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Abstract

In this thesis, we present a minimal model that describes the effect of a vibrational
degree of freedom in the molecule on the transport characteristics of scanning-tunneling
microscopy (STM) single-molecule junctions. We consider an STM setup with molecules
on ultrathin insulating films, which enables the analysis of unperturbed molecular orbitals
of individual molecules [1]. The entire system can be treated as an effective double
barrier junction, hence we use the Liouville equation approach to compute its transport
properties. Recent spatially resolved vibronic spectroscopy experiments have shown that
the number of excited vibrons in a single tunneling event strongly depends on the local
symmetry of the molecular wave function [2]. This is in contrast to the Franck-Condon
picture [3–5], where the magnitude of vibrational excitations crucially depends on the
change of the equilibrium position of the nuclei (which is determined by the global wave
function) upon electron attachment. Furthermore, a vibron-assisted tunneling effect has
been observed, which facilitates electron transfer between tip and molecule although
the tunneling amplitude without the vibrational degree of freedom is vanishing. We
develop a theory that confirms these findings and yields selection rules for certain high
symmetry configurations. The crucial component of this theory are tunneling amplitudes
that depend on the vibronic state and enable vibronic excitations also in absence of any
electron-vibron coupling for the isolated molecule. The results for our model show that
vibron-assisted tunneling is only possible if the excited modes move the nodal planes of
the molecular orbital. Moreover, they suggest that either a mode with a large zero-point
fluctuation (comparable to the atomic bond length) or a huge number of highly excited
states is needed to bring the present vibron-assisted tunneling effect to a sizable scale.
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1
Introduction

In 1986, G. Binnig and H. Rohrer earned the Nobel Prize in Physics for their invention
of the scanning tunneling microscope [6]. To this day, STM has a significant impact

especially on atomic-scale and surface science. The reason for this is that it provides
manifold and powerful possibilities to study matter on and below the nanometre scale.
For example, it is possible to arrange single atoms [7], use STM for spectroscopy [8], or
probe almost unperturbed individual molecular orbitals [1].

It was not until 1990, that the atomic resolution of the STM could be explained
satisfactory on a theoretical level [9]. This was done by C. J. Chen, who derived his
famous “derivative rule” [10], which enables the calculation of the tunneling matrix
element between tip and sample in a convenient way.

Although the invention of the STM was over 30 years ago, there are still many
challenges which can be addressed, both theoretically and experimentally. This leads us
to the topic of this thesis, which is to study theoretically the effect of a vibrational degree
of freedom in the probed molecule, on the transport characteristics of the STM.

We restrict ourselves to STM setups with molecules on thin insulating films [1, 11, 12].
Such an insulating film consists of a few atomic layers, which is grown on a metal substrate,
and allows to reduce strongly the hybridization between the overlaying molecule and the
metallic substrate. Hence, intrinsic molecular properties can be better investigated. Since
this technique leads to an additional potential barrier between molecule and substrate,
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the entire system can be treated as an effective double-barrier junction. The molecule
behaves as an open quantum system which is in contact to macroscopic reservoirs. Thus,
the reduced density matrix approach [13–15], which is utilized in this thesis, is suitable
to compute the quantum transport through the molecule.

1.1 Motivation
The topic of this thesis has been motivated by experiments that use STM with molecules
on thin insulating films for spatially resolved vibronic spectroscopy [2]. These experiments
show a novel effect which goes beyond the simple Franck-Condon picture and can be
called vibron-assisted tunneling. In particular, the relation between the symmetry of the
tip and the local symmetry of the molecular wave function affects the number of excited
vibrons during a single tunneling event. This can be an important input for organic
or molecular electronics, where the excitation of vibrons should be minimized due to
dissipation.

As far as we know, there is no satisfying theory explaining this effect. The aim of this
thesis is to find the origin of vibron-assisted tunneling. Moreover, we want to develop
a model which describes in general the effect of a vibrational degree of freedom in the
probed molecule on the transport characteristics of STM.

1.2 Outline
This thesis is organized as follows. Chapter 2 gives a short introduction on STM and
presents the experimental technique that allows to study almost unperturbed molecules.
Moreover, the spatially resolved vibronic spectroscopy measurements that motivated this
thesis are presented.

Chapter 3 starts with the introduction of the model Hamiltonian we use to describe
the entire system. The molecular part of this Hamiltonian is diagonalized exactly and
vibronic mode dependent tunneling matrix elements, which are crucial for our theory,
are introduced. Subsequently, we derive rate equations which allow to compute the
transport through the system within the Liouville equation approach. The vibronic mode
dependent tunneling matrix elements influence the transport characteristics via the rate
between the tip and the molecule, which is discussed in great detail. In the end, a model
with a simplified electronic and vibronic structure, but extended by a relaxation rate, is
introduced.

Chapter 4 is dedicated to the results we obtained with a numerical implementation of
our model within the Liouville equation approach. We show spatially resolved vibronic
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spectroscopy data of the full model, which reveal inter alia vibron-assisted tunneling for a
mode which moves the nodal plane of the molecule.

Chapter 5 deals with the numerical implementation of the model which is extended by a
relaxation rate. Within this model, a strong enhancement of the vibron-assisted tunneling
effect is observed for certain relaxation rates. Moreover, we study the influence of the
parameters which determine the form of the orbital wave function, on the vibron-assisted
tunneling effect.
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2
Spatially Resolved Vibronic Spectroscopy

with an STM

In the beginning of this chapter, a brief introduction concerning STM is given. Moreover,
an extended STM setup with an additional thin insulating layer between sample and
substrate is described (Sec. 2.1). After that, a theory which explains the atomic resolution
in STM and gives the tunneling matrix elements between tip and sample is introduced
(Sec. 2.2). In the last section of this chapter, an experiment which shows spatially resolved
vibronic spectroscopy data is presented (Sec. 2.3).

2.1 STM with molecules on thin insulating films

An STM setup with an additional thin insulating layer is depicted in Fig. 2.1. The
usual scanning-tunneling microscope consists of a tip, a substrate and a sample which is
adsorbed on the substrate. In this thesis, we are interested in probing molecules.

By applying a bias voltage Vb between substrate and tip, the chemical potentials of
the leads µtip and µsub change and it is possible to get into resonance with one of the
molecular orbitals (e.g. the LUMO in Fig. 2.1). Consequently, current starts to flow
through the sample via quantum mechanical tunneling through the vacuum barrier and
can be measured as a function of the tip position. Note, that the bias drop is highly
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Figure 2.1: a) shows an STM setup with a thin insulation film between the molecule and
the substrate. b) depicts the potential landscape of the scanning-tunneling microscope
given in (a). The potential well at z = d represents the molecule with its highest occupied
molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO).

asymmetric. It occurs mainly between tip and molecule, which is indicated by a shift of
µtip about eVb. If the distance between tip and sample is kept constant (ztip = const.) and
the tip is moved laterally (in the xy-plane) above the sample, one speaks of constant height
imaging. If the tunneling current is kept constant by adjusting the tip-sample distance,
the terminology is constant current imaging. Both methods allow to draw conclusions
about the spatial form of the molecular orbitals. By measuring the current as a function
of the bias voltage for a fixed tip position, it is possible to do spectroscopy. Combining
both methods, i.e. measuring the current for different tip positions as a function of the
bias, yields spatially resolved spectroscopy. This is discussed in Sec. 2.3.

The additional thin insulating film, depicted in Fig. 2.1, consists only of a few atomic
layers and is grown directly onto the substrate. Typical materials are sodium chloride
or xenon. With the insulating layer, the hybridization between substrate and molecule
is strongly reduced. Thus, it is possible to study inherent electronic and vibrational
properties of the latter. The first experiments showing the success of this technique were
published in 2005 by J.Repp et al. [1].
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2.2 Chen’s derivative rule

In 1990, C. J. Chen published a theory which is based on Bardeen’s tunneling formalism
[16] and explains the atomic resolution of STM [9]. Soon after that he published his
famous “derivative rule” [10], which allows to calculate the tunneling matrix element
between tip and molecule for a given tip symmetry. For simplicity, we restrict ourselves
to a tip wave function which has s-symmetry, which is a good approximation for metal
tips [17]. We emphasize that the generalization to higher angular momentum symmetries
is straightforward.

According to [9], the tunneling matrix element between an s-symmetric tip and a
molecule is given by

ttipk,i = 2π~2Cs
meκ

Ψi(rtip). (2.1)

Here, i labels the molecular orbitals, me the electron mass, and Cs a dimensionless mixing
coefficient which is important if various tip-symmetries are taken into account. The decay
constant is given by κ =

√
2me
~2 (εtipF + Φtip

0 − εk), where εtipF is the Fermi energy and Φtip
0

the work function of the tip, respectively.
Chen’s derivative rule can also be expressed in a more descriptive way. If the symmetry

of the tip and the local symmetry of the molecular wave function at the position of the
tip match, tunneling is allowed, otherwise it is forbidden. Examples for local symmetries
of the LUMO of a pentacene molecule are depicted in Fig. 2.2.

Figure 2.2: Image taken from [2]. It shows the LUMO of pen-
tacene, calculated with density functional theory. Exemplary
points with local s- and p-symmetries are marked.

2.3 Symmetry dependence of vibron-assisted tunnel-
ing

In this section, the experiments [2] that motivated this thesis are presented. They show
that the local symmetry of the molecular wave function at the position of the tip determines
the amount of vibronic excitations in the molecule upon electron attachment. This fact
goes beyond the Franck-Condon picture, which does not account for the local symmetry of
the electronic wave function. There, all that matters is the changed equilibrium position
of the nuclei after charging the molecule, which can lead to a relaxation process and thus
to vibronic excitations.
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Figure 2.3: Figure taken from [2]. In (a,b,c), dI/dV -curves for tip positions indicated
in (e) are shown for different insulating layers. The grey dashed lines point out the
position of the elastic and the first two vibronic peaks. (d) shows the centroids of the
dI/dV -curves along the long axis of pentacene. This axis is indicated in (e) via the yellow
line.

The setup for these experiments is as given in Fig. 2.1 and the adsorbed molecule is
pentacene. Three different insulating layers where considered, namely Xe, RbI and NaCl.
Figs. 2.3(a,b,c) show the differential conductance dI/dV as a function of the bias voltage
V at tip positions indicated in Fig. 2.3(e) for an s-symmetric tip wave function. The bias
range chosen here excludes other electronic excitations then the LUMO.

Above the end of pentacene, the LUMO is locally s-symmetric (Fig. 2.2). Therefore,
the symmetry with respect to the tip matches, and elastic tunneling is allowed according
to Chen’s derivative rule.

Above the center, the LUMO has a large nodal plane density, i.e. also p-symmetry.
Thus, the symmetries match only partially if the tip is positioned in the central region.
According to Chen’s derivative rule, elastic tunneling should be reduced, which can be
seen in Fig. 2.3(a). There, the elastic contribution, which corresponds to the peak that is
lowest in bias, is drastically suppressed. However, there is a strong peak found at larger
bias, which can be assigned to an excitation of a vibron.
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Summarizing the results in [2], one can say that even though tunneling should be
forbidden for tip positions where symmetries do not match, it is allowed but only for
large enough bias. The extra amount of energy is used to excite a vibron. Therefore, one
can speak of vibron-assisted tunneling.

Fig. 2.3(d) shows the centroid of the dI/dV -curves for different positions of the tip.
The centroid is the center of mass of the area under the curve. Due to vibron-assisted
tunneling the centroid at the center of the molecule is at larger bias than at the end.
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3
Theoretical Methodology and Analytics

This chapter is about the theoretical description of STM with molecules on thin insulating
films and a vibrational degree of freedom in the molecule. In the first section, the model
Hamiltonian which describes the entire system is introduced (Sec. 3.1). After that, the
derivation of the master equation for the populations of the reduced density matrix is
presented (Sec. 3.2). Crucial for the transport characteristics are the rates appearing in
this master equation. They will be discussed in detail in Sec. 3.3. Finally, a simplified
model is introduced in which the molecule is described by only one spinless electronic
state and one vibronic mode. This model is extended by a relaxation rate.

3.1 Model Hamiltonian

Our model Hamiltonian, which represents the double barrier junction shown in Fig. 2.1,
can be split into five parts

Ĥ = Ĥmol + Ĥtip + Ĥsub + Ĥmol−tip + Ĥmol−sub. (3.1)

The molecule is represented by the Hamiltonian Ĥmol which is described in detail in Sec.
3.1.1. Ĥtip and Ĥsub are the Hamiltonians for the tip and the substrate, which we assume
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to be reservoirs of noninteracting electrons. Hence, we have

Ĥη =
∑
kσ
εkĉ
†
ηkσ ĉηkσ, (3.2)

where k ≡ ~k, η = tip/sub and ĉηkσ is the annihilation operator for an electron with
momentum k and spin projection σ in lead η. Ĥmol−tip and Ĥmol−sub describe the transfer
of electrons between the molecule and the leads and are described in Sec. 3.1.2.

