ψ2

y

)
σx − 2ψxψyσy

]
,

(4.29)

where we have introduced the notation ψx/z = 〈r̂|Lxz/yz〉. We define the “average“ tip
tunnelling rate

Γ̄tip :=
Γ̃0

tip

2
(
ψ2
x + ψ2

y

)
(4.30)

and the tip pseudospin polarization vector

Pτ
tip :=


ψ2
x−ψ2

y

ψ2
x+ψ2

y

2ψxψy
ψ2
x+ψ2

y

0

 . (4.31)
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4.4. Pseudo spin formulation of the two orbital model

This allows us to bring the tip tunnelling rates in eqs. (4.28) and (4.29) in the form

Γtip
01 = Γ̄tip

(
12 + Pτ

tip · σ
)

(4.32a)

Γtip
12 = Γ̄tip

(
12 −Pτ

tip · σ
)
, (4.32b)

with σ being the vector of Pauli matrices as introduced in Eq. (3.44). To emphasise
clearly why we call Pτ

tip a polarization vector we introduce the angle

Φtip ≡ arctan
(

2ψxψy
ψ2
y − ψ2

x

)
− π

2
[
sign

(
ψ2
x − ψ2

y

)
− 1

]
, (4.33)

to rewrite

Pτ
tip =

cos(Φtip)
sin(Φtip)

0

 . (4.34)

The angle Φtip can be seen as the angle of polarization where the norm
∣∣∣Pτ

tip

∣∣∣ is the
sharpness of the tip. This can be seen by assuming

∣∣∣Pτ
tip

∣∣∣ = 0. The tip would then be
completely delocalized and thus the tip tunnelling rate matrices would adopt a diagonal
form analogous to the substrate. To get a compact form of our analytical expressions
in the next chapter we also introduce the “average“ tunnelling matrix for the substrate
which is

Γ̄sub = Γ̃0
sub. (4.35)

The vector perpendicular to the molecule is nmol = (0, 0, 1) since it is planar and we
rewrite the one particle Hamiltonian as

Ĥ1 = ε12 + ~ω
2 nmol · σ (4.36)

Furthermore, we can decompose every analytical function as

f(Ĥ1) = 1f̄(Ĥ1) + δf(Ĥ1)
2 nmol · σ, (4.37)

with
f̄(Ĥ1) = 1

2
∑
`

f(Ĥ1,``),

δf(Ĥ1) =
∑
`

`f(Ĥ1,``).
(4.38)

We find for the Fermi functions and principal parts

δfη(Ĥ1) ∝ ~ω � Γ̄η,
δpη(Ĥ1) ∝ ~ω � Γ̄η,

(4.39)
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4.5. Analysis of the three different bias regimes

and thus will neglect this part and approximate them by

fη ≈ f̄η(Ĥ1),
pη(Ĥ1) ≈ p̄η(Ĥ1).

(4.40)

The explicit reformulation of eqs. (4.21) - (4.23) in terms of populations and pseudospin
is shown in App. A.2. With this formulation of the dynamics we will give an analytic
evaluation of the dynamics in three different bias regime in the next section.

4.5. Analysis of the three different bias regimes

In this section, we will give an analytic description of the dynamics and we will compare
this to our numerical results from Sec. 4.3. For the feasibility of deriving analytic
solutions we need to work in the specific limit

∆E � ~Γ̄η � kBT � U, (4.41)

and set the equilibrium chemical potential to µ0 = ε + U/2. We will analyse the
pseudospin dynamics of the system in three different dynamical regimes, as shown in
the numerical calculations displayed in Fig. 4.4. The first regime we will investigate is
the free evolution of the system which is denoted as the grey box in Fig. 4.4, i.e. the
bias is

Vbias �
U

2|ectip|
, (4.42)

where the � is taken with respect to the scale set by the temperature. As can be
seen best for Vbias = 0, but valid for the whole regime, the Fermi functions have the

Figure 4.4.: The numerical results of (a) the pseudospin evolution and (b) the bias. The subdivision
into the three regimes is depicted by color boxes. The grey box denotes free evolution, the green the
tilting of the rotation axis and the red one the preparation phase of the system.
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4.5. Analysis of the three different bias regimes

following values
f+
η (Ĥ1 − E0) = f−η (E2 − Ĥ1) = 1,
f−η (Ĥ1 − E0) = f+

η (E2 − Ĥ1) = 0.
(4.43)

Since, we set our equilibrium chemical potential to µ0 = ε+ U/2 it holds that

pη(E2 − E1) = pη(E1 − E0). (4.44)

With this we are able, in this bias regime, to rewrite eqs. (4.21)- (4.23), analogous
to Ref. [49], as equations for the populations P0, P1, P2 and the pseudospin τ . They
adopt the following form

Ṗ0 = −2
∑
η

Γ̄ηP0 (4.45)

Ṗ1 = 2
∑
η

Γ̄η (P0 + P2) (4.46)

Ṗ2 = −2
∑
η

Γ̄ηP2 (4.47)

τ̇ = ω (nmol × τ ) + Γ̄tip (P0 − P2) Pη
τ . (4.48)

The equations for the populations have to be complemented by the condition

P0 + P1 + P2 = 1, (4.49)

which is the fundamental condition that Tr ρ = 1. With this one can easily see that
the populations will be

P0 = 0, P1 = 1, and P2 = 0, (4.50)

on a timescale which is set by
(
Γ̄tip

)−1
. The reason why this holds is that the popu-

lations of the zero and two particle sub block are only decreasing in this regime. The
only term which is then remaining in Eq. (4.48) is the precession of τ around nmol with
the frequency ω.

The second regime we investigate is reached when the bias is such that the 1→ 0 tip
transition is open but no 1 → 2 substrate transition is allowed. It is represented by
the red box in Fig. 4.4. This means that the bias needs to fulfill

U

2|ectip|
� Vbias �

U

2|ecsub|
. (4.51)

The only Fermi functions which are nonzero in this regime are

f−tip(Ĥ1 − E0) = f+
sub(Ĥ1 − E0) = f−η (E2 − Ĥ1) = +1. (4.52)

Furthermore, we define
p̄tip(H01) := p̄tip(Ĥ1 − E0),
p̄tip(H21) := p̄tip(E2 − Ĥ1).

(4.53)
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4.5. Analysis of the three different bias regimes

With this we find for eqs. (4.21) - (4.23) in this regime, once again in analogy to
Ref. [49],

Ṗ0 = −2ΓsubP0 + Γ̄tipP1 + 2Γ̄tipPτ
tip · τ , (4.54)

Ṗ1 = −Γ̄tipP1 − 2Γ̄tipPτ
tip · τ + 2ΓsubP0 + 2

∑
η

Γ̄ηP2, (4.55)

Ṗ2 = −
∑
η

2Γ̄ηP2, (4.56)

τ̇ =
[
ωnmol −

Γ̄tip

π

[
p̄tip(H01)− p̄tip(H21)

]
Pτ

tip

]
× τ (4.57)

− Γ̄tipτ − Γ̄tip

2 P1Pτ
tip − Γ̄tipP2Pτ

tip.

The populations fulfill
P0 = 0, P1 = 1 and P2 = 0. (4.58)

Even though the transition 1 → 0 via the tip is in principle still open the system will
remain in the one particle state. This is the interference blocking state we introduced
in Sec. 3.1.3. The second line of Eq. (4.57) is solved by

τ =
−Pτ

tip

2 . (4.59)

However, if we are over threshold the first line can be neglected. The first reason is
that the timescale on which tunnelling events are happening is much shorter than the
timescale set by the frequency ω, as can be seen in Fig. 4.3(d). The second reason is
that difference of the principal parts appearing in Eq. (4.57) is highly localized around
the threshold, which is Vbias = U/2|ectip|. This is shown in Fig. 4.5. However, this term
has contributions on the same timescale as the tunneling events. Therefore, we define
a third bias regime around

Vbias ≈
U

2|ectip|
, (4.60)

with the extra condition that
τ 6= 0. (4.61)

This regime is shown in the green box in Fig. 4.4. The principal parts tilts the
axis of rotation in this regime so that precession does not only take place around the
axis perpendicular to the molecule. Since the correction is rather small the complete
blocking state is a good assumption after the preparation.
We have shown in this chapter that by subdividing the bias in three different regimes
we are able to completely describe our numerical results shown in the last section
with analytical solutions. An experimental access to the dynamics described in this
section may be obtained via a pump-probe schemes. The effects of the dynamics on
the potential measurements in this scheme will be shown in the next section.

46



4.6. Pump-probe readout of the dynamics

Figure 4.5.: The difference between the principal parts as appearing in Eq. (4.57). We report on the
x-axis the bias in units of U/ectip. One can see that the term is highly localized around 0.5 which is
exactly resonance for the 1→ 0 transition.

4.6. Pump-probe readout of the dynamics

The dynamics of our model may be explored experimentally via a pump-probe scheme.
To this extent the system is prepared via a pump pulse and then after some time tdel a
second pulse is applied to read out the state of the system.However, the pseudospin dy-
namics are not measurable directly in a THz-STM set-up. We will in this section make
a connection between the internal pseudospin dynamics and the transferred charge per
pump probe cycle, which is a measurable quantity. As we have seen in the previous
section the free evolution of the pseudospin is described by a precession around the
axis perpendicular the molecule

τ̇ = ω (nmol × τ ) . (4.62)

We will assume a perfect preparation after the pump pulse, i.e.

τ (0) = −
Pτ

tip

2 . (4.63)

Eqs. (4.62) and (4.63) read in components

τ̇x = −ωτy τx(0) = −1
2 cos(Φtip) (4.64)

τ̇y = ωτx τy(0) = −1
2 sin(Φtip) (4.65)

τ̇z = 0 τz(0) = 0. (4.66)
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4.6. Pump-probe readout of the dynamics

These equations are solved by

τx(t) = −1
2 cos(ωt+ Φtip) (4.67)

τy(t) = −1
2 sin(ωt+ Φtip) (4.68)

τz(t) = 0 (4.69)

Already at this stage it is possible to make some predictions about the charge trans-
ferred by the probe pulse. If the time delay between the two pulses is tdel = 2π/ω the
system is in the one particle state specified by

τx(2π
ω

) = −1
2 cos(2π + Φtip) (4.70)

τy(2π
ω

) = −1
2 sin(2π + Φtip) (4.71)

τz(2π
ω

) = 0. (4.72)

This, however, is the initial state as given in Eq. (4.63) and visualized in Fig. 4.6(d)
which is the interference blocking state. Thus the probe pulse will not transmit any
charge, as shown in Fig. 4.6(c). The other extreme value of the charge transfer is
reached when the time delay is tdel = π/ω. The system is then in the state

τx(πω ) = −1
2 cos(π + Φtip) (4.73)

τy(πω ) = −1
2 sin(π + Φtip) (4.74)

τz(πω ) = 0. (4.75)

The system is then the “farthest“ away from the blocking state so the charge trans-
ferred by the probe pulse will be maximal, see Fig. 4.7(d) and Fig. 4.7(c).
For a more general description of the charge transfer we need to calculate the expec-
tation value of the 1→ 0 transition

〈Γtip
01 〉(t) =

〈
Γ̄tip

(
1 eiΦtip

e−iΦtip 1

)〉
(t) ≡ Tr{ρ1(t)Γtip

01 }. (4.76)

We rewrite the one particle block of the density matrix as

ρ1(t) = 1
21− 1

2 cos(ωt+ Φtip)σx −
1
2 sin(ωt+ Φtip)σy. (4.77)

As a first step we will calculate the transmitted charge of the pump pulse, i.e. the
system is in thermal equilibrium and therefore ρ1

therm = 1/21. We find

〈Γtip
01 〉therm = Γ̄tip

2 Tr {(1 + cos(Φtip)σx + sin(Φtip)σy) 1} = Γ̄tip. (4.78)
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Figure 4.6.: Pump probe scheme with tdel = 2π/ω between the two pulses. We report the populations
(a), the change in the chemical potential due to the pulses (b), the current per pulse (c) and the
dynamics of the pseudospin (d). Since the system is again in the blocking state when the second pulse
is applied, there is no current flowing during the second pulse.

Figure 4.7.: Pump probe scheme with tdel = π/ω between the two pulses. We report the populations
(a), the change in the chemical potential due to the pulses (b), the current per pulse (c) and the
dynamics of the pseudospin (d). The pseudospin value τx is farthest away from the blocking state
thus there is a strong read out pulse visible in panel (c).
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For the time dependent part we obtain

〈Γtip
01 〉(t) =

Γ̄tip

2 Tr {(1 + cos(Φtip)σx + sin(Φtip)σy) (1− cos(ωt+ Φtip)σx − sin(ωt+ Φtip)σy)} =

Γ̄tip

2 Tr {1 [1− cos(Φtip) cos(ωt+ Φtip)− sin(Φtip) sin(ωt+ Φtip)]} =

Γ̄tip
[
1− 1

2
(

cos(ωt+ 2Φtip) + cos(ωt)
)
− 1

2
(

cos(ωt)− cos(ωt+ 2Φtip)
)]

=

Γ̄tip (1− cos(ωt)) .
(4.79)

The mixed terms vanish between line 2 and 3 of the equation because it holds for the
Pauli matrices that

Tr σi = 0. (4.80)

The transferred charge per pump-probe cycle will thus be proportional to the sum of
Eq. (4.78) and Eq. (4.79). It needs to be fitted to the charge transferred via the pump
pulse, i.e.