3.1.1 Minimal model for the molecule

The hypothetical molecule we consider has two pz-orbitals at z = d with a distance a
between them (see Fig. 2.1). Only these two orbitals contribute to electron transport
through the molecule, since we assume that they are the only part of the molecule which
has a finite overlap to the leads. Moreover, our model molecule is in its neutral state if
both pz-orbitals carry in total two electrons. A real molecule one could think of is for
example ethylene, but instead of treating all the vibrational modes, we consider only
two of them. We emphasize, that we are not interested in simulating quantitatively the
transport through a real molecule, but we want to study qualitatively the effects of a
vibrational degree of freedom in the probed molecule on the transport properties of STM,
using the reduced density matrix formalism. Note that it is realistic to assume that
such a molecule can be stable even though the pz-orbitals are fully occupied or empty
by presuming additional orbitals which do not contribute to transport but stabilize the
molecule. In Fig. 2.1 this is indicated by additional p-orbitals that form a σ-bond.

Electronic part

In our model, the purely electronic part of Ĥmol is given by

Ĥel
mol =

∑
σ

[εe(n̂eσ − 1) + εon̂oσ] + U

2 (N̂ − 2)2. (3.3)

The subscript e/o denotes an even/odd orbital, σ is the spin degree of freedom, and
n̂e/o σ is the particle number operator given by d̂ †e/o σd̂e/o σ. d̂e/o σ are the corresponding
annihilation operators. The even/odd orbitals have onsite energies εe/o and they form the
basis in which Ĥel

mol is diagonal. They can be defined via

d̂e/o σ = 1√
2
(
d̂Lσ ± d̂Rσ

)
, (3.4)
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where the subscript L/R denotes the left and the right pz orbital, respectively. Electron-
electron interaction is included via the constant interaction term U

2 (N̂ − 2)2, where N̂ is
the total particle number operator ∑σ

(
d̂ †eσd̂eσ + d̂ †oσd̂oσ

)
. U is a constant which quantifies

the strength of the Coulomb interaction between the electrons.
Note that the neutral molecule in its ground state, which is defined via ∑σ neσ = 2 and∑
σ noσ = 0, has zero electronic energy and the parameters εe, εo and U should be chosen

such that the energy with respect to the neutral state increases if an electron is added or
subtracted.

Vibronic part

We assume, that the vibrational dynamics of our molecule is determined by Hooke’s law
(harmonic approximation) and the configuration of the springs with stiffness k1 and k2

is as given in Fig. 3.1. We choose that particular configuration because it yields two
qualitatively different modes, one that does move and one that does not move the nodal
plane of the odd molecular orbital. Thus, it is possible to analyse which of the two modes
triggers the vibron-assisted tunnelling effect (Sec. 2.3).

k2 k2k1

qL qR

pz

Figure 3.1: Two masses modelling the nuclei of the molecule connected to each other and
to the environment by a linear force.

The magnitude of the spring constant k1 is determined by the chemical-bond (in Fig.
2.1 the σ-bond) between the two atoms, whereas k2, for example, could stem from the van
der Waals forces between the molecule and the thin insulation layer. Another possibility
is that k2 simulates the local dynamics of a larger molecule.

Newtons second law allows us to construct the equations of motion for qL and qR,
which are the displacement coordinates around the equilibrium positions of the left and
the right atom. In matrix form, we haveq̈L

q̈R

 = 1
m

−k2 − k1 k1

k1 −k2 − k1

qL
qR

 , (3.5)

where m denotes the mass of the left and the right nucleus, respectively. This system of
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equations can be solved by the Ansatz

qL(t) = Aeiωt +Be−iωt

qR(t) = Ceiωt +De−iωt,
(3.6)

which leads to the simple problem of finding the kernel of a 2 by 2 matrixk1 + k2 −mω2 −k1

−k1 k1 + k2 −mω2

qL
qR

 = 0. (3.7)

By solving the equation∣∣∣∣∣∣k1 + k2 −mω2 −k1

−k1 k1 + k2 −mω2

∣∣∣∣∣∣ = (k1 + k2 −mω2)2 − k2
1 = 0 (3.8)

we get the frequencies ω for which Eq. 3.5 has solutions. They are given by ω1 =
√
k2/m

and ω2 =
√

(2k1 + k2)/m. We denote ωS ≡ ω1 and ωD ≡ ω2. The associated eigenvectors
(i.e. the vibrational eigenmodes) are

~vS = 1√
2

1
1

 and ~vD = 1√
2

 1
−1

 . (3.9)

The mode determined by ~vS describes a motion where both atoms oscillate in phase and
the nodal plane of the odd molecular orbital moves. Instead, the mode ~vD describes a
motion with a phase shift of π between the two atoms and the nodal plane does not move.
A general solution of the dynamics of the system can be written asqL(t)

qR(t)

 = AS cos(ωSt+ δS) 1√
2

1
1

+ AD cos(ωDt+ δS) 1√
2

 1
−1

 (3.10)

where AS, AD and δS, δD are fixed by the initial conditions. This equation motivates to
define the normal mode coordinates as

Qk ≡ Ak cos(ωkt+ δk), k = S,D, (3.11)

which allows us to write Eq. 3.10 as

q =
∑

k=S,D
Qkvk, (3.12)
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where q ≡
(
qL(t) qR(t)

)T
. Note that QS = 1√

2(qL(t)+qR(t)) and QD = 1√
2(qL(t)−qR(t)),

which is why we denoted the modes via S for “sum” and D for “difference”. The {Qk}
satisfy the harmonic oscillator equation of motion. Hence, we can quantize them in terms
of bosonic creation and annihilation operators â† and â, which gives

Q̂k = ∆x0k
(
â†k + âk

)
. (3.13)

The zero-point fluctuations ∆x0k are given by ∆x0D =
√
~/mωD and ∆x0S =

√
~/4mωS,

which is derived in A.1.
Now, we concentrate on the coupling between the electronic and the vibrational

degrees of freedom. We choose a similar derivation as given by [18] and [19]. The
adiabatic approximation of M. Born and R. Oppenheimer [20], in which the molecular
Hamiltonian depends parametrically on the displacement coordinates, plays a key role.
This approximation is justified because the electrons move on a much shorter time scale
then the nuclei due to their huge mass difference. Therefore, we can write

Ĥmol =
∑
σ

[εe(qL, qR)(n̂eσ − 1) + εo(qL, qR)n̂oσ]+U

2 (N̂−2)2+
∑

k=S,D
~ωk(â†kâk+ 1

2), (3.14)

where the energies of the orbitals are functions of the displacement coordinates and
the harmonic motion of the nuclei gives the additional harmonic oscillator energy. For
small displacements, we can expand εe/o(qL, qR) up to the first order in the displacement
coordinates around the equilibrium position, which yields

εe/o(qL, qR) ≈ εe/o(0, 0) +
∑
i=L,R

∂εe/o(qL, qR)
∂qi

∣∣∣∣∣∣
q=0

qi. (3.15)

Next, we use Eq. 3.12 and take the quantum limit (Eq. 3.13), which results in

εe/o(qL, qR) ≈ εe/o +
∑
i=L,R

∂εe/o(qL, qR)
∂qi

∣∣∣∣∣∣
q=0

∑
k=S,D

∆x0k
(
â†k + âk

)
(vk)i, (3.16)

where we denoted εe/o ≡ εe/o(0, 0) and (vk)i is the i-th component of the vector vk. Eq.
3.16 motivates to define the electron-vibron coupling constant gjk as

gjk ≡
∑
i=L,R

∂εj(qL, qR)
∂qi

∣∣∣∣∣∣
q=0

∆x0k(vk)i (3.17)

where j = {e, o} and k = {S,D}. First, we notice that there is no electron-vibron
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coupling to the S-mode, since the motion of the two nuclei are in phase, which means that
the distance between them remains unchanged. Therefore, there cannot be any change in
the energies of the orbitals if this mode is excited. Or expressed in a mathematical way,

gjS = ∆x0S

∂εj(qL, qR)
∂qL

∣∣∣∣∣∣
q=0

+ ∂εj(qL, qR)
∂qR

∣∣∣∣∣∣
q=0

 = 0 (3.18)

since
∂εj(qL, qR)

∂qL

∣∣∣∣∣∣
q=0

= −∂εj(qL, qR)
∂qR

∣∣∣∣∣∣
q=0

. (3.19)

Therefore, we denote gj ≡ gjD and write the molecular Hamiltonian in its final form:

Ĥmol =
∑
σ

[
εe(n̂eσ − 1) + εon̂oσ + ge(â†D + âD)(n̂eσ − 1) + go(â†D + âD)n̂oσ

]
+ U

2 (N̂ − 2)2 +
∑

k=S,D
~ωk(â†kâk + 1

2).
(3.20)

Note that this Hamiltonian allows a rather intuitive interpretation. As soon as the
electronic configuration is changed, the electron-vibron coupling leads to a new equilibrium
distance between the nuclei. This is exactly what one would expect in the Franck-Condon
picture. In the following pages, we will derive the new equilibrium distance quantitatively.

Diagonalization of the molecular Hamiltonian

In order to get the spectrum of the molecule with its vibrational degrees of freedom we
need to diagonalize Ĥmol. This can be done using the so-called Lang Firsov (or sometimes
Polaron) transformation [21, 22], which is a unitary transformation of the form

˜̂
Hmol = eŜĤmole

−Ŝ. (3.21)

For our specific Hamiltonian the appropriate Ŝ operator reads

Ŝ = 1
~ωD

∑
σ

[ge(n̂eσ − 1) + gon̂oσ] (â†D − âD) . (3.22)

For convenience, the hats which indicate operators are omitted for the rest of this this
section. Note that S is proportional to the vibronic momentum operator of the D-mode,
which is the generator of spatial translations in the corresponding vibronic space. Hence,
e−S is an operator which shifts the D-mode states.

To perform the transformation, we use the Hadamard-Lemma (also called Lie formula),



3.1. Model Hamiltonian 23

which is the operator identity

eSAe−S =
∞∑
m=0

1
m! [S,A]m , (3.23)

where [S,A]m = [S, [S,A]m−1] , [S,A]0 = A and [S,A]1 = SA − AS. For simplicity,
each operator is transformed separately. We start with deσ and compute the required
commutator, obtaining

[S, deσ] = − ge
~ωD

(a†D − aD)deσ (3.24)

with the help of the relations

[neσ′ , deσ] = −{d†eσ′ , deσ}deσ = −δσσ′deσ and [noσ′ , deσ] = 0. (3.25)

In Eq. 3.25, we have used the relation between commutator and anticommutator
[AB,D] = A{B,C}−{A,C}B and the canonical anticommutation relations {deσ, d†eσ′} =
δσσ′ . Using Eqs. 3.23 and 3.24, we get

d̃eσ = eSdeσe
−S = deσ −

ge
~ωD

(a†D − aD)deσ + 1
2

[
ge
~ωD

(a†D − aD)
]2
deσ − ...

= deσ exp
{
− ge
~ωD

(a†D − aD)
}
.

(3.26)

Similarly, one obtains
d̃oσ = doσ exp

{
− go
~ωD

(a†D − aD)
}
. (3.27)

A direct consequence of Eqs. 3.26 and 3.27 is that the operator niσ is invariant under the
polaron transformation, i.e.

ñiσ = d̃†iσd̃iσ = niσ for i = e, o. (3.28)

The vibronic operators transform as

ãD = aD −
1

~ωD
∑
σ

[ge(neσ − 1) + gonoσ] and ãS = aS, (3.29)

where we have used Eq. 3.23 and the canonical commutation relations of the ladder
operators of the harmonic oscillator.

Inserting the transformed operators into Eq. 3.20, one gets the transformed molecular
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Hamiltonian

H̃mol =
∑
σ

[εe(neσ − 1) + εonoσ]− 1
~ωD

[∑
σ

ge(neσ − 1) + gonoσ

]2

+ U

2 (N − 2)2 +
∑

k=S,D
~ωk(a†kak + 1

2).
(3.30)

The absence of the electron-vibron coupling in H̃mol implies that both its spectrum and
eigenstates can be calculated in terms of independent electronic and vibronic degrees of
freedom.

Spectrum and eigenstates of the molecular Hamiltonian

According to Eq. 3.30, the eigenstates of H̃mol can be written in the occupation number
representation as

|ne↑, ne↓, no↑ , no↓;mD,mS〉

= (d†e↑)ne↑(d
†
e↓)ne↓(d

†
o↑)no↑(d

†
o↓)no↓

1√
mD!

(a†D)mD 1√
mS!

(a†S)mS |0〉.
(3.31)

The eigenstates of the original Hamiltonian Hmol are given by the polaron shifted states
of H̃mol, i.e.

|Ψne↑,ne↓,no↑ ,no↓;mD,mS〉 = e−S|ne↑, ne↓, no↑ , no↓;mD,mS〉. (3.32)

Since S consists basically of electronic particle number operators and the vibronic
momentum operator of the D-mode, only the D-mode part of the states is shifted, the
rest stays unchanged. The magnitude of the shift depends on the electronic configuration.
This is consistent to the structure of Hmol, which contains a linear part and a parabolic
part in the harmonic oscillator coordinate QD. These two parts combine to a shifted
parabolic part with shifted harmonic oscillator eigenstates. The magnitude of the shift
enters via the electronic operators in the linear part. The intuitive explanation is the
following: The new equilibrium position between the nuclei due to a change in the
electronic configuration leads to a shifted harmonic oscillator state.