Qtip(t) = Qtip(0) (2− cos(ωt)) . (4.81)

In Fig. 4.8 we see the charge transfer with the tip fixed at the positions x = 5Å and
y = 0Å. However, the position dependence of the tip is implicitly included in the
tunnelling rate matrix Γtip

01 and therefore Eq. (4.76) is valid for the whole molecule.
In Fig. 4.9 we show a map of the transferred charge along the positive x-axis of the
molecule and a plot of the absolute value of the wave function. We see that our derived
equation for the charge transfer holds along the axis. The regions where no transfer is
happening is due to nodes in the wave function and thus there is no charge transfer to
the tip possible.
We conclude that we are able to combine the internal pseudospin dynamics of our
model with the measurable charge transfer. This is a very important result because
otherwise there would be no chance to investigate our predicted dynamics by experi-
ments. Equipped with the knowledge about the simplified model we will now return
to the full molecule and investigate the coupled dynamics of spin and pseudospin.
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4.6. Pump-probe readout of the dynamics

Figure 4.8.: Charge transfer per pump-probe cycle depending on the time delay between the two
pulses with a fixed tip position at x = 5Å and y = 0Å.

Figure 4.9.: Charge transfer per pump-probe cycle. The y position of the tip is fixed at y = 0Å,
whereas the x position is varied between x = 0Å and x = 10Å. The red line shows the absolute value
of ψx along the x-axis.
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5. Numerical evaluation of the full
system

Equipped with a better understanding of the orbital dynamics to expect in the system
we will now turn our eye to the THz-STM set up with the full model describing the
molecule. First, we will gather some theoretical prerequisites. After that we will
investigate the dynamics of the full system numerically.

5.1. Theoretical prerequisites

In this section we collect the necessary theoretical prerequisites. First, we explore how
to treat the Fock space, then how to handle the principal parts and finally we give a
definition of our spin and pseudospin operators.

5.1.1. Treatment of the Fock space

As already mentioned in Sec. 2.2.3, the Fock space spanned by the molecular Hamil-
tonian (2.34) has a dimension of 44 = 256. Since, we keep coherences in our transport

Figure 5.1.: Schematic depiction of the considered transitions in the system. We show on the x-axis
the neutral and anionic state of CuPc and on the y-axis the grand canonical energy of the states.



5.1. Theoretical prerequisites

calculations the corresponding Liouville space has a dimension of 2562. Despite the
possibility to numerically diagonalize the Hamiltonian the Liouville space is too big to
make numerical transport calculations in a reasonable time frame. However, we are
interested in transport at low energies. This enables us to only take the lowest lying
states of the neutral and anionic molecule into account. They are shown in Fig. 5.1. In
particular we will only consider the states discussed in Sec. 2.3 for tunnelling events.
Such events are described by the real part of Eq. (3.32), i.e. the parts containing the
Fermi functions. The ten states considered for transport make up our active Fock space
of tunnelling events. The imaginary parts of Eq. (3.32) need a more careful treatment.
First of all we exclude them in the parts of the equation which are connected to the
increase of the sub block of the density matrix, i.e. the last two lines. We do this since
the difference between the principal part functions appearing in these two lines is of
order Γησi,σj and thus would give us contributions to the Master equation which are of
order (Γησi,σj)2. This however is inconsistent with our second order treatment of the
transport set-up and leads to wrong numerical results.
In the parts of the equation we keep the imaginary parts we still have to be more
careful than for the real parts of the equation. We do that since in the imaginary parts
virtual transitions can happen which must be taken into account when doing transport
calculations. To give an example on how to include the virtual transitions into this
formulation we will take a look at the term∑

ηF

∑
iσ
jσ′

PNE d̂
†
iσpη(F − Ĥmol)d̂jσ′PNFρPNE′ =

∑
ηFF ′

∑
iσ
jσ′

∑
|NE〉〈EN |d̂†iσpη(F − Ĥmol)|N − 1F ′〉〈F ′N − 1|d̂jσ′ |NF 〉〈FN |ρPNE′ =

∑
ηFF ′

∑
iσ
jσ′

pη(F − F ′)〈EN |d̂†iσ|N − 1F ′〉〈F ′N − 1|d̂jσ′ |NF 〉|NE〉〈FN |ρPNE′ ,

(5.1)
which is appearing in the first line of Eq. (3.32). We neglect the angular momentum
quantum numbers in the projection operators to keep the formula clearly arranged.
The sum over F only runs over the active Fock space, i.e. the low energy spectrum,
whereas F ′ will run over all states in the N−1 particle spectrum. With this we include
all virtual transitions which can happen into our numerical calculations. In the next
section we will define an effective Hamiltonian for the imaginary parts which allows us
to treat the numerics more efficiently.

5.1.2. Effective Hamiltonian for the principal parts

To obtain an effective Hamiltonian for the principle parts we define first

M = −
∑
ηF

∑
iσ
jσ′

Γησi,σj
2π PNE

[
d̂†iσpη(F − Ĥmol)d̂jσ′ + d̂jσ′pη(Ĥmol − F )d̂†iσ

]
PNF . (5.2)
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5.1. Theoretical prerequisites

We define the effective Hamiltonian for the principal parts as

Ĥpp = M +M †

2 . (5.3)

This enables us to include the dependence of the density matrix on the principal parts
into the Master equation (3.32) by

ρ̇ ∝ −i
[
Ĥpp, ρ

]
. (5.4)

We will now turn our attention to the definition of the spin and pseudospin operators
for our full system.

5.1.3. Spin and pseudospin operators

Since we are interested in the spin and pseudospin dynamics we need to define operators
which are able to describe them. We define for the spin

Ŝx = 1
2
∑
iσσ′

d̂†iσ(σx)σσ′ d̂iσ′ (5.5a)

Ŝy = 1
2
∑
iσσ′

d̂†iσ(σy)σσ′ d̂iσ′ (5.5b)

Ŝz = 1
2
∑
iσσ′

d̂†iσ(σz)σσ′ d̂iσ′ , (5.5c)

with i and j running over the complete set of frontier orbitals. For the pseudospin we
only take the LUMOs into account and define the corresponding operators as

τ̂x = 1
2 (n̂H − 1)

∑
ξ,ξ′=±
σ

d̂†Lξσ(σx)ξξ′ d̂Lξ′σ, (5.6a)

τ̂y = 1
2 (1− n̂H)

∑
ξ,ξ′=±
σ

d̂†Lξσ(σy)ξξ′ d̂Lξ′σ, (5.6b)

τ̂z = 1
2
∑

ξ,ξ′=±
σ

d̂†Lξσ(σz)ξξ′ d̂Lξ′σ. (5.6c)

We define the pseudospin operators in this way to ensure that they fulfill

[τ̂α, τ̂β] = iεαβγ τ̂γ (5.7)

on the triplet anionic subspace, with εαβγ being the Levi-Civita symbol. We now have
all necessary ingredients to turn our eyes to the numerical simulations of the full system.
We do this in the next chapters.
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5.2. Simulations with unpolarized leads

Figure 5.2.: Simulation of the full system driven by a laser pulse of width 30ps. We report in (a) the
populations of the system, (b) the bias change in each lead due to the laser pulse, (c) the expectation
value of the spin and (d) the expectation value of the pseudospin.

5.2. Simulations with unpolarized leads

We will now show the numerically obtained results for the full system. As a first step
we will investigate the effect of the pulse width on the dynamics and then turn our
attention to the effect of spin polarized leads.

5.2.1. Blocking state in the full system

If we once again set the tip at the position x = 5Å and y = 0Å we expect to find
the same orbital blocking state as in the simplified two orbitals model since it should
only depend on the LUMOs which we took into account in our model. We report
the simulation of the system without spin polarized leads in Fig. 5.2. All simulations
presented in this chapter have been performed at a temperature of T = 30K and we will
neglect the singlet states of the anionic low energy spectrum. This is justified since they
do not have any influence on the spin-orbit dynamics of the system. We set µ0 = −4eV
for our system which has the effect that in thermal equilibrium the molecule will be
in its anionic state. We see in the plot of the populations, Fig. 5.2(a), that before a
laser pulse is applied the system is in thermal equilibrium, i.e. all triplet states have
a nonzero probability of being occupied with small differences due to sizable energy
splittings on the temperature scale. After around 180ps a laser pulse is applied to open
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5.2. Simulations with unpolarized leads

the transition from the anionic to the neutral state for 30ps which can be seen by the
chemical potential of the tip crossing the green threshold line in Fig. 5.2(b). We can
see now a similar behaviour as exhibited by the model. In the populations, Fig. 5.2(a),
we see that the probability to occupy the neutral state rises when the transition opens,
but then decays even though the transition is in principle still open. We also see in the
population plot that after the transition is closed the mainly occupied states are the
two degenerate triplet states |T0

±〉.
To get an understanding why the populations are showing this behaviour let’s assume
that the term containing λ2 in the molecular Hamiltonian, see Eq. (2.34), would be
zero. The four vanishing triplet states would then be eigenstates of the total spin
operator Ŝ2 = Ŝ2

x + Ŝ2
y + Ŝ2

z . Hence, superselection rules prohibit the preparation of a
superposition of these states. The term containing λ2 introduces small admixtures to
states with different total spin and thus they do not vanish completely but have a very
little probability of being occupied.
The states |T0

±〉 are exactly degenerate and therefore can not be responsible for internal
dynamics. Consequently, in Fig. 5.2(c) and Fig. 5.2(d) we see a very small amplitude
in the oscillations of the spin and pseudospin expectation values, respectively. The
corresponding dynamics would probably be too small to be measured experimentally.
Therefore we will not analyse them in more detail. As we will see in the next section
for a shorter laser pulse we ill not completely reach the blocking state and obtain much
more pronounced dynamics.

5.2.2. Shorter pulse to drive the system

In the last section we saw that for a long pulse the system approaches the blocking
state and that the coherent dynamics are then probably not measurable. If we shorten
the time interval in which the transition from the anionic to the neutral state via the
tip is open by a factor of ten, i.e. it is open for 3ps as shown in Fig. 5.3(b), we see in
Fig. 5.3(a) that the system does not have enough time to decay back into the anionic
state. Therefore the lowest and highest lying triplet states, which are almost completely
depopulated if the transition is open for a long time, have a much higher probability to
be occupied and correspondingly the pseudospin oscillations occur with a much higher
amplitude, see Fig. 5.3(d) and Fig. 5.2(d). The oscillations of the spin however are still
very small, see Fig. 5.2(c), but we can already conclude that 〈Sy〉 seems to be coupled
to 〈τx〉 by the spin orbit interaction. Furthermore we see beatings in the pseudospin
oscillations which can be analysed by means of Fast Fourier Transform. We find that
the faster frequency is generated by coherences between |T−1

+ −T+1
− 〉 and |T+1

+ + T−1
− 〉

and the slower one by the ones between |T−1
+ + T+1

− 〉 and |T+1
+ − T−1

− 〉. We show the
Fourier spectrum in Fig. 5.4 with a schematic depiction of the triplet states ordered by
their energies in the inset. The red and green arrows show which states are responsible
for which frequency. We report in Fig. 5.5(a) the transferred charge per pump probe
cycle. We vary the time delay between the end of the pump pulse and the beginning
of the probe pulse between tdel = 0ps and tdel = 50ps. In Fig. 5.5(b) we report the
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5.2. Simulations with unpolarized leads

Figure 5.3.: Simulation of the full system driven by a laser pulse of width 3ps. We report in
(a) the populations of the system, (b) the bias change in each lead due to the laser pulse, (c) the
expectation value of the spin with 〈Sx〉 = 〈Sz〉 = 0 and (d) the expectation value of the pseudospin
with 〈τy〉 = 〈τz〉 = 0.

Figure 5.4.: FFT analysis of the oscillations in τx. We see two distinct frequencies. In the inset we
report a schematic depiction of the triplet states ordered by their energy. The arrows denote which
states are responsible for which frequency.
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5.3. Effects of a spin polarized tip

Figure 5.5.: The pump probe scheme to read out the orbital dynamics in the full system. We
see in (a) the transferred charge per pump probe cycle given in electrons. In (b) the corresponding
dynamics are reported where we have shifted the time axis so that the time corresponds to the delay
time between the two pulses.

corresponding pseudospin dynamics. In fact Fig. 5.5(b) is a cut of Fig. 5.3(d) where
we have relabeled the x-axis so that t = 0ps corresponds to the state of the system
at tdel = 0ps. Remember that from the model evaluated in Chapter 4 we know that
the blocking state and thus the minimal charge transferred per pump probe cycle is
reached if τx = −0.5, τy = 0 and τz = 0. By comparison of Fig. 5.5(a) and Fig. 5.5(b)
we see a striking resemblance of the pseudospin dynamics and the calculated transferred
charge. We also see that the closer the system gets to the blocking state the smaller
the transferred charge becomes. Similarly to the model this is a pseudospin valve effect
with the difference that in the model we had a precession around the axis perpendicular
to the molecule and in this case only the τx component of the pseudospin is oscillating.
A way of enhancing the dynamics of the spin is to introduce spin polarization in the
leads. We will do this in the next section.

5.3. Effects of a spin polarized tip

In this section we will explore the effects of a spin polarized tip. We will consider a
spin polarization described by the polarization vector

Pσ
tip =

0
0
1

 . (5.8)

This leads to the effect that only electrons with spin up will be able to tunnel from
the molecule to the tip. First we will see what happens in the system if we open the
transition from the anionic to the neutral state for a long time and then in a second
step shorten the pulse time and thus the opening of the transition.