The spectrum is easily obtained by using the relation

H̃mol|ne↑, ne↓, no↑ , no↓;mD,mS〉 = Ene↑,ne↓,no↑ ,no↓;mD,mS |ne↑, ne↓, no↑ , no↓;mD,mS〉, (3.33)
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which yields

Ene↑,ne↓,no↑ ,no↓;mD,mS =
∑
σ

[εe(neσ − 1) + εonoσ]− 1
~ωD

[∑
σ

ge(neσ − 1) + gonoσ

]2

+ U

2

[∑
σ

(neσ + noσ)− 2
]2

+
∑

k=S,D
~ωk(mk + 1

2)
(3.34)

with neσ ∈ {0, 1}, noσ ∈ {0, 1}, and mk ∈ N0.

3.1.2 Tunnelling Hamiltonian

The tunneling Hamiltonian describes the transfer of electrons between the leads and the
molecule. In our model, it is given by

ĤT =
∑
k,i,σ

(
tsub
k,i ĉ

†
sub kσd̂iσ + ttipk,i(Q̂S, Q̂D)ĉ†tip kσd̂iσ +H.c.

)
. (3.35)

tsub
k,i is the tunneling matrix element between the substrate and the molecule. From now
on, the index k is omitted because we work in the flat band limit. The index i labels the
even and the odd molecular orbital.

The crucial part in our theory is the tunneling matrix element between the tip and
the molecule ttipi (Q̂D, Q̂S), which depends on the molecular vibration via the quantized
normal mode coordinates Q̂D and Q̂S. This can be explained using Chen’s derivative rule
(Sec. 2.2), which states that for an s-type tip the tunneling matrix element between tip
and molecule is proportional to the molecular wavefunction evalutated at the position of
the tip. The molecular wavefunction itself depends on the position of the atoms which
can be written in terms of the normal mode coordinates of the vibrations. Therefore, for
an s-symmetry tip, we have

ttipe/o(Q̂D, Q̂S) = 2π~2CS
mκ

Ψe/o(rtip; Q̂D, Q̂S), (3.36)

where Ψe/o is the even and odd molecular wavefunction and rtip is the position of the tip
appex. In the flat band limit, the prefactor in Eq. 3.36 is just a constant. This constant
is not important for us, since the overall prefactor of the tunneling matrix element is just
a free parameter of our theory. The molecular wavefunction is a linear combination of
two pz-orbitals (Sec. 3.1.1), i.e.

Ψe/o(rtip;QD, QS) = 1√
2

[pz(rtip − r1(QD, QS))± pz(rtip − r2(QD, QS))] . (3.37)
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The positions of the atoms, which are aligned on the y-axis at y = ∓a
2 in equilibrium, is

given by

r1/2(QD, QS) =
(

0,∓a2 + qL/R, 0
)T

=
(

0,∓a2 + 1√
2

(QS ±QD), 0
)T

.

(3.38)

Here, we have used that qL/R = 1√
2(QS ±QD) which is equivalent to Eq. 3.12. As usual,

the pz-orbital is given by

p(r) = 1
4
√

2π

(
Zeff

a0

) 5
2
z e
−Zeff |r|

2a0 , (3.39)

where Zeff is the effective atomic number and a0 the Bohr radius.
We emphasize that the tunneling matrix element given by Eq. 3.36 enables transitions

between different vibronic states even without any electron-vibron coupling. Moreover, we
will see that it is the crucial ingredient for the explanation of vibron-assisted tunneling.

3.2 Quantum transport in the density matrix For-
malism

The STM setup we consider corresponds to a double-barrier tunneling junction as described
in Sec. 2.1 and 3.1, respectively. Therefore, the entire physical system can be divided
into the molecule, the tip and the substrate. Since we assume that the molecule is weakly
coupled to its leads, the reduced density matrix formalism, which is introduced in the
next part of this thesis, is a good choice for the description of the electron transport
through this system. In this formalism, the molecule is treated as an open quantum
system and the reduced density matrix ρred describes its dynamics under the influence of
the two leads.

3.2.1 The density operator

In quantum mechanics, a pure state of a system is by definition characterized by the
eigenvalues of a largest set of mutually commuting independent observables. Since it is
often not possible to assign a pure state to a quantum system, the concept of probability
weight is introduced. For example, an electron in an unpolarized beam entering the
famous Stern-Gerlach filtering apparatus [23, 24] cannot be characterized by a pure state,
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but is said to be in a statistical mixture of states.

The average of the measurements of an observable Q̂ is then generalized to

〈Q̂〉 ≡
∑
i

wi〈Ψi|Q̂|Ψi〉

=
∑
i,j

wiqj|〈qj|Ψi〉|2
(3.40)

where {|qj〉} is a complete set of eigenstates of Q̂ with eigenvalues qj . The pure quantum
mechanical probability for the state |Ψi〉 to be found in the eigenstate |qj〉 enters via
|〈qj|Ψi〉|2, whereas the lack of knowledge appearing in a statistical mixture is attributed
to the probabilities wi. Notice that the {|Ψi〉} need not to be orthogonal nor complete,
but the set {wi} has to fulfill ∑iwi = 1. Eq. 3.40 can be rewritten into

〈Q̂〉 =
∑
l

∑
k

(∑
i

wi〈αl|Ψi〉〈Ψi|αk〉
)
〈αk|Q̂|αl〉 (3.41)

where {|αk〉} form an arbitrary orthonormal basis of the Hilbert space under consideration.
Eq. 3.41 motivates to define the density operator ρ̂ as

ρ̂ =
∑
i

wi|Ψi〉〈Ψi| (3.42)

with its matrix elements
ρlk =

∑
i

wi〈αl|Ψi〉〈Ψi|αk〉.

With that, the average of a measurement of an observable is simply given by

〈Q̂〉 = Tr(ρ̂Q̂). (3.43)

The trace is evaluated using any orthonormal basis set and the density operator satisfies
the normalization condition Tr ρ = 1.

3.2.2 The time evolution of the density operator

The time evolution of a quantum mechanical state |Ψ(t)〉 is governed by the Schrödinger
equation

i~
∂

∂t
|Ψ(t)〉 = Ĥ(t)|Ψ(t)〉, (3.44)
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where Ĥ(t) is the (in general) time dependent Hamilton operator of the system. Starting
from Eq. 3.44, one can directly deduce the time evolution of the density operator

ρ̂(t) =
∑
i

wi|Ψi(t)〉〈Ψi(t)|. (3.45)

This leads to the equation of motion

i~
∂

∂t
ρ̂(t) = [Ĥ(t), ρ̂(t)], (3.46)

which is called Liouville-von Neumann equation and is written in the Schrödinger picture.

For our system, which is composed of the tip, the molecule and the substrate, it is
much too complicated to solve Eq. 3.46. Therefore, we split the total Hamiltonian Ĥ
into three parts. The first part is the Hamiltonian of the molecule Ĥmol, the second part
is the Hamiltonian of the reservoirs Ĥres, and the third part is the tunneling Hamiltonian
ĤT which includes system-bath coupling. A detailed description of these Hamiltonians
can be found in Sec. 3.1.

Because of the vacuum barrier between tip and molecule and the insulating layer
between substrate and molecule, the total system can be seen as an effective double
barrier junction. We assume that the coupling to the tip and the substrate is small
enough to treat ĤT as a perturbation. With that in mind, we define the time evolution
operator in the interaction picture as

Û I(t, t0) = e
i
~ (Ĥres+Ĥmol)(t−t0)e−

i
~ Ĥ(t−t0), (3.47)

where t0 is some arbitrary reference time. We have assumed that the Hamiltonian is not
explicitly time dependent. Now, we transform the Liouville-von Neumann equation into
the interaction picture, where it takes the form

i~
∂

∂t
ρ̂I(t) = [Ĥ I

T(t), ρ̂I(t)]. (3.48)

The superscript I indicates that the operator is written in the interaction picture. Eq.
3.48 can be formally integrated, which yields

ρ̂I(t) = ρ̂I(t0)− i

~

t∫
t0

dτ
[
Ĥ I

T(τ), ρ̂I(τ)
]
. (3.49)
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Reinserting Eq. 3.49 into Eq. 3.48 results in

˙̂ρI(t) = − i
~
[
Ĥ I
T (t), ρ̂I(t0)

]
− 1

~2

t∫
t0

dτ
[
Ĥ I

T(t),
[
Ĥ I

T(τ), ρ̂I(τ)
]]
, (3.50)

which is a good starting point for a perturbative solution of the equation of motion for
the density operator.

3.2.3 Generalized Master Equation

In this section, the derivation of the Generalized Master Equation for the reduced density
operator is presented, following [25, 26].

In the scope of this thesis, we are interested in the transport through the molecule,
for instance in the particle current

〈I〉 = d
dt〈N̂mol〉 = Tr

( ˙̂ρ(t)N̂mol
)
. (3.51)

N̂mol is the particle number operator of the molecule, which only acts on states of the
molecular Fock space. Therefore, it makes sense to split the trace into a molecular and a
reservoir part, which leads to

〈I〉 = Trmol
{

Trres
( ˙̂ρ
)
N̂mol

}
. (3.52)

This motivates to define the reduced density operator as

ρ̂red = Trres(ρ̂). (3.53)

As one can see from Eq. 3.52, it is enough to know ρ̂red in order to get the particle current
into the molecule. Hence, the goal is to deduce an equation of motion for ρ̂red, which can
be done from Eq. 3.50. To this end, we rewrite the full density operator in a factorized
and a non-factorized part:

ρ̂I(t) = ρ̂I
red(t)⊗ ρ̂res +O(ĤT). (3.54)

This is possible if one assumes that the molecule and the reservoirs are uncorrelated
at some time t0 (the proof can be found in A.2). Note that ρ̂res is simply given by
ρ̂res ≡ ρ̂tip ⊗ ρ̂sub. We assume that the tip and the substrate are huge reservoirs which
are not effected by the rest of the system and which are in thermal equilibrium. Their
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density operators are given by

ρ̂η = e−β(Ĥη−µηN̂η)

Tr
{
e−β(Ĥη−µηN̂η)

} , (3.55)

where β is the inverse thermal energy and η = tip/sub. With that, we return to Eq. 3.50,
from which we trace out the tip and substrate degrees of freedom. We also apply Eq.
3.54 and obtain

˙̂ρIred(t) =− i

~
Trres

{[
ĤI
T (t), ρ̂red(t0)⊗ ρ̂res

]}
− 1

~2

t∫
t0

dτ Trres
{[
ĤI

T(t),
[
ĤI

T(τ), ρ̂Ired(τ)⊗ ρ̂res
]]}

+O((ĤT)3).
(3.56)

The first term in Eq. 3.56 vanishes, since ĤT does not conserve the particle number in
the reservoirs. If we keep only the first non-vanishing order in the tunneling Hamiltonian,
we are left with

˙̂ρIred(t) = − 1
~2

t∫
t0

dτ Trres
{[
ĤI

T(t),
[
ĤI

T(τ), ρ̂Ired(τ)⊗ ρ̂res
]]}

. (3.57)

If the temperature is large enough, the first step of the Markov approximation, also
known as the local time approximation, is valid. To be more precise, ~Γmax � kBT

should be satisfied, where Γmax is the maximum rate between the molecule and the
reservoirs. Thereby, ρ̂Ired(τ) is replaced by ρ̂Ired(t) in Eq. 3.57. The second step in the
Markov approximation is to extend the integral in Eq. 3.57 to t0 → −∞, which is valid if
we are only interested in the long-term behaviour of our system (times larger than the
bath correlation time ~β). Since we only care about the stationary solution of the current
(t→∞), this is always fulfilled. In fact, in this limit, the Markov approximation becomes
even exact. After the transformation of variables τ → t− t′ , Eq. 3.57 finally becomes

˙̂ρIred(t) = − 1
~2

∞∫
0

dt′Trres
{[
ĤI

T(t),
[
ĤI

T(t− t′), ρ̂Ired(t)⊗ ρ̂res
]]}

. (3.58)

The next step is to write out explicitly the tunneling Hamiltonian (Eq. 3.35) and to
perform the trace over the reservoirs. The density matrices of the reservoirs preserve
the particle number, therefore terms with exclusively creation or annihilation operators
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vanish. Mixed terms can be rewritten as

Trres{ĉ†η kσ(t)ĉη′ k′σ′(t− t′)ρ̂res} = Trres{ĉ†η kσ ĉη kσρ̂res}e
i
~ εt
′
δηη′δσσ′δkk′

=f+
η (εk)e i~ εt′δηη′δσσ′δkk′ .