58



5.3. Effects of a spin polarized tip

5.3.1. Long pulse to drive the system

We report the numerical evolution of the system driven by a long pulse and a spin
polarized tip, as introduced in Eq. (5.8), in Fig. 5.6. Fig. 5.6(a) shows the populations
of the system. The spin polarization leads to a complete breaking of the superselection
rules and thus the triplet states with Sz 6= 0 have a much higher probability to be
populated than in Fig. 5.2(a). In Fig. 5.6(b) we see the change of the chemical potential
due to the laser pulse. The transition is open for 30ps. In Fig. 5.6(c) one can see that
during the time interval in which the transition is open the expectation value for the
z-component of the molecule approaches Sz =↓. This can be understood by the fact
that only electrons with Sz =↑ are allowed to tunnel from the molecule to the tip and
thus the expectation value of the z-component will be lowered by 0.5. Furthermore,
we can observe oscillations in all three spin components in Fig. 5.6(c). However, the
oscillations in Sx and Sy have such a small amplitude that we will not investigate them
in detail and from now on if we talk about spin oscillations we will refer to the Sz-
component.
Also in the spin dynamics beatings appear, but if we compare them to the pseudo
spin dynamics, see Fig. 5.6(d), it is obvious that the contributing frequencies are much
smaller. Taking a look at Fig. 5.6(d) we see that in contrast to Fig. 5.2(d) oscillations
are also present in the y- and z-component of the pseudospin. The oscillation of the
y-component is a beating of two fast frequencies whereas the z-component one of slow
frequencies. We can conclude that these oscillations are due to spin orbit coupling
since the only thing that changed between Fig. 5.2 and Fig. 5.6 is that the system is
prepared in a state with a nonzero expectation value of the Sz-component.

5.3.2. Short pulse to drive the system

In this section we investigate what happens if we shorten the time interval in which
the transition from the anionic to the neutral state is open from 30ps to 3ps. We see
in Fig. 5.7(a) the populations of the system. The difference between the probabilities
of different states being occupied is smaller compared to their difference observed for a
longer pulse, see Fig. 5.6(b). This is consistent with the observations we made for the
system without a spin polarized tip, see Sec. 5.2. In Fig. 5.7(b) we report again the bias
change of the system. We find for the spin, see Fig. 5.7(c), the same behaviour as for
the driving with a longer laser pulse. In analogy to Sec. 5.2 we find that the pseudospin
oscillations have a larger amplitude compared to driving with a long pulse.

In Fig. 5.8 we report the simulation of pump probe schemes in the system with a spin
polarized tip. We vary the delay time between the two pulses from tdel = 30ps to
tdel = 217ps to show the charge transfer during one period of the spin oscillation. The
corresponding charge transfer per pump probe cycle is shown in Fig. 5.8(a). Figs. 5.8(b)
and 5.8(c) show the corresponding spin and pseudospin dynamics respectively. We have
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5.3. Effects of a spin polarized tip

Figure 5.6.: Simulation of the full system driven by a laser pulse of width 30ps. The tip is polarized
with a value of Stip

z =↑. We report in (a) the populations of the system, (b) the bias change in each
lead due to the laser pulse, (c) the expectation value of the spin and (d) the expectation value of the
pseudospin.

Figure 5.7.: Simulation of the full system driven with a laser pulse of width 3ps. The tip is polarized
with a value of Stip

z =↑. We report in (a) the populations of the system, (b) the bias change in each
lead due to the laser pulse, (c) the expectation value of the spin and (d) the expectation value of the
pseudospin.
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5.3. Effects of a spin polarized tip

Figure 5.8.: The pump probe scheme to read out the spin orbit induced dynamics in the full system
with a spin polarized tip. We report (a) the transferred charge per pump probe cycle given in electrons,
(b) the corresponding spin dynamics and (c) the pseudospin dynamics. We have relabeled the time
axis in (b) and (c) so that it corresponds to the delay time between the two pulses.

relabeled the time axis so that the time on which we report the dynamics correspond
to delay times between the two pulses. We can see in Fig. 5.8 a spin valve effect on
which a pseudospin valve effect is superimposed. The better the alignment between
(pseudo) spin and the corresponding (pseudo) spin polarization of the tip is the larger
is the transferred charge per pump probe cycle. This is qualitatively the same effect
we observed in our simplified model in Chap. 4.

We will now conclude our numerical investigation of the system. We have seen in this
chapter that it is possible to drive spin orbit dynamics in CuPc in an THz-STM setup.
We saw in this chapter that the spin and pseudospin show an oscillatory coherent
dynamics which has qualitatively the same effect on the transferred charge per pump
probe cycle as in the simplified model. In contrast to our model the oscillatory dynamics
in this chapter do not only consist of one frequency but show beatings. Furthermore,
one can conclude that interactions between the spin and pseudospin dynamics are
present. We found in the model that the free pseudospin dynamics are described by

τ̇ = ω(nmol × τ ). (5.9)

Due to the interactions such a simple description is not possible for the full model
anymore. In the next chapter we take the correlators between spin and pseudospin
into account to get a description of the free dynamics of our triplet states.
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6. Free evolution of the triplet states

In this chapter we investigate the dynamics of the triplet states with an analytical
approach. We focus on the free evolution of those states, i.e. Vbias = 0. We start
with a expansion of the reduced density matrix in its irreducible components and
follow for this purpose Chap. 4 of Ref. [36]. We already saw in Sec. 4.4 that we could
rewrite the one particle sub block of the density matrix in terms of its populations and
components of the pseudospin operator. This is a special case of the expansion of the
density matrix in its irreducible components for (pseudo) spin 1/2 particles. We will
now show the general form of this expansion which then can also be used to describe
our triplet states which have a pseudospin of 1/2 but also a spin of 1.

6.1. Irreducible components of the density matrix

For simplicity, we drop the hat notation for operators and will always indicate their
expectation values by bra-ket notation. If one considers an ensemble of particles which
are characterized by angular momentum values of J one can write the density matrix
of this ensemble as

ρ =
∑
JKQ

〈T (J)†KQ〉T (J)KQ. (6.1)

Here, K denotes the total angular momentum and Q its z-component. T (J)KQ are
the tensor operators for a system with angular momentum J . The number of possible
tensor operators for an ensemble is restricted by the condition

−K ≤ Q ≤ K. (6.2)

The tensor operator with rank K = 0 is a scalar operator and is proportional to the
unity matrix

T (J)00 = 1√
2J + 1

1. (6.3)

To describe the tensor operators of rank K = 1 we introduce the angular momentum
vector

J =

JxJy
Jz

 , (6.4)



6.1. Irreducible components of the density matrix

from which we can deduce the spherical vector components as

J± = ∓ 1√
2

(Jx ± iJy) and J0 = Jz, (6.5)

with J± being the raising/lowering operator. The tensor operators of rank K = 1 are
related to the spherical vector components via

T (J)1Q =
√

3
(2J + 1)(J + 1)J JQ. (6.6)

In a similar fashion the tensor operators of rank K = 2, also called quadrupole mo-
ments, are related to quadratic combinations of the angular momentum vector compo-
nents Jx, Jy and Jz by

T (J)20 = N2√
6

(3J2
z − J2)

T (J)2±1 = ∓N2

2 [(JxJz + JxJz)± i(JyJz + JzJy)]

T (J)2±2 = N2

2
[
J2
x − J2

y ± i(JxJy + JyJx)
]
,

(6.7)

with
N2 =

√
30

(2J + 3)(2J + 1)J(2J − 1)(J + 1) . (6.8)

The triplet states we are interested in are a combination of a pseudospin part with
J = 1/2 and a spin part with J = 1. Therefore, we will in the next section take a look
on how to construct a density matrix for particles with J = 1/2 and J = 1 separately
before combining everything together.
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6.2. Spin and pseudospin tensors

6.2. Spin and pseudospin tensors

In this section we will give expressions for the density matrix in terms of its irreducible
components for particles with J = 1/2 and J = 1. This is done because we need to
describe the pseudospin part of the triplet states which has angular momentum J = 1/2

and the spin part with J = 1. We will start with the J = 1/2 case.