(3.59)

Here, time dependent operators are written in the interaction picture unless indicated
otherwise. We have used that the time evolution of the annihilation operators of the
reservoirs is given by cη kσ(t) = cη kσe

− i
~ εkt, which can be easily derived by solving the

differential equation
d
dt ĉη kσ(t) = d

dtÛ
†
0(t)ĉη kσÛ0(t) (3.60)

with Û0 = e−
i
~ (Ĥres+Ĥmol)t. Eq. 3.60 is just the time derivative of the usual time evolution of

operators in the interaction picture. In Eq. 3.59, the Fermi function f+
η (εk) = 1

eβ(εk−µη)+1
appears, since Trη{ĉ†η kσ ĉη kσρ̂η} is the expectation value of the particle number operator
n̂η kσ. Similarly, we get

Trres{ĉη kσ(t)ĉ†η′ k′σ′(t− t′)ρ̂res} = f−η (εk)e i~ εt′δηη′δσσ′δkk′ , (3.61)

where we have used the fermionic anticommutation relations of the annihilation and
creation operators for the leads and denoted f−η (εk) ≡ 1− f+

η (εk).
Putting everything together and transforming it into the Schrödinger picture via

˙̂ρSred(t) = − i
~

[Ĥmol + Ĥres, ρ̂
S
red(t)] + Û0(t) ˙̂ρIred(t)Û †0(t) (3.62)

yields our final form of the generalized master equation for the reduced density operator

˙̂ρSred(t) =− i

~
[Ĥmol, ρ̂

S
red(t)]− 1

~2

∞∫
0

dt′
∑
ηkijσ
{

+ tηi (Q̂D, Q̂S)d̂iσ[tηj (Q̂D, Q̂S)(−t′)]†d̂†jσ(−t′)ρ̂Sred(t)f+
η (εk)e i~ εkt′

+ [tηi (Q̂D, Q̂S)]†d̂†iσt
η
j (Q̂D, Q̂S)(−t′)d̂jσ(−t′)ρ̂Sred(t)f−η (εk)e− i

~ εkt
′

− tηi (Q̂D, Q̂S)d̂iσρ̂Sred(t)[tηj (Q̂D, Q̂S)(−t′)]†d̂†jσ(−t′)f−η (εk)e i~ εkt′

− [tηi (Q̂D, Q̂S)]†d̂†iσρ̂Sred(t)tηj (Q̂D, Q̂S)(−t′)d̂jσ(−t′)f+
η (εk)e− i

~ εkt
′

+H.c. } .

(3.63)

3.2.4 Rate equations and current

In order to get the rate equations of the double barrier junction, we project Eq. 3.63
onto the eigenstates |Ψβ〉 of the molecular Hamiltonian. The many body eigenstates are
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labelled by the multi-index β = (ne↑, ne↓, no↑ , no↓;mD,mS). By including the identities∑
β′ |Ψβ′〉〈Ψβ′| at the position of the time dependent operators, we can gather the time

dependence in one exponential, which is simply a phase factor. Using the identity

∞∫
0

dt e i~Et = π~δ(E) + i~PV
( 1
E

)
, (3.64)

where PV() is the principal value, it is now possible to perform the time integration over
this phase factor.

As a next step, we neglect all terms with off-diagonal elements of the reduced density
matrix, which is called secular approximation. These off-diagonal elements are called
coherences. The secular approximation is valid, if the rates (in terms of energies) are small
compared to the energy differences of the system. Therefore, coherences are especially
important for systems with degeneracies. In our system, there are only spin degeneracies
which are zero anyway, because we have no spin flip processes. The rate which could
endanger the secular approximation is the rate between the molecule and the substrate.
However, it is roughly around 1meV [27], which is small compared to typical vibrational
energies in molecules. Thus, in our system the secular approximation is justified.

After taking the continuum limit ∑k →
∫
dεkDεk and the flat band limit for the

density of states of the leads (Dεk → D) we perform the integration over εk, which is
easily done because of the delta distribution in Eq. 3.64.

Putting everything together, one finally gets the rate equations for the double barrier
junction. It reads

Ṗβ(t) =−
∑

η,i,σ,β′

[
Γββ

′

iσηf
+
η (ωβ′β) + Γβ

′β
iσηf

−
η (ωββ′)

]
Pβ(t)

+
∑

η,i,σ,β′

[
Γββ

′

iσηf
−
η (ωβ′β) + Γβ

′β
iσηf

+
η (ωββ′)

]
Pβ′(t),

(3.65)

where Pβ(t) = 〈Ψβ|ρ̂Sred(t)|Ψβ〉 are the so-called populations of the reduced density matrix,
which give the probability that the system is in the state β. The Bohr frequencies are
given by wββ′ = Eβ −E ′β. Crucial for the transport properties of the system are the rates,
which read

Γββ
′

iσ sub ≡
2π
~
Dsub|〈Ψβ|tsubi d̂iσ|Ψβ′〉|2 (3.66)

and
Γββ

′

iσ tip ≡
2π
~
Dtip|〈Ψβ|ttipi (Q̂D, Q̂S) d̂iσ|Ψβ′〉|2. (3.67)

They will be discussed in detail in Sec. 3.3.
Eq. 3.65 can be visualized in the following way. A term involving an f+

η (ωββ′)
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function corresponds to a tunneling process from the lead η into the molecule, where
the electron has an energy ωββ′ . All terms with an f−η (ωββ′) function correspond to
tunneling processes out of the molecule and into the lead η. The applied bsias enters via
the chemical potentials µtip = µ0 + cVb and µsub = µ0 − (1− c)Vb, which appear in the
Fermi functions. Here, Vb is written in electron volt, c determines the asymmetry of the
bias drop, and µ0 is the chemical potential of the leads without bias voltage.

It is convenient to rewrite Eq. 3.65 into matrix form, i.e.

~̇P = L~P . (3.68)

L contains all the transport characteristics of the system within the approximations we
made and is called Liouvillean.

In the experiment, usually the current through the molecule is measured. Therefore,
it is for us desirable to compute this observable. The expectation value of the particle
current flowing into the molecule is given by the time derivative of the expectation value
of the particle number operator of the molecule, i.e.

〈Î〉 = d
dt Tr{ρ̂(t)N̂mol}. (3.69)

Performing the trace over the reservoirs and using Eq. 3.68, yields

〈Î〉 = Trmol{ ˙̂ρredN̂mol} =
∑
ββ′

Nβ
molLββ′Pβ′ , (3.70)

where Nβ
mol is the number of particles in the state β. We are only interested in the

stationary solution, i.e. in the case 〈Î〉 = 0. In this situation, the current flowing from
the tip into the molecule 〈Î in

tip〉 equals the current flowing out of the molecule into the
substrate 〈Îout

sub〉. Solving L~P = 0 yields the populations in the stationary solution ~P stat,
which are necessary to compute

〈Î in
tip〉 =

∑
ββ′

Nβ
molL

tip
ββ′P

stat
β′ , (3.71)

which is the observable we are interested in. Ltip
ββ′ is the part of the Liouvillean which

is responsible for the current between the tip and the molecule. It contains only Fermi
functions of the tip. Often, one is interested in the differential conductance, which can be
obtained by taking the derivative of 〈Î in

tip〉 with respect to the bias Vb.
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3.3 The rates between the molecule and the leads

The transport characteristics of our STM setup are encoded in the rates given by Eq.
3.66 and 3.67. Of special interest are the rates between the tip and the molecule, which
contain tunneling matrix elements which are a function of the quantized normal mode
coordinates of the molecular vibrations. The reason for this is explained in Sec. 3.1.2.
As we will see, these tunneling matrix elements leads to unique dI/dV-characteristics,
emerging from modified Franck-Condon factors that will be introduced in Sec. 3.3.2.
First, we consider the rate between the molecule and the substrate.

3.3.1 The rates between the molecule and the substrate - The
Franck-Condon factors

The rate between the molecule and the substrate, given by Eq. 3.66, can be calculated
exactly on an analytical level. First, note that tsub

i is just a number and can be therefore
pulled out of the matrix element contained in Γββ

′

iσ sub. Hence, we have

〈Ψβ|tsub
i d̂iσ|Ψβ′〉 = tsub

i 〈β|eŜ d̂iσe−Ŝ|β′〉 = tsub
i 〈β|

˜̂
diσ|β′〉, (3.72)

where |Ψβ〉 are the exact eigenstates of the molecular Hamiltonian and β labels the many
body states. Ŝ is the operator used for the transformation which diagonalizes Ĥmol and
d̂iσ is the annihilator of an electron in an odd or even orbital, respectively. For details
we refer to Sec. 3.1.1. Applying Eqs. 3.26 and 3.27, factorizing the electronic from the
vibronic part, and using the orthogonality of the harmonic oscillator states, we get

〈Ψβ|tsub
i d̂iσ|Ψβ′〉 = tsub

i 〈α|d̂iσ|α′〉〈mD|e
− gi

~ωD
(â†D−âD)|m′D〉δmSm′S (3.73)

where α = (ne↑, ne↓, no↑ , no↓) labels the purely electronic part of the many body states,
i.e. β = (α;mD,mS). We denote

F (m,m′, λ) ≡
∣∣∣〈m|e−λ(â†−â)|m′〉

∣∣∣2 , (3.74)

which are the so-called Franck-Condon (FC) factors. We omitted the subscript D since we
use definition 3.74 for arbitrary modes, and introduced the dimensionless electron-vibron
coupling constant λ ≡ g

~ω . From now on, we will omit “dimensionless” when we talk
about λ. Note that the FC factors are the crucial part responsible for vibronic transitions
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in the molecule-substrate rates and that they can be calculated exactly. The result reads

F (m,m′, λ) = e−λ
2
λ2|m′−m|

(
m!
m′!

)sgn(m′−m) [
L
|m′−m|
min(m,m′)(λ

2)
]2
, (3.75)

where sgn() is the Signum function and L
|m′−m|
min(m,m′)(λ2) are the associated Laguerre

polynomials. They are given by

Lkn(x) =
n∑

m=0
(−1)m (n+ k)!

(n−m)!(k +m)!m!x
m. (3.76)

A derivation of Eq. 3.75 can be found in A.3.

A more intuitive way of writing the FC factors (Eq. 3.74) is probably

F (m,m′, λ) =
 ∞∫
−∞

dQ Φm(Q)Φm′(Q+ 2∆x0λ)
2

, (3.77)

where ∆x0 is the zero-point fluctuation of the harmonic oscillator associated with the
mode one considers, and Φm(Q) is an eigenfunction of the harmonic oscillator. We have
used that e−λ(â†−â) can be written in terms of the momentum operator of the harmonic
oscillator as e i~2∆x0λp̂ and therefore generates translations. Eq. 3.77 tells us that a FC
factor is just the overlap of two harmonic oscillator states where one of them is shifted.
The magnitude of the shift is proportional to the electron-vibron coupling constant and
the zero-point fluctuation. It is the distance between the old and the new equilibrium
position of the nuclei after a charging process.

To visualize further the meaning of the FC factors, consider Fig. 3.2. It shows the
so-called FC parabolas for two different electron-vibron coupling constants. For zero
electron-vibron coupling we obviously have F (m,m′, λ) = δm,m′ , which means that the
FC parabola is a diagonal. For small electron-vibron coupling, e.g. λ = 0.5, this diagonal
opens and becomes a narrow parabola, which can be seen in the left part of Fig. 3.2.
In the right part, there is a strong electron-vibron coupling of λ = 4 and therefore the
parabola is very wide. A large λ leads also to a suppression of transitions with small m
and m′, which can result in a significant current suppression at low bias voltage. This
effect is termed FC blockade [28]. Also note that there are quantum oscillations in the
central regions of the FC parabolas, whereas there is a strong suppression outside.

Putting everything together, we can give the final form of the molecule-substrate rate,
which is

Γββ
′

iσ sub = 2π
~
Dsub|tsub

i 〈α|d̂iσ|α′〉|2F (mD,m
′
D, λi)δmSm′S (3.78)
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Figure 3.2: The FC parabolas for λ = 0.5 (left) and λ = 4 (right).

with λi = gi
~ωD

.

3.3.2 The rates between the molecule and the tip - The modi-
fied Franck-Condon factors

In this section we analyze the tip-molecule rate, given by Eq. 3.67. We are interested in
the matrix element which is contained in the rate. It can be written as

〈Ψβ|ttipi (Q̂D, Q̂S)d̂iσ|Ψβ′〉 = 〈β|t̃ tip
i (Q̂D, Q̂S) ˜̂

diσ|β′〉, (3.79)

where we have used the unitarity of the Lang Firsov transformation. We need to calculate
the transformed tunneling matrix element

t̃ tip
i (Q̂D, Q̂S) = eŜttipi (Q̂D, Q̂S)e−Ŝ, (3.80)

which is done in A.4. The result is

t̃ tip
i (Q̂D, Q̂S) = t tip

i

(
Q̂D −∆Q̂D, Q̂S

)
, (3.81)

where we have denoted

∆Q̂D ≡ 2∆x0D
∑
σ

[λe(n̂eσ − 1) + λon̂oσ] . (3.82)
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∆x0D labels the zero-point fluctuation of the D-mode. We insert t̃ tip
i (Q̂D, Q̂S) and ˜̂

diσ into
Eq. 3.79, apply ∆Q̂D which contains electronic operators to the bra 〈β|, and factorize
the electronic from the vibronic part. This leads to

〈Ψβ|ttipi (Q̂D, Q̂S)d̂iσ|Ψβ′〉 =

〈α|d̂iσ|α′〉〈mD,mS|t tip
i

(
Q̂D −∆Qα

D, Q̂S

)
e−λi(â

†
D−âD)|m′D,m′S〉,

(3.83)

where 〈α|∆Q̂D = 〈α|∆Qα
D.

Nontrivial in Eq. 3.83 is the vibronic part. Its square is similar to the FC factors, but
modified by the tunneling matrix element between the tip and the molecule. Thus we
denote ∣∣∣∣〈mD,mS|t tip

i

(
Q̂D −∆Qα

D, Q̂S

)
e−λi(â

†
D−âD)|m′D,m′S〉

∣∣∣∣2 (3.84)

modified FC (MFC) factors. Note that it is not possible to factorize the vibronic D-mode
part from the vibronic S-mode part, nor to pull out the tunneling matrix element. For
interpretation purposes, we rewrite the MFC factors into integral form and use Chen’s
derivative rule. Neglecting the constant prefactor, this gives
 ∞∫
−∞

dQD

∞∫
−∞

dQS ΦmD(QD)ΦmS(QS)Ψi(rtip;QD−∆Qα
D, QS)Φm′D

(QD+
√

2∆x0Dλi)Φm′S
(QS)

2

.

(3.85)

From now on, we will only consider the odd molecular orbital (i = o) because it has
varying local symmetries, whereas the even orbital has only s-symmetry. This is the more
interesting case for us, since we want to study the effect of different local symmetries of
the molecule on the transport characteristics of STM.

The origin of vibron-assisted tunneling

Calculating the integrals in Eq. 3.85 numerically, one gets the MFC factors for a certain
tip position and electron-vibron coupling constant. In order to visualize them as the
FC factors in Fig. 3.2, one has to fix at least two of the four indices mD,mS,m

′
D,m

′
S

or plot them in a tensor product way. The latter is done in Figs. 3.3(a)-(c), which
show the MFC factors for tip positions indicated in Fig. 3.3(d). Each of the Figs.
3.3(a)-(c) can be divided into 5x5-blocks, where each block corresponds to a specific
D-mode transition and consists of several S-mode transitions. The blocks are specified by
blue braces and labelled by blue numbers. The content of each block (i.e. the S-mode
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- - - - - - - - - -

Figure 3.3: (a,b,c) show the MFC factors for tip positions indicated in (d) and for a
electron-vibron coupling constant λo = 1. They are normalized to the ground to ground
state transition in (b). Since the MFC factors have four indices, they are visualized
in a tensor product way. |mD,mS〉 = |mD〉 ⊗ |mS〉 runs along the horizontal axis and
|m′D,m′S〉 = |m′D〉 ⊗ |m′S〉 along the vertical axis. The black numbers label the S-mode
states, the blue numbers the D-mode states. The MFC factors are calculated with zero-
point fluctuations of ∆x0S = a/10 and ∆x0D = a/20, where a = 1.34Å is the distance
between the two pz-orbitals. Note that there is a large effect of ∆x0S on the MFC factors,
which is discussed in detail in Sec. 5.4. (d) shows a constant height current map of the
odd molecular orbital. The current is normalized to its maximum value.

transitions) is labelled by black numbers. As an example we have indicated the transition
(mD = 2,mS = 2)→ (m′D = 0,m′S = 3) by a red square in Fig. 3.3(a). The green square
corresponds to the block (mD = 2,m′D = 0). Within this block the red square corresponds
to (mS = 2,m′S = 3).

First, we analyze the structure of the MFC factors with respect to D-mode transitions.
This means that we consider entire blocks. For comparison, Fig. 3.4(a) shows the
corresponding unmodified FC factors for one mode. Clearly, one recognizes the structure
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Figure 3.4: (a) shows the FC factors for λ = 1. (b) shows the MFC factors for the S-mode
with mD = m′D = 0. The parameters are chosen as in Fig. 3.3.

of the unmodified FC factors by comparing D-mode blocks of the MFC factors. For
example, the transition m = 1 → m′ = 1 in Fig. 3.4(a) corresponds to the blocks
(mD = 1,m′D = 1) in Figs. 3.3(a)-(c) and both are vanishing. However, there are also
differences. For example, there is an asymmetry with respect to the diagonal in the MFC
factors, which becomes even stronger if the tip is positioned on the outside of the orbital
lobe (Fig. 3.3(c)). This means that the preference of heating or cooling the system via
vibron excitations depends on whether an electron is attached or detached.

Nonetheless, the effect of the tunneling matrix element between the tip and the
molecule on the structure of the D-mode blocks of the MFC factors is relatively small. In
particular, vibron-assisted tunneling cannot be explained by the D-mode. According to
Fig. 3.3(a), vibrational ground to ground state transitions with respect to the S-mode
vanish for all (mD,m

′
D) if the tip is positioned above the nodal plane. Therefore, one

would not observe differential conductance peaks at any bias without the S-mode for that
tip position. This can also be explained by Eq. 3.85. The odd molecular wave function
without the S-mode is zero for all QD if the tip is positioned above the nodal plane. The
reason for that is that the position of the nodal plane is not changed by the D-mode.

Now, let us concentrate on the S-mode. In Fig. 3.3(a), the blocks are off-diagonal,
whereas in Fig. 3.3(b,c) they are diagonal. Therefore, the transition mS = 0 to m′S = 0 if
the tip is above the nodal plane is forbidden, but mS = 0 to m′S = 1 is allowed. Instead,
for tip positions above the maximum of the orbital, the transition mS = 0 to m′S = 0 is
allowed. These simple observations show that the reason for the vibron-assisted tunneling
effect can indeed be found in the MFC factors, and that the crucial component is a mode
which moves the nodal plane.
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Fig. 3.4(b) shows one of these S-mode blocks of Fig. 3.3(a), which means that mD

and m′D are fixed. The transitions which are exactly zero are marked. Obviously, there is
a selection rule, namely mS +m′S must be an odd number in order to get a nonvanishing
rate. In the next part, we will see that one can deduce this selection rule directly from
Eq. 3.85.

Selection rule

In order to derive the selection rule, we analyze the odd molecular wave function Ψo. Fig.
3.5(a) shows Ψo for fixed xtip and ztip as a function of ytip, Fig. 3.5(b) shows Ψo as a
function of QS for ytip = ynp and fixed xtip and ztip. Here, ynp denotes the tip position
above the nodal plane. Except for the direction of the axis, a) and b) look the same, which
means that Ψo is not only an odd function of ytip but also of QS. The reason for this is,
that the S-mode moves both atoms in phase. This leads to the first selection rule, since
the two harmonic oscillator functions for the S-mode in Eq. 3.85 need to have different
symmetries in order to cancel the odd symmetry of Ψo and to get a non-vanishing rate.
In other terms, we have

Γββ
′

iσ tip = 0 for mS +m′S = 2n with n ∈ N0, (3.86)

for ytip = ynp. This works also for non-zero QD, because the D-mode respects the
symmetry of Ψo.

Ψo(x0, ytip, z0; 0, 0)

ytip

a)
Ψo(x0, ynp, z0; 0, QS)

QS

∆x0S

b)

Figure 3.5: Odd molecular orbital as a function of (a) ytip and (b) QS.

The case that the entire orbital is an odd function with respect to the normal mode
coordinate is rather special. Therefore, we want to emphasize that this condition is not
necessary. It is enough that the position of the tip is above a nodal plane of the molecular
orbital. The explanation for that can be seen in Fig. 3.5(b). Only a tiny region with a
length of a few ∆x0S around QS = 0, marked via the red dashed lines, contributes to the
integral in Eq. 3.85. This is because outside this region, the harmonic oscillator states
are exponentially suppressed. Within this region, the orbital is obviously linear in QS, i.e.
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can be written as Ψo ∝ QS. Therefore the integrals in Eq. 3.85 can be separated and we
are left with

Γββ
′

iσ tip ∝

 ∞∫
−∞

dQS ΦmS(QS)QSΦm′S
(QS)

2

, (3.87)

where we directly see selection rule 3.86 again.
Another selection rule emerges from the situation where the tip is positioned directly

above the maximum of an orbital lobe. According to Fig. 3.6, we have Ψo ∝ 1 − Q2
S

in the region which contributes to the integral in Eq. 3.85 for QD = 0. Therefore, the
integral over the normal mode coordinate of the S-mode is given by

∞∫
−∞

dQS ΦmS(QS)(1−QS)2Φm′S
(QS) = δmS ,m′S −

∞∫
−∞

dQS ΦmS(QS) Q2
S Φm′S

(QS), (3.88)

which leads to a selection rule for y = ymax. It reads

Γββ
′

iσ tip = 0 for mS +m′S = 2n+ 1 with n ∈ N0. (3.89)

Summarizing, one can say that Eq. 3.85 explains the vibron-assisted tunneling effect
on a qualitative level and gives additional information about all possible transitions. In
particular, selection rules emerge for special positions of the tip.

Figure 3.6: Odd molecular orbital as a func-
tion of QS for ytip = ymax. The red dashed
lines indicate the region in which the har-
monic oscillator functions contribute to the
MFC factors. Outside this region, they are
exponentially suppressed.

Ψo(x0, ymax, z0; 0, QS)

QS

∆x0S

However, by comparing the scales in Fig. 3.3(a) and (b), it is obvious that the MFC
factors for y = ynp are much smaller (about a factor of ∼ 102) than the MFC factors for
y = ymax. This makes sense if one compares Fig. 3.5(b) to Fig. 3.6. Inside the region of
the red dashed lines, the molecular wave function in Fig. 3.5(b) is much smaller than in
Fig. 3.6 and thus the MFC differ by two orders of magnitude. This rather important fact
obviously depends on the size of the zero-point fluctuation and is discussed in detail in
Sec. 5.4.
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3.4 Model with relaxation rate

In the last section, we showed that only the S-mode leads to the vibron-assisted tunneling
effect (see also Sec. 4.2). Moreover, in order to study the effect of a vibronic degree of
freedom in the molecule in combination with different local symmetries of the molecular
wave function, it is enough to take into account only one spinless electronic state. Therefore,
we consider a simplified model with one spinless odd molecular orbital and a vibronic
S-mode in this section. Furthermore, we add an additional relaxation term, which brings
the system into thermal equilibrium with a certain rate, to the Liouvillean. The physical
origin for this term is for instance vibron-phonon coupling to the insulating film.

The Hamiltonian for the simplified molecular system can be written as

Ĥsim
mol = εN̂ + gN̂

(
â† + a

)
+ ~ω

(
â†â+ 1

2

)
. (3.90)

g quantifies the electron-vibron coupling, N̂ = d†d is the particle number operator of the
molecular system and d† creates an electron in the molecular orbital. â is the annihilation
operator of an S-type mode, i.e. a mode which moves the atoms in phase. Using the Lang
Firsov transformation, Ĥsim

mol can be diagonalized in a similar way as the Hamiltonian in
Sec. 3.1.1. The diagonalization leads to

˜̂
Hsim

mol = eŜĤsim
mole

−Ŝ = εN̂ + ~ω
(
â†â+ 1

2

)
− g2

~ω
N̂2, (3.91)

where Ŝ ≡ λN̂(â† − â) with λ ≡ g
~ω .

The eigenstates of Ĥsim
mol can be labelled by one electronic quantum number (n ∈ {0, 1})

and one vibronic quantum number (m ∈ N0). They are given by

|Ψn;m〉 = e−S|n;m〉 (3.92)

with the eigenenergies Enm

E0m = ~ω
(
m+ 1

2

)
E1m = ε− g2

~ω
+ ~ω

(
m+ 1

2

)
.

(3.93)

The rate equations 3.65 hold also for the simplified system, except that the degrees of
freedom of the molecular orbital and the spin are gone. The relaxation rate is included
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into the rate equations phenomenologically, as for example done in [28]. This leads to

Ṗβ(t) =−
∑
η,β′

[
Γββ′η f+

η (ωβ′β) + Γβ′βη f−η (ωββ′)
]
Pβ(t)

+
∑
η,β′

[
Γββ′η f−η (ωβ′β) + Γβ′βη f+

η (ωββ′)
]
Pβ′(t)

− 1
τ

[
Pnm − P eq

m

∑
m′
Pnm′

]
,

(3.94)

where β = (n;m) labels the eigenstates, τ is the relaxation time and P eq
m is the thermal

vibron distribution, i.e.

P eq
m = e−β~ω(m+ 1

2)∑
m e
−β~ω(m+ 1

2) . (3.95)

In equilibrium (µtip = µsub), the solution of Eq. 3.94 is given by the grand canonical
distribution (as in the case without relaxation term). In out-of equilibrium conditions,
the relaxation term thermalizes only the vibronic part of the populations, i.e. it does not
change the number of electrons. This can be explained by considering the time derivative
of the probability of the occupation number of electrons ∑m Ṗnm, which does not get any
contribution by the relaxation term. The reason for this is that

∑
m

[
Pnm − P eq

m

∑
m′
Pnm′

]
= 0, (3.96)

since ∑m P
eq
m = 1.

Similar to Eq. 3.66 and 3.67, the rates are given by

Γββ
′

sub ≡
2π
~
Dsub|〈Ψβ|tsub d̂|Ψβ′〉|2 (3.97)

and
Γββ

′

tip ≡
2π
~
Dtip|〈Ψβ|ttip(Q̂) d̂|Ψβ′〉|2. (3.98)

The tunneling matrix element between an s-symmetric tip and our molecular orbital Ψo

reads
ttip(Q̂) = 2π~2CS

mκ
Ψo(rtip; Q̂), (3.99)

where

Ψo(rtip; Q̂) = 1√
2

[
p
(
xtip, ytip + a

2 − Q̂, ztip

)
− p

(
xtip, ytip −

a

2 − Q̂, ztip

)]
. (3.100)

For the notation we refer to the end of Sec. 3.1.1. The transformed tunneling matrix
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element t̃tip(Q̂) = eŜttip(Q̂)e−Ŝ can be calculated similar as in A.4, which yields

t̃tip(Q̂) = ttip(Q̂−
√

2∆x0λN̂). (3.101)

In Sec. 5, we analyse numerically the transport characteristics of the simplified model
introduced in this section. In particular, we will focus on the effect of the relaxation rate.