6.2.1. (Pseudo) Spin tensors for (pseudo) spin 1/2 particles

Eq. (6.1) implies that for spin 1/2 particles the only tensors we need to take into account
are of rank K = 0 and K = 1. We thus find for the monopole term given by Eq. (6.3)

T (1/2)00 = 1√
2

1. (6.9)

The tensors of rank K = 1 are connected to the corresponding spherical spin operators
by Eq. (6.6). For a system with J = 1/2 we can identify the angular momentum
operators as

Ji = 1
2σi, i = x, y, z, (6.10)

with the Pauli matrices σi. The tensor operators of rank K = 1 are

T (1/2)1Q =
√

2JQ (6.11)

and their expectation values are

〈T (1/2)†1Q〉 =
√

2 〈J†Q〉 , (6.12)

where JQ is given by Eq. (6.5). Plugging the results in Eq. (6.1) we find for the density
matrix of spin 1/2 particles

ρ
1/2 =

∑
KQ

〈T (1/2)†KQ〉T (1/2)KQ

= 1
21 +

∑
Q

〈T (1/2)†1Q〉T (1/2)1Q

= 1
21 + 1

2 Tr {ρσx}σx + 1
2 Tr {ρσy}σy + 1

2 Tr {ρσz}σz.

(6.13)

This is the expansion we used in Eq. (4.25) to describe the one particle sub block of our
density matrix. Now we know how to expand the density matrix for spin 1/2 particles
in terms of its irreducible components. We will in the next section do this for spin 1
particles.
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6.3. Time evolution of the density matrix

6.2.2. (Pseudo) Spin tensors for (pseudo) spin 1 particles

The first thing we need on our way to describe the expansion of the density matrix
for spin 1 particles are the definitions of the spin operators describing them. They are
given by

Sx = 1√
2

0 1 0
1 0 1
0 1 0

 , Sy = 1√
2

0 −i 0
i 0 −i
0 i 0

 , Sz =

1 0 0
0 0 0
0 0 −1

 . (6.14)

The monopole tensor is given by

T (1)00 = 1√
3

1. (6.15)

By setting Ji = Si we find for the tensors of rank K = 1

〈T (1)†1Q〉 = 〈JQ〉√
2
, (6.16)

where JQ is again given by Eq. (6.5). The quadratic combinations of the angular mo-
mentum operators can be constructed according to Eq. (6.7) with N2 = 1. Therefore,
we can conclude that the density matrix for spin 1 particles has the following form

ρ1 = 1
31 +

∑
Q

〈T (1)†1Q〉T (1)1Q +
∑
Q

〈T (1)†2Q〉T (1)2Q. (6.17)

6.3. Time evolution of the density matrix

We will now derive analytic expressions for the spin and pseudospin dynamics which
were numerically explored in Chap. 5. We use the effective Hamiltonian describing the
triplet states given in Eq. (2.74). It reads

Ĥeff = α516 +



α1/2 0 0 0 0 α2
0 α4 0 0 0 0
0 0 −α1/2 α3 0 0
0 0 α3 −α1/2 0 0
0 0 0 0 α4 0
α2 0 0 0 0 α1/2


. (6.18)
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6.4. Dynamics of the spin and pseudospin

It has the following eigenvalues

E1 = α4 + α5, E2 = α4 + α5, E3 = 1
2(α1 − 2α2 + 2α5),

E4 = 1
2(α1 + 2α2 + 2α5), E5 = 1

2(−α1 − 2α3 + 2α5), E6 = 1
2(−α1 + 2α3 + 2α5).

(6.19)
The time evolution of the density matrix is given by the Liouville - von Neumann
equation

ρ̇(t) = − i
~
(
Ĥeffρ(t)− ρ(t)Ĥeff

)
. (6.20)

Let va be the eigenvector of the effective Hamiltonian corresponding to the eigenvalue
Ea. We define a transformation matrix as

M := [v1, . . . ,v6] . (6.21)

We transform ρ into the eigenbasis of Ĥeff by

ρH = MρM †. (6.22)

In this basis the Liouville - von Neumann equation can be solved by

(ρH(t))ab =
6∑

a,b=1
e− i

~ (Ea−Eb)t (ρH(0))ab . (6.23)

Now, that we know the time evolution of the density matrix describing our triplet states
we will investigate how to obtain equations for the dynamics of the spin, pseudospin
and their correlators.

6.4. Dynamics of the spin and pseudospin

Equipped with the knowledge about the expansion of density matrices for (pseudo)
spin 1/2 and (pseudo) spin 1 particles from Sec. 6.2 we will construct a basis in which
we can expand the density matrix for the triplet states. Our triplet states have a spin
angular momentum value of JS = 1 and a pseudospin angular momentum value of
JP = 1/2. Therefore, a basis which allows us to expand the density matrix of the triplet
states has to incorporate both of these spaces.
We use for the pseudospin operators the notation

τx = 1
2σx, τy = 1

2σy, τz = 1
2σz. (6.24)

66



6.4. Dynamics of the spin and pseudospin

We define a basis for the JP = 1/2 space, by using the spherical components of the
pseudospin operators, as

Bc1/2 =
{

1√
2

12,
√

2τz,−(τx + iτy), τx − iτy
}
, (6.25)

where the c stands for complex since we use the spherical components of the pseudospin
operators, which contain imaginary parts, to define the basis. For the spin operators
we use the definition given in Eq. (6.14) and define a basis for the JS = 1 space, again
by using the spherical components, by

Bc1 =
{

1√
3

13,
1√
2
Sz,
−1
2 (Sx + iSy),

1
2(Sx − iSy),

1√
6

(2S2
z − S2

x − S2
y),

−1
2
[
SxSz + SzSx + i(SySz + SzSy)

]
,
1
2
[
SxSz + SzSx − i(SySz + SzSy)

]
,

1
2
[
SxSx − SySy + i(SxSy + SySx)

]
,
1
2
[
SxSx − SySy − i(SxSy + SySx)

]}
,

(6.26)

where again the c stands for complex with the same reason as for the pseudospin.
A basis in which we can expand the density matrix describing the triplet states is
therefore

Bc = Bc1/2 ⊗ Bc1, (6.27)

since it incorporates the spaces of JP = 1/2 and JS = 1. By identifying the tensor oper-
ators introduced in Sec. 6.1 we can conclude that the density matrix is then determined
by the correlators

〈T (1/2)KQT (1)K′Q′〉 (6.28)

because they are the expansion coefficients of ρ in the basis Bc.
However, it is also possible to define a basis directly by the angular momentum op-
erators. For the pseudospin 1/2 part we can define a basis, using directly the angular
momentum operators, by

Br1/2 = {12, τz, τx, τy} , (6.29)

where the r stands for real since in this basis no more imaginary parts are present. For
the spin 1 part we need the angular momentum operators and additional quadratic
combinations of them. We can take the real parts of the basis Bc1 for the quadratic
combinations and then define the real basis for the spin 1 part by

Br1 =
{

13, Sz, Sx, Sy, 2S2
z − S2

x − S2
y , SxSz + SzSx,

SySz + SzSy, S
2
x − S2

y , SxSy + SySx

}
.