4
Numerical results obtained for the model

without relaxation rate

In this chapter, we show the results obtained with a numerical implementation of the
Liouville-equation approach, which is applied to the system specified in Sec. 3.1.

In the program, the Liouvillean L (defined by Eqs. 3.68 and 3.65) is constructed by
computing the spectrum (Eq. 3.33) and the corresponding Bohr frequencies which are
needed for the Fermi functions. Moreover, the rates between the molecule and the leads
are required. Using the analytical expression for the FC factors given by Eq. 3.75, yields
the exact rates between the molecule and the substrate (Sec. 3.3.1). The rates between
the tip and the molecule (Sec. 3.3.2) are computed by writing the operators as finite
dimensional matrices acting in a restricted finite dimensional Hilbert space. Here, only
states which contribute to the transport through the molecule are taken into account.

We are interested in the populations of the stationary solution, i.e. in the solution of
~̇P = 0. Because of Eq. 3.68, this solution is simply given by the kernel of the Liouvillean.
The stationary populations and the Liouvillean are then used to compute the current via
Eq. 3.71. Finally, the derivative with respect to the bias gives the desired differential
conductance.
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4.1 Stability diagram of the model molecule

Studying simultaneously the entire electronic structure of our model molecule and its
vibrational degree of freedom is unnecessarily complicated. In particular, we are mainly
interested in the effects of the vibrational degree of freedom on the transport characteristics
of STM. Therefore, it is convenient to restrict ourselves to one certain electronic transition
and to study the vibrational structure in full detail. This is possible because the energy
scale of the electronic transitions is much larger than the energy scale of the vibrational
ones. In order to find a suitable bias and chemical potential range, we examine the
so-called stability diagram of our system. It shows the differential conductance as a
function of bias voltage Vb and zero-bias chemical potential µ0.

A stability diagram which shows the entire electronic structure of our model molecule
is given in Fig. 4.1(a). Here, the leads are two identical substrates. In several Coulomb
Diamonds the occupation of the states is given. For example, within the central diamond,
there are two electrons in the even and zero electrons in the odd molecular orbital.

In order to study the effect of different local symmetries of the molecular orbital on
the transport characteristics of STM, it is necessary to choose an electronic transition
which corresponds to a tunneling process into an odd molecular orbital. Fig. 4.1(b) shows
the part of Fig. 4.1(a) that is indicated with the green box. The red arrow crosses a
dI/dV -peak which corresponds to the transition |ne = 2, no = 1〉 to |ne = 2, no = 2〉,
where ne/o = ∑

σ ne/o σ. Since one electron is added to the odd molecular orbital, this
transition is suitable for us.

Fig. 4.1(c) shows a stability diagram where the bias and the chemical potential range
are given by the green box depicted in Fig. 4.1(b). Here, vibrational excitation lines
appear because electron-vibron coupling to the D-mode is turned on. The entire peak
structure has to correspond to the same electronic resonance, namely to the resonance
between the two states |ne = 2, no = 1〉 and |ne = 2, no = 2〉. The reason for this is that
the other electronic states are not in the given energy range. Since both leads are extended
substrates, S-mode excitations are not allowed (Eq. 3.78). Therefore, all excitation lines
correspond to the D-mode.

4.2 Transport near the charge degeneracy point

In this section, we analyze the particularly simple situation where µ0 is very close to
the charge degeneracy point (CDP) of the many body states |ne = 2, no = 1〉 and
|ne = 2, no = 2〉. This CDP is marked in Fig. 4.1(c) with a red circle. More precisely,
we choose µ0 such that the distance to the CDP is smaller than one vibron energy ~ω.
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Figure 4.1: (a - c) show the differential conductance as a function of bias voltage Vb
and zero-bias chemical potential µ0. The leads are two identical substrates and their
chemical potential is given by µ1 = µ0 + cVb and µ2 = µ0 − (1− c)Vb, where c determines
the bias drop between the leads and the molecule. Each diagram is normalized to the
maximum of the differential conductance independently. The values for the parameters
are the following: εe = −2, εo = −1, U = 7, c = 0.8. All energies are given in electron
volts. The temperature varies from one plot to the other and is chosen such that there
is an appreciable width of the differential conductance lines and a suitable spectral
resolution. The values are: (a) 50meV, (b) 20meV, (c) 1meV. The occupation of the
states is indicated in some of the Coulomb diamonds. “e/o” means that one electron is
in the even/odd orbital, “0” means no electrons at all. “4” labels the many body state
where all orbitals are fully occupied. In (c), electron-vibron coupling to the D-mode with
λo = 1 is turned on. The charge degeneracy point (CDP) is marked with a red circle.

Additionally, we consider a bias drop which is totally asymmetric (c = 1) and include a
small electron-vibron coupling to the S-mode (λS = 10−3). The latter opens the diagonal
FC parabola of the S-mode in the substrate rate. Hence, also off-diagonal transitions
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are allowed, at least with a small probability. This is physically reasonable, even though
we showed in Sec. 3.1.1 that λS = 0. The reason for this is that we only considered
the molecule alone without any environment. In reality, an additional charge on the
molecule will change the electrostatics with respect to the substrate, which leads to a
change in the equilibrium position of the molecule and thus to λS 6= 0. Besides, there is
an electron-vibron coupling to the S-mode, if this mode is assumed to model the local
dynamics of a large molecule instead of being an external mode which moves the entire
molecule without changing its configuration. Therefore, the case where λS is exactly zero,
seems rather artificial.

Fig. 4.2 shows the free energy diagram for the situation described in the paragraph
above but simplified to one mode. This time we consider one tip and one substrate as
leads. The tip-molecule tunneling process, depicted by the thin arrow, corresponds to
the transition |ne = 2, no = 1;m = 0〉 to |ne = 2, no = 2;m = 4〉. Because of the huge
substrate rates (compared to the tip rate), depicted by the thick arrows, the molecule will
end up very fast in its ground state after each tip transition. Hence, the populations of
the stationary solution of the two degenerate ground states are P stat

ne=2,no=1;m=0 ≈ 1, which
translates into P stat

ne=2,no=1;mD=0,mS=0 ≈ 1 for the system with two modes.

In this simple situation, the current given by Eq. 3.71 can be written as

〈Î in
tip〉 =

∑
mD,mS

W tip
mDmS

f+
tip(∆EmDmS), (4.1)

where

W tip
mDmS

≡ Γ(1,1,0,1;0,0)(1,1,1,1;mD,mS)
o↑ tip + Γ(1,1,1,0;0,0)(1,1,1,1;mD,mS)

o↓ tip

= 4π
~
Dtip|〈0, 0|t tip

o

(
Q̂D −∆Q(ne=2,no=1)

D , Q̂S

)
e−λo(â

†
D−âD)|mD,mS〉|2

(4.2)

and

∆EmDmS = ω(ne=2,no=2;mD,mS)(ne=2,no=1;0,0) = Ene=2,no=2;mD,mS − Ene=2,no=1;0,0. (4.3)

The notation for the tip rates Γ can be found in Sec. 3.2.4. According to Eqs. 4.1
and 4.2, one is probing the MFC factors by measuring the current (or the differential
conductance) as a function of the bias voltage. More precisely, only MFC factors that
contain a vibrational ground state are involved. We emphasize, that all of this is only
true for the particular situation we consider here. Nevertheless, it is a suitable starting
point for further investigations and for consistency checks.
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Figure 4.2: Free energy (Ĥ − µ0N̂) diagram for µ0 in
the range µCDP − ~ω < µ0 < µCDP , where µCDP is
the chemical potential at the CDP. The two columns
correspond to the two electronic states |ne = 2, no =
1〉 and |ne = 2, no = 1〉 ≡ |4〉. Note that |ne = 2, no =
1〉 is two-fold degenerate. Each of these electronic
states has vibronic excitations which are given by the
horizontal lines and labeled by the harmonic oscillator
quantum numbers. For simplicity, only one mode is
depicted, thus the vibronic energies are equidistant.
As an example, some of the possible lead transitions
are plotted. The thin arrow depicts a tip transition
and the thick arrows represent substrate transitions.
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4.2.1 Verification of the numerical code with the Poisson dis-
tribution

As described in the previous section, under certain conditions one is probing the MFC
factors by measuring the differential conductance. This fact can be used to verify part of
our numerical code, as is discussed in the following.

We consider again the situation from the last section, but we choose two substrates as
leads, where one of them has a much smaller rate compared to the other one. This means
that we will verify the program without the tip-molecule tunneling matrix element. We
restrict ourselves to a situation where the bias drop occurs entirely between the substrate
with the smaller rate and the molecule. Moreover, we consider the case ~ωS →∞ (i.e.
we consider only the D-mode), and µ0 = µCDP − 0.5~ω.

As explained in the previous section, for these parameters and for reasonable electron-
vibron coupling only the ground state is occupied (see Fig. 4.2). It follows that we probe
the FC factors by measuring the differential conductance. Note that we do not probe the
MFC factors because we do not consider a vibronic mode dependent tunneling matrix
element. To be more precise, we are probing

F (0,m, λ) = λ2m

m! e
−λ2

, (4.4)

where we have used Eq. 3.75 to compute the FC factors. Eq. 4.4 is directly related to
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the Poisson distribution Pν(k), which reads

Pν(k) = νk

k! e
−ν . (4.5)

For ν = λ2 the two functions coincide. Hence, the relative height of the differential
conductance peaks should be given by the Poisson distribution.

Fig. 4.3(a) shows the differential conductance as a function of Vb for λo = 1. Fig.
4.3(b) depicts the Poisson distribution for ν = 1. To allow a convenient comparison, the
differential conductance in Fig. 4.3(a) is normalized to its maximum and multiplied by
the maximum of the Poisson distribution.

As expected, both figures match perfectly. Thus, our numerical code without the
tip-molecule tunneling matrix element seems to give correct results.

a) b)

Figure 4.3: (a) shows the differential conductance for λo = 1, µ0 = µCDP − 0.5~ω, and
c = 1. (b) shows the Poisson distribution for ν = 1.

4.2.2 Vibron-assisted tunneling

In this section, we will address the vibron-assisted tunneling effect in the situation
described in the beginning of Sec. 4.2 (i.e. µCDP − ~ω < µ0 < µCDP ). Fig. 4.4(a) shows
the differential conductance as a function of the tip position and the bias voltage. The
tip position runs along the long axis of the molecule, which is indicated by the dashed
red line in Fig. 3.3(d). The energy of the D-mode is about ten times larger than the
energy of the S-mode, which could for example model the fact that a chemical bond is
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Figure 4.4: (a) shows the differential conductance as a function of the bias voltage and
the tip position, which runs along the long axis of the molecule. The dI/dV - peaks are
labelled by the number of excited vibrons of the D- and S-mode. The inset shows the
same, except that ~ωS →∞. (b) shows a bias trace for ytip = ynp/max which corresponds
to the red/blue curve. The inset shows the centroid of the spectra in (a) as a function
of the tip position. The differential conductance in (a) and (b) is normalized to the
maximum value in the displayed parameter range. The chemical potential µ0 is such that
we are in the situation depicted in Fig. 4.2. The electron-vibron coupling constant is
λo = 0.75, the bias drop parameter is chosen as c = 1, and the temperature is T = 2.1K.
The largest tip rate is 10−4 times smaller than the largest substrate rate. As zero-point
fluctuations, we chose ∆x0D = 0.17Å and ∆x0S = 0.54Å with a distance between the
atoms of a = 1.339Å.

much stronger than the van der Waals force. However, the precise strength of the van der
Waals force which keeps the molecule on the insulating layer, is not known. Moreover,
the insulating layer can also be an ionic compound, as for example NaCl. In this case,
electrostatic forces are also responsible for the adsorption of the molecule. Therefore, the
ratio 10:1 is just an arbitrary choice. Also the absolute values of the vibronic energies are
just one possible choice in a large interval. Note that the vibronic energies are directly
related to the zero-point fluctuations via

∆x0D = ~√
m~ωD

and ∆x0S = ~√
4m~ωS

, (4.6)

which is derived in A.1. A detailed analysis of the influence of different vibronic energies
and thus zero-point fluctuations on the dI/dV - structure is given in Sec. 5.4.

In the experiments [2], briefly introduced in Sec. 2.3, single excitation lines could
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not be resolved because of coupling to phonons in the insulating film [29, 30]. This
substrate-induced broadening is not included in our model. Hence, we can resolve single
excitation lines if we choose the temperature small enough compared to the vibronic
energies, which is the case in Fig. 4.4(a).

The excitation lines are labelled by the number of excited vibrons in the D- and
S-mode. As expected, the vibrational ground to ground state transition line is very
pronounced in a region around ytip = ymax. The reason for this is that this transition
is allowed by Chen’s derivative rule because the symmetries between the tip and the
molecule match. Furthermore, the electron-vibron coupling of λo = 0.75 prefers ground to
ground state transitions, i.e. we are not in the FC blockade regime. Whereas the ground
to first excited S-mode transition is not appearing at all for ytip = ymax, higher D-mode
excitation lines are visible. The absence of the first S-mode excitation is explained by
selection rule 3.89. Higher odd S-mode excitations are too weak to be visible.

When the tip is positioned above the center of the molecule (ytip = ynp) the ground
to ground state transition line vanishes and the ground to first excited transition line
regarding the S-mode appears. This is explained by selection rule 3.86 and it means, that
even though symmetries between tip and molecule do not match, tunneling is allowed but
only if a vibron in the S-mode is excited. Thus, vibron-assisted tunneling is clearly visible
in Fig. 4.4(a). For larger bias, the D-mode gives just weaker replica of the transition
lines which can all be assigned to mS = 1. Hence, it is obvious that the vibron-assisted
tunneling effect comes exclusively from the S-mode. This can also be seen in the inset of
Fig. 4.4(a), where the S-mode excitations are turned off by taking the limit ~ωS →∞.

The differential conductance for ytip = ynp (red curve) and ytip = ymax (blue curve) is
depicted in Fig. 4.4(b). The parameters are the same as in Fig. 4.4(a). By comparing the
two curves, one can see that the peaks of the red curve are shifted to larger bias about a
distance of ~ωS. This makes sense because there must be an excitation of a vibron in
the S-mode in order to get a non-vanishing rate for the situation where symmetries do
not match. Furthermore, the height of the peaks of the red curve is smaller, which is
discussed in detail in Sec. 5.4. Since Fig. 4.4(b) shows only bias traces from Fig. 4.4(a),
Fig. 4.4(b) gives no new information. Nevertheless, small features are better visible in
a dI/dV versus Vb plot. For example, there is a small shoulder at Vb = 0, which comes
from a thermally excited state and which is not visible in Fig. 4.4(a).

One of the experimental results discussed in Sec. 2.3 was the centroid of the dI/dV -
curves for different positions of the tip along the long axis of the molecule. Our theoretical
pendant is depicted in the inset in Fig. 4.4(b). As in the experiments, there is a maximum
in the center and it decreases towards larger |ytip|.
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The next example we analyze is similar to the situation in Fig. 4.4, but this time the
electron-vibron coupling is reduced to λo = 0.25. In this case, only the ground to ground
state transition regarding the D-mode is visible. Hence, it is appropriate to choose a
reduced bias range, which is done in Fig. 4.5(a). Again the vibron-assisted tunneling

a)

0D 0S

0D 1S

b)

��
��

��
����

��
��
��

0D 0S

0D 1S

0D 2S

c) d)
0D 0S

0D 1S
0D 2S

Figure 4.5: (a),(b) show the differential conductance as a function of ytip and Vb. The
parameters are the same as in Fig. 4.4(a), except for the electron-vibron coupling and the
temperature. For those we chose λo = 0.25, T = 2.1K in (a) and λo = 0.25, T = 0.50K
in (b). Again, the differential conductance is normalized to the maximum value in the
displayed parameter range. (c) shows the centroid as function of ytip. (d) shows the
square of the MFC factors for the transitions |mD = 0,mS = 0〉 → |m′D = 0,m′S = 0, 1, 2〉
as a function of ytip. They are normalized to the maximum of the |mD = 0,mS = 0〉 →
|m′D = 0,m′S = 0〉 transition. Here, we label the transitions only via the vibronic quantum
numbers, because we restrict ourselves to one single electronic transition (see Sec. 4.1). In
(a)-(d), ytip runs along the long axis of the molecule. In (d) only one half of the molecule
is shown.
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effect is clearly visible. For ytip = 0, the ground to ground state transition is vanishing,
but a dI/dV - peak is found at a bias which can be assigned to the excitation of one
vibron in the S-mode.

A huge difference to the experimental results and to the inset in Fig. 4.4(b) is found
by looking at the centroid of the peak structure of Fig. 4.5(a), which is shown in Fig.
4.5(c). It has again a maximum in the center but it reaches a minimum at ytip ≈ ymax and
increases again for larger |ytip|. This can be explained by looking at the dI/dV (ytip, Vb)
plot in Fig. 4.5(a) at lower temperature, which is depicted in Fig. 4.5(b). Obviously,
the |mD = 0,mS = 0〉 → |m′D = 0,m′S = 1〉 excitation line occurs not only at ytip = 0,
but also for tip positions beyond the maximum of the molecular wave function. These
excitation lines are marked by the large green circles. Moreover, the excitation lines that
can be assigned to the state |mD = 0,mS = 2〉 (marked by the small green circles) appear.
These additional lines lead to an increase of the centroid for ytip > ymax.

As explained in the beginning of Sec. 4.2, we are in the particular parameter regime
where we are probing the MFC factors by measuring the current. Therefore, the origin
of these additional lines should be found in the MFC factors. Indeed, this is confirmed
by Fig. 4.5(d), where the MFC factors which are responsible for the transition lines are
plotted as a function of the tip position. As expected, the MFC factor corresponding to
the vibronic ground to ground state transition (blue curve) is zero at the center and has a
maximum at ytip = ymax. The MFC factor for the transition into a state with one vibron
in the S-mode (red curve) has a maximum in the center (which yields the vibron-assisted
tunneling effect) and decreases towards ytip = ymax. For ytip > ymax it increases again,
which leads to the increase of the centroid.

Fig. 4.6(a) and (b) show constant height differential conductance maps at bias
voltages which correspond to the transitions |mD = 0,mS = 0〉 → |m′D = 0,m′S = 0〉
and |mD = 0,mS = 0〉 → |m′D = 0,m′S = 1〉, respectively. As expected, at the bias
voltage which corresponds to the onset of the elastic tunneling one is simply scanning the
probability distribution of the molecular orbital |Ψmol(rtip)|2. By increasing the bias up
to the inelastic tunneling peak, the entire constant height map changes. A maximum in
the differential conductance is found at the position of the nodal plane and additional
side maxima are appearing. Without these side maxima, the image would resemble the
constant height image obtained with a p-symmetric tip at the bias which corresponds to
the elastic tunneling. In the experimental results presented in [2], changing the bias from
the elastic to the inelastic transition is similar to exchanging the p- with an s-symmetric tip.
However, in our case the side maxima are clearly appearing and they originate from the
MFC factor which corresponds to the transition |mD = 0,mS = 0〉 → |m′D = 0,m′S = 1〉
(red curve in Fig. 4.5(d)).
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a) b)

Figure 4.6: Constant height differential conductance images at a bias which corresponds
to the onset of the elastic tunneling (a), and a bias which corresponds to the onset of the
inelastic transition |mD = 0,mS = 0〉 → |m′D = 0,m′S = 1〉 (b). Both figures are given
in units of the maximum of the differential conductance in (a). The parameters are as
in Fig. 4.4, except for the temperature. It is as small as T = 0.6K in order to avoid an
overlap of the dI/dV - peaks.
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5
Numerical results obtained for the model

with relaxation rate

In Sec. 3.4 a model of a molecule was introduced which consists of one spinless odd
molecular orbital and one vibronic mode that moves the nodal plane of the orbital.
Additionally, we included a relaxation rate which thermalizes the vibronic distribution of
the molecule.

In the first part of this chapter, we verify part of the numerical implementation of this
model with data from the literature. After that, we leave the particular situation where
the chemical potential is near the CDP. We will see that there is a strong enhancement
of the vibron-assisted tunneling effect for certain relaxation rates.

5.1 Verification of the numerical code with results
from the literature

In this section, we verify part of our numerical code with numerical results obtained in
[28]. The model chosen in [28] is similar to our simplified model introduced in Sec. 3.4,
except that a spin-degenerate electronic state and two identical leads without position or
deformation dependent tunneling matrix elements are considered. In order to compare
the numerical results of the two models, we take two substrate rates (Sec. 3.3.1) for
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the leads instead of one substrate and one tip rate. The only difference between the
models is then the degeneracy of the electronic state. Therefore, the verification of the
program without the implementation of the tip rate is possible, if we take into account
the consequences of the spin-degeneracy on the transport.

← −− − Ipl
(a)

a) b)

c) d) e)

f)

g)

h) i) j)

← −− −Ipl
(j)

Figure 5.1: (a)-(e) are results taken from [28]. To verify the functionality of our program,
we compare these results to our results (f)-(j). For all figures, the parameters are ε = 0,
kBT = 0.05~ω and c = 0.5. In (a) and (j), the current is plotted for intermediate
and strong electron-vibron coupling and for equilibrated (eq.) and unequilibrated (un.)
vibronic distributions. The gate voltage (in our case the zero-bias chemical potential) is
set to zero. The rates in (c),(d) and (h),(i) are given in units of 2πDt2/~, where D is the
density of states and t the tunneling matrix element (denoted by ρ and t0 in [28]). The
vibronic quantum numbers are m and m′ in our notation, in (c) and (d) they are denoted
by q1 and q2. (b),(f) and (e),(g) are stability diagrams for λ = 4 and λ = 1.
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Fig. 5.1(a)-(e) show the numerical results from [28], which we compare to our results
given in Fig. 5.1 (f)-(j). Figs. 5.1(c),(h) and (d),(i) are the rates for intermediate (λ = 1)
and strong (λ = 4) electron-vibron coupling. Obviously, our rates match perfectly to
those from [28].

The rates lead to current-voltage characteristics which are depicted in (a) and (j) for
τ → 0 (equilibrated vibrons) and τ → ∞ (unequilibrated vibrons). Qualitatively, the
results match again. One difference is the magnitude of the current, which is larger in (a).
This is due to the spin-degeneracy of the electronic state in (a). To explain the difference
between (a) and (j) quantitatively, we concentrate on the height of the current-plateaus
Ipl

(a) and I
pl
(j) (indicated by the purple arrows) for bias voltages in the range 0 < Vb < 2~ω.

The corresponding free energy diagram is depicted in Fig. 5.2. The populations in Fig.
5.2(b) are simply Pn↑=0,n↓=0;m=0 = Pn↑=1,n↓=0;m=0 = Pn↑=0,n↓=1;m=0 = 1

3 , which leads to a
current on the plateau of Ipl

(a) = 2ΓP0 = 2
3Γ. In the non-degenerate case (Fig. 5.2(a)), the

populations are Pn=0;m=0 = Pn=1;m=0 = 1
2 , which leads to a current of Ipl

(j) = ΓP0 = 1
2Γ.

Therefore, the ratio between the currents is Ipl
(j)/I

pl
(a) = 3

4 , which is also the ratio between
the plateau heights taken from figure (a) and (j) (the numbers are 0.1838/0.245 ≈ 3

4).
This simple analysis indicates, that the difference between the numerical results comes
indeed only from the different degeneracies of the models.

Figs. 5.1(b)(f) and (e)(g) show the stability diagrams for λ = 4 and λ = 1, respectively.
The gate voltage Vg in Figs. 5.1 (b) and (e) is equivalent to the zero-bias chemical potential
µ0 in Figs. 5.1 (f) and (g). For strong electron-vibron coupling, the FC blockade is clearly
visible. Figs. 5.1 (f) and (g) are symmetric with respect to the bias-axis for µ0 = 0,
whereas in Figs. 5.1 (b) and (e) there is an asymmetry. This asymmetry is due to the
degeneracy of the electronic state.

Summarizing, we can say that we were able to verify the functionality of our program
(without the position dependent tunneling matrix element) with results from the literature.

N=0 N=1 N=0 N=1

a) b)

Γ
Γ

Γ

Figure 5.2: The free energy diagram at the CDP for low temperatures (kBT � ~ω) and
bias voltages in the range 0 < Vb < 2~ω is shown for a degenerate (b) and a non-degenerate
(a) electronic level. The filled circles visualize populations P and the arrows indicate the
rates Γ from one of the leads to the system.
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5.2 Shifted inelastic peaks

The aim of this section is to study the influence of huge differences in the magnitude of
the rates on the dI/dVb - peak structure. We consider the model with two substrates as
leads (as in the previous section) and the rates are denoted by Γsub1 and Γsub2. The bias
drop occurs entirely between substrate 2 and the molecule (c = 1) and the relaxation
processes are turned off ( 1

τ
→ 0). We choose an electron-vibron coupling of λ = 1.

Figs. 5.3(a)-(c) show the dI/dVb - curves for three different ratios of Γsub2/Γsub1.
For the ratio 10−5, the positions of the inelastic peaks are at multiples of the vibronic
energy. At these positions, the resonant conditions n~ω − Vb − µ0 = 0 with n ∈ N are
fulfilled. For Γsub2/Γsub1 = 1, the height of the inelastic peaks are smaller, and the peak
positions are slightly shifted to larger bias. This slight shift becomes huge in the case of
Γsub2/Γsub1 = 105. Some of the inelastic peaks are shifted away from resonance by more
than ∆Vb = ~ω.

a)
Γsub2
Γsub1

= 10−5
b)

Γsub2
Γsub1

= 1
c)

→

Γsub2
Γsub1

= 105

Figure 5.3: (a)-(c) show the differential conductance as a function of the bias voltage
(given in units of ~ω) for varying rate ratios and kBT = 0.1~ω. Each graph is normalized
to the maximum of its elastic peak. The onsite energy and the zero-bias chemical potential
are set to zero.