(6.30)

In analogy to Eq. (6.27) we get the complete basis of the density matrix by

Br = Br1/2 ⊗ Br1. (6.31)
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By introducing the notations

P = 16,

S3z2 = 2S2
z − S2

x − S2
y ,

Sxz = SxSz + SzSx,

Syz = SySz + SzSz,

Sx2y2 = S2
x − S2

y ,

Sxy = SxSy + SySx,

(6.32)

we can write Eq (6.31) in the explicit form

Br =


P Sz Sx Sy S3z2 Sxz Syz Sx2y2 Sxy
τz τzSz τzSx τzSy τzS3z2 τzSxz τzSyz τzSx2y2 τzSxy
τx τxSz τxSx τxSy τxS3z2 τxSxz τxSyz τxSx2y2 τxSxy
τy τySz τySx τySy τyS3z2 τySxz τySyz τySx2y2 τySxy

 . (6.33)

The components of the density matrix in this basis are now the expectation values of
the operators comprising the basis Br. It holds for an arbitrary operator O that

〈O(t)〉 = Tr {Oρ(t)} . (6.34)

Therefore we can obtain all expectation values for our pseudospin τi operators, spin Si
operators, quadrupole moments for the spin and their correlators in this way. Exem-
plarily, we give the solution for τx here

〈τx(t)〉 = 1
12

{
4
[
〈τx〉 − 〈τxS3z2〉

]
+
[
3〈Sx2y2〉+ 4〈τx〉+ 2〈τxS3z2〉

]
cos

[
(α1 + α2 − α3) t

]
+
[
− 3〈Sx2y2〉+ 4〈τx〉+ 2〈τxS3z2〉

]
cos

[
(α1 − α2 + α3) t

]
− 6

[
〈τySz〉+ 〈τzSxy〉

]
sin

[
(α1 + α2 − α3)t

]
− 6

[
〈τySz〉 − 〈τzSxy〉

]
sin

[
(α1 − α2 + α3)t

]}
(6.35)

where all expectation values on the right hand side have to be calculated at t0. We
show in Fig. 6.1 a numerical simulation of the system, with the same parameters as
in Sec. 5.3.2. We superimpose in Fig. 6.1(c) and Fig. 6.1(d) the analytical solutions
obtained for the spin and pseudospin expectation values. Therefore we choose an initial
time t0 after the transition from the anionic to the neutral state is closed and use ρ(t0)
to calculate all the correlators appearing in Eq. (6.35) and the corresponding equations
for different expectation values. We see in Fig. 6.1 that our analytical solutions for
the free evolution match the numerical ones perfectly. Thus, we are able to describe
the free evolution of our triplet states with respect to arbitrary initial conditions. We
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have shown that we understand the dependence of the spin and pseudospin dynamics
on their correlators in a quantitative way.

Figure 6.1.: Simulation of the full system driven with a laser pulse of width around 3ps. The tip is
polarized with a value of Stip

z =↑. We report in (a) the populations of the system, (b) the bias change
in each lead due to the laser pulse, (c) the expectation value of the spin and (d) the expectation value
of the pseudospin. In (c) and (d) the analytical solutions for the free evolutions are superimposed on
the numerical results.
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7. Conclusion

In this thesis we investigated spin-orbit induced dynamics in a CuPc molecule. We con-
sidered a single molecule junction consisting of a CuPc molecule in a THz-STM setup.
We first derived a many-body model able to describe a CuPc molecule. By choosing
the molecular orbital basis for our description we were able to determine the subset of
orbitals needed to describe transport at low energies. Symmetry arguments enabled us
to reduce the number of Coulomb integrals needed to obtain a complete description of
the electronic interactions in the system. Then, we introduced the spin-orbit coupling
into our model by evaluating a general spin-orbit interaction operator only on the cop-
per atom and projecting it on the set of frontier orbitals. By analysing the spectrum
of this model we found the states relevant for transport at low bias voltages which we
later used in our numerical and analytical calculations. To describe transport through
our junction we showed the derivation of a general transport formalism for the reduced
density matrix where we included the geometry of an STM and the effects of coupling
laser pulses to the system.
Then, we showed that already in a simplified model of the molecule with two quasi
degenerate orbitals we find pseudospin precession. We investigated this numerically
and were able to describe the precession completely within our analytical transport
formalism. The connection between the pseudospin precession and transferred charge
per pump probe cycle was shown numerically and analytically.
In the full model we discovered again pseudospin oscillations but this time coupled to
spin dynamics. We saw in our numerical simulations that the shorter the time inter-
val, in which the transition from the anionic to the neutral state is possible, the more
pronounced the pseudospin dynamics of our system become. We found that in order
to enlarge the spin oscillations in our system we need to spin polarize the tip of the
STM. The reason this increases the amplitude of the spin oscillation is the complete
breaking of superselection rules.
Simulations of pump probe schemes in the full model show a pseudospin valve effect
when the tip is unpolarized and a combined spin and pseudospin valve effect if a spin
polarization is present in the tip. This might provide a way of obtaining information
about the spin-orbit induced dynamics via electronic measurements.
Lastly we investigated the free evolution of the anionic triplet states and showed that
we can describe the dynamics of the spin and pseudospin analytically. By decomposing
the density matrix in its irreducible components we found the dependence of the spin
and pseudospin dynamics on the correlators between the spin operators, pseudospin op-
erators and the quadrupole moments for the spin. Even though, considerable progress
was made in describing a single CuPc molecule in a THz-STM junction there still re-
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main some open questions. The first question is if it is possible to derive an analytical
expression for the charge transfer in a pump probe cycle depending on the spin and
pseudospin dynamics, analogous to the one derived for the simplified model. Also a
better understanding of the preparation done by the pump pulse would be desirable.
As explored in our spectrum analysis of CuPc there are degenerate states present
and therefore one should investigate if the Jahn-Teller effect [50] plays a role in our
CuPc-THz-STM junction. Since our transport formalism is quite general it should in
principal be extendable to arbitrary molecules as long as one is able to find a satisfying
many-body model for them. So there are a lot of possible candidate molecules to be
investigated in the future.
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A. Appendix

A.1. Effect of the split pair hopping on the low energy
spectrum

The split pair hopping term J̃PH+− creates admixtures in the low energy spectrum of
the molecular Hamiltonian (2.34). We write

ĤP
H+− = 1

2
∑

τ,τ ′=±

∑
σ

J̃PHττ ′ d̂
†
Lτσd̂

†
Lτ ′σ̄d̂Hσd̂Hσ̄, (A.1)

to explore the effect of the split pair hopping on the low energy spectrum. On the
doubly degenerate neutral groundstate the split pair hopping has the following effect

ĤP
H+−|D

↑
0〉 = 1

2
∑

τ,τ ′=±

∑
σ

d̂†S↑d̂
†
Lτσd̂

†
Lτ ′σ̄|0〉,

ĤP
H+−|D

↓
0〉 = 1

2
∑

τ,τ ′=±

∑
σ

d̂†S↓d̂
†
Lτσd̂

†
Lτ ′σ̄|0〉.

(A.2)

Therefore, the split pair hopping introduces small admixtures into the neutral ground-
states. These admixtures are the same for both neutral ground states. However, they
are very small and only introduce a constant shift, thus we neglected them in our spec-
trum analysis.
The effect on the anionic low energy states is

ĤP
H+−|Sτ 〉 = 1

2
1√
2
(
d̂†S↑d̂

†
Lτ↓d̂

†
Lτ↑d̂

†
Lτ̄↓ − d̂

†
S↓d̂
†
Lτ↑d̂

†
Lτ↓d̂

†
Lτ̄↑

)
|0〉

ĤP
H+−|T+1

τ 〉 = 1
2 d̂
†
S↑d̂
†
Lτ↑d̂

†
Lτ↓d̂

†
Lτ̄↑|0〉

ĤP
H+−|T0

τ 〉 = 1
2

1√
2
(
d̂†S↑d̂

†
Lτ↓d̂

†
Lτ↑d̂

†
Lτ̄↓ + d̂†S↓d̂

†
Lτ↑d̂

†
Lτ↓d̂

†
Lτ̄↑

)
|0〉

ĤP
H+−|T−1

τ 〉 = 1
2 d̂
†
S↓d̂
†
Lτ↓d̂

†
Lτ↑d̂

†
Lτ̄↓|0〉.

(A.3)

Similarly, to the effect on the neutral ground states the split pair hopping introduces
small admixtures into the anionic low energy states. However, they are all of the same
type with the SOMO occupied by one electron and three electrons in the LUMOs.
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Again, this only introduces a small constant energy shift of all states and we therefore
neglected the effect in our spectrum analysis.

A.2. Reformulation of the two orbital model equations
into populations and pseudospin

We will show how to reformulate eqs. (4.21) - (4.23) into equations for the popula-
tions P0, P1, P2 and the vector of pseudospin expectation values τ . By using the
approximations

fη(Ĥ1) ≈ f̄η(Ĥ1),
pη(Ĥ1) ≈ p̄η(Ĥ1),

(A.4)

and using the notation

H10 ≡ Ĥ1 − E0, H21 ≡ E2 − Ĥ1 (A.5)

we can reformulate eqs. (4.21) - (4.23). We find for Eq. (4.21)

ρ̇0 =−
[
2Γ̄subf̄+

sub(H10) + 2Γ̄tipf̄+
tip(H10)

]
ρ0

+ Tr
[
Γsubf̄−sub(H10)ρ1

]
+ Tr

[
f̄−tip(H10)Γtip

01 ρ
1
]
,

(A.6)

where for the first two terms we used the fact that Γsub and f̄+
η are diagonal and for

Γtip
01 everything except the diagonal part is traceless. For the fourth term we used that
f̄−tip is diagonal and the cyclic property of the trace, the fifth term vanishes since p̄tip
is diagonal and by also using the cyclic property of the trace. With similar arguments
we find for Eq. (4.22)

ρ̇2 =−
[
2Γ̄subf̄−sub(H21) + 2Γ̄tipf̄−tip(H21)

]
ρ2

+ Tr
[
Γsubf̄+

sub(H21)ρ1
]

+ Tr
[
f̄+

tip(H21)Γtip
12 ρ

1
]
.

(A.7)

Eq. (4.23) adopts the following form

ρ̇1 =− i
~
[
Ĥ1, ρ

1
]

−
∑
η

1
2

{
f̄−η (H10)

{
Γη01, ρ

1
}
− i
π

p̄η(H10)
[
Γη01, ρ

1
]}

−
∑
η

1
2

{
f̄+
η (H21)

{
Γη12, ρ

1
}
− i
π

p̄η(H21)
[
Γη12, ρ

1
]}

+
∑
η

f̄+
η (H10)Γη01ρ

0 +
∑
η

f̄−η (H21)Γη12ρ
2,

(A.8)
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where we rewrite the hermitian conjugate as an anticommutator for the Fermi func-
tions and a commutator for the principal parts. The commutators in the last two lines
vanish because p̄η is proportional to the identity.
Now we start to reformulate the equations in terms of the populations and the pseu-
dospin. Since ρ0 and ρ2 only contain one element we can just rewrite

P0 = ρ0 and P2 = ρ2. (A.9)

For ρ1 we use the decomposition introduced in Eq. (4.25)

ρ1 = P1

2 12 + τxσx + τyσy + τzσz = P1

2 12 + τ · σ, (A.10)

with
P1 = Tr ρ1 (A.11)

and
τi = 1

2 Tr
{
ρ1σi

}
= 〈τ̂i〉 . (A.12)

Furthermore we use the form of the tunnelling rate matrices in terms of the pseudospin
polarization

Γ̄η01 = Γ̄η
(
12 + Pτ

η · σ
)

Γ̄η21 = Γ̄η
(
12 −Pτ

η · σ
)
,

(A.13)

where Pτ
sub = 0. With this we find for eq. (A.8)

Ṗ1 =−
∑
η

Γ̄η
[
f̄−η (H10) + f̄+

η (H21)
]
P1

+
∑
η

2Γ̄η
[
f̄+
η (H10)P0 + f̄−η (H21)P2

]
.

(A.14)

The commutators vanish because p̄η is diagonal and the trace is invariant under cyclic
permutations. For the anticommutators only the parts proportional to the identity
survive since the Pauli matrices are trace less.
For the pseudospin part we need the relations

[a · σ,b · σ] = 2i(a × b) · σ (A.15)

and
{a · σ,b · σ} = 2a · b. (A.16)
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With this we find

τ̇ =1
2 Tr

{
ρ1σ

}
=

ω (nmol × τ )− Γ̄tip

π

[
p̄η(H10)− p̄η(H21)

]
Pτ

tip × τ

− 1
2
∑
η

f̄−η (H10)Γ̄η
[
P1Pτ

η + τ
]
− 1

2
∑
η

f̄+
η Γ̄η

[
−P1Pτ

η + τ
]

+ Γ̄tip
[
f̄+

tip(H10)P0 − f̄−tip(H21)P2
]
Pτ

tip.

(A.17)
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