The explanation for the shift is found by considering the differential conductance in
terms of the Liouvillean and the populations of the stationary solution. According to Eq.
3.71, the differential conductance is given by

dI
dVb
〈Î in

tip〉 =
∑
ββ′

Nβ
mol

dLtip
ββ′

dVb
P stat
β′ + Ltip

ββ′
dP stat

β′

dVb

 . (5.1)

Each entry of L consists of a sum of rates times the corresponding Fermi functions.
Since the rates are independent of the bias, the terms dLtip

ββ′/dVb are given by a sum of
derivatives of Fermi functions which are weighted by the rates. Therefore, the maxima of
dLtip

ββ′/dVb are found at biases which fulfill the resonance conditions if the temperature
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is not too large (the individual peaks should be recognizable). The term that shifts the
peaks is dP stat

β′ /dVb. The populations of the stationary solution ~P stat are determined by
L~P = 0 and thus bias dependent. Their dependence on the Fermi functions can be very
complicated, leading to maxima at biases which do not fulfill the resonance condition if
T > 0K. This is supported by Fig. 5.4, which shows the bias shift of the first inelastic
peak ∆Vb as a function of Γsub2/Γsub1 for different thermal energies. The shift for large
temperatures (blue curve) is huge, whereas the shift for small temperatures (green curve)
is almost not visible. Particularly interesting is the fact that even for rate ratios equal to
1, there is a shift of the inelastic peak. Only in the limit Γsub2/Γsub1 → 0 or T → 0 the
position of the inelastic peak is exactly at the bias voltage which fulfills the resonance
conditions.

Figure 5.4: The bias shift ∆Vb
of the first inelastic peak is
shown as a function of the
lead rate ratios Γsub2/Γsub1 for
different temperatures. The
horizontal axis is given in a
logarithmic scale.

However, this effect can probably not be observed in STM experiments. The reason
for this is that the bias drop occurs mainly between tip and molecule, which makes it
difficult to observe substrate transition lines in the stability diagram. In the situation
described above, all the peaks stem from transitions that correspond to the substrate
2. Thus, the limit Γsub2/Γsub1 → 0, where the effect is not visible, corresponds to the
situation in STM.

5.3 Effect of the relaxation rate
In this section we study the effect of the relaxation rate on the transport characteristics.
Unlike to the section before, one of the rates is now position and deformation dependent
(Eq. 3.98). We choose the parameters such that a double bond between two carbon
atoms (appearing for example in ethylene) is modelled. The values are a = 1.34Å and
Zeff = 2.9629 [31].

Moreover, we consider a zero-point fluctuation of ∆x0 = a
10 , weak electron-vibron

coupling (λ = 10−3) and a tip-molecule distance of ztip = 4Å. We choose a rate ratio
of Γmax

tip /Γmax
sub = 10−5 and a totally asymmetric bias drop (c = 1). Γmax

tip is the largest
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tip-molecule rate for ytip = ymax. Γmax
sub is the largest substrate-molecule rate. In the last

chapter, the zero-bias chemical potential µ0 was always in the direct vicinity of the CDP.
Now, we leave this particularly simple situation and choose µ0 = −20~ω. We emphasize
that any other chemical potential, except for |µ0| < ~ω, gives similar results, at least
for small electron-vibron coupling. This is the case, because the substrate evokes the
transition m = 1→ m′ = 0 with small but large enough probability (compared to the tip
rate) to depopulate the excited states. However, the results do not change for arbitrary
|µ0| > ~ω because all probabilities for the transitions m→ m′ = m− n with n > 1 are
already much to small to contribute.

First, we consider the case with strong relaxation (τ → 0). This means that for
low temperatures (kBT � ~ω) only the vibrational ground state is occupied, which is
equivalent to the situation near the CDP where the substrate depopulates the excited
states. Note that here the choice of µ0 is completely arbitrary. As in Sec. 4.2, we are
effectively probing the MFC factors by measuring the differential conductance. The peak
structures for τ → 0 are shown in Fig. 5.5(a), where the blue curve corresponds to the
tip position ytip = ymax and the red curve to ytip = ynp. Because of µ0 = −20~ω and
c = 1, the first peak is found at the bias Vb = 20 (in units of ~ω) and can be assigned
to the elastic transition. As expected, the inelastic contribution, which occurs due to
vibron-assisted tunneling, is found at Vb = 21 for ytip = ynp. The reason for the small
height of the inelastic peak is the small MFC factor (Sec. 3.3.2).

a)
1
τ
→∞

end

center

b)
1
τ
≈ 10−3Γmax

tip

c)
1
τ
→ 0

Figure 5.5: (a),(b) and (c) show the differential conductance for different relaxation rates
for kBT = 0.05~ω. They are normalized to the maximum value in (c).

Next, we consider the case without any relaxation processes, shown in Fig. 5.5(c).
We already considered this situation with the model with two modes and two electronic
orbitals (Ch. 4) but we did not leave the vicinity of the CDP. The most striking features
are probably the strong enhancement of the inelastic peak for ytip = ynp, which is on top
shifted to larger energy, and the appearance of negative differential conductance (NDC)
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Figure 5.6: (a) shows the MFC factors for ytip = ymax and parameters specified in the
beginning of this section. They are given in units of the MFC factor which corresponds
to the elastic transition. (b) visualizes the integrands from Eq. 5.2 for m = m′ = 0
and m = m′ = 20. For visualization purposes, the harmonic oscillator functions and the
orbital wave function have different scales.

for ytip = ymax. To explain the latter qualitatively, we consider the corresponding MFC
factors, which are proportional to

 ∞∫
−∞

dQ Φm(Q)Ψ(ymax;Q)Φm′(Q)
2

(5.2)

and depicted in Fig. 5.6(a). The MFC parabola is almost diagonal and decreases
with increasing m = m′. The latter is explained by considering Fig. 5.6(b). The
elastic transition amplitude, determined by

∫
dQ Φ2

0(Q)Ψ(ymax;Q), is larger than the
amplitude for the transition m = 20 → m′ = 20, which corresponds to the integral∫
dQ Φ2

20(Q)Ψ(ymax;Q). The reason is that higher harmonic oscillator states extend more
in space (∝

√
m) and thus pick up parts of the orbital wave function which are smaller.

NDC occurs because vibrationally excited states are populated and thus conducting
channels which carry less current (because of the smaller rates) come into play [32].
Nevertheless, in the experiment which shows vibron-assisted tunneling [2], NDC is not
observed. Thus, in reality there should be a finite relaxation time which prevents NDC.

This leads us to the case 1
τ
≈ 10−3Γmax

tip , which is depicted in Fig. 5.5(b). NDC is not
occuring any more but the inelastic peak is still strongly enhanced and shifted to larger
bias. The explanation for that is given in the next part.
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Explanation of the enhancement of vibron-assisted tunneling

The experiments published in [2] suggest that the height of the inelastic peak occurring
due to vibron-assisted tunneling is on the same order than the elastic one. However, for
realistic zero-point fluctuations ( a

100 < ∆x0 <
a
10) [27], the MFC factor for the inelastic

peak for ytip = ynp is at least two orders of magnitude smaller than the MFC factor for
the elastic peak for ytip = ymax. This is discussed in detail in the next Section. Thus, the
corresponding peak heights differ by at least two orders of magnitude for 1

τ
→∞ (Fig.

5.5(a)). However, there can be a strong enhancement of the inelastic peak for certain
relaxation rates (the enhancement factor in Fig. 5.5(b) is about 20). The explanation
for the strong enhancement is shown in Fig. 5.7. Fig. 5.7 (a) shows the MFC factors
for ytip = ynp, which have an off-diagonal structure because of symmetry reasons (Sec.
3.3.2). As expected, the MFC factor for m = 0,m′ = 1 is around 0.01, i.e. two orders
of magnitude smaller than the elastic peak in Fig. 5.6(a). However, for larger m and
m′ = m+ 1 the MFC factors increase strongly, which is visualized with an example in
Fig. 5.7(b). It shows the integrands of Eq. 5.2 for m = 0,m′ = 1 and m = 19,m′ = 20.
The harmonic oscillator functions for larger quantum numbers (e.g. m = 19,m′ = 20)
extend further in space than for small quantum numbers (e.g. m = 0,m′ = 1). Hence, the
integral 5.2 picks up larger values of the orbital wave function Ψ(ynp;Q) for larger m and
m′ = m+ 1, which leads to increased MFC factors. Their contribution to the transport
is visualized by the free energy diagram in Fig. 5.7(c). At the bias Vb = ~ω − µ0, the
tip-molecule transition (0; 0)→ (1; 1) opens. Here, the first entry in the parenthesis is the
number of electrons, and the second entry is the number of vibronic excitations. Because
of the small electron-vibron coupling, the substrate induces the transition (1; 1)→ (0; 1)
with large probability. For small temperatures, the substrate cannot depopulate this
state. Thus, for small relaxation rates, the population P(0;1) has a finite value, which can
be seen in Fig. 5.7(d). Consequently, the transition (0; 1) → (1; 2) also contributes to
the transport (still at Vb = ~ω − µ0). This time, the substrate induces the transition
(1; 2)→ (0; 2), which leads to an increased population P(0;2). This process continues and
opens channels between larger and larger vibronic quantum numbers. The key point is,
that the rates that correspond to these channels increase with increasingm andm′ = m+1
(because of the larger MFCs), leading to the strong enhancement of the vibron-assisted
tunneling effect. In Fig. 5.7(c), the increasing rates are visualized by the increasing
thickness of the arrows that correspond to the tip transitions. All these arguments are
strongly supported by Fig. 5.7(d), which shows that many excited states contribute to the
first inelastic dI/dV -peak. Note that the populations of the state N = 1 are six orders of
magnitude smaller than the populations for N = 0 because of the huge substrate rate.
Thus, they are negligible.
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Figure 5.7: (a) shows the MFC factors for ytip = ynp. They are given in units of the MFC
factor which corresponds to the elastic transition for ytip = ymax. (b) shows multiplied
harmonic oscillator functions (Φ0 · Φ1 and Φ19 · Φ20) and the orbital wave function with
different scales. (c) is a free energy diagram where the important tip/substrate rates
are indicated with thin/thick arrows (here, all substrate rates point from N = 1 to
N = 0, all tip rates from N = 0 to N = 1). The populations are indicated with filled
circles. For visualization purposes, the zero-bias chemical potential is in the interval
−~ω < µ0 < −2~ω. (d) shows the populations for ytip = ynp, 1

τ
≈ 10−3Γmax

tip , and
Vb = 1.5~ω − µ0 for the first 30 vibronic states. Obviously, in the enhancement regime
of the vibron-assisted tunneling effect, a large number of vibrons have to be taken into
account.
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Within our results, the enhancement effect depends on the ratio between relaxation
rate and tip rate, which can be seen in Fig. 5.8(a). For larger ratios the populations are
redistributed towards lower vibronic excitations and thus the contribution of channels with
smaller rates increases. Consequently, the peak heights decrease. However, experiments
indicate that the strength of the vibron-assisted tunneling effect is independent from
the tip rate within a certain range [33]. More precisely, changing the tip rate by one
order of magnitude should not change the form of the peak structure. This experimental
observation does not match to our numerical results.

a)

→
shift

b)

Figure 5.8: (a) The differential conductance as a function of bias voltage is shown for
different relaxation rates and fixed tip rates. It is normalized to the elastic peak height
for tip positions above the end of the molecule. This peak height is independent of the
relaxation rate, thus only one curve (blue) is depicted for ytip = ymax. (b) The differential
conductance for different temperatures is depicted. Normalization is as in (a). The shift
of the inelastic peak for ytip = ynp for kBT = 0.2~ω is indicated with an arrow. Without
the shift, the inelastic peak position would be at Vb = 21.

As a last point, we want to address the shift of the inelastic peak in the enhancement
regime. Fig. 5.8(b) shows that the magnitude of the shift is temperature dependent. For
small temperatures there is almost no shift, whereas for large temperatures the shift to
larger bias is clearly visible. This means that it is not possible to directly read of the
vibronic energies from the positions of the peaks. The temperature behaviour is similar
to the shifted inelastic peaks we have seen in Sec. 5.2. Nevertheless, the origin of the
shift is still subject to further investigations.
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5.4 Size of the vibron-assisted tunneling effect
In the last section we have seen a strong enhancement of vibron-assisted tunneling
for certain relaxation rates. This enhancement happens because highly excited states
connected via large MFC factors contribute to the transport. As mentioned several
times in the course of this thesis, another effective way of changing the strength of the
vibron-assisted tunneling is to change the zero-point fluctuation.

In the experiments showing the vibron-assisted tunneling effect [2], it is not possible
to assign certain modes to the peaks in the dI/dV -spectra nor to extract the relaxation
rate. Thus, we analyze the peak structures as a function of the the zero-point fluctuation
and the relaxation rate. To be more precise, the aim is to study the peak ratio R between
the inelastic dI/dV -peak at ytip = ynp and the elastic dI/dV -peak at ytip = ymax.

Fig. 5.9(a) visualizes R. The blue and the red curve depict the differential conductance
for ytip = ymax and ytip = ynp, respectively. The peak of the blue curve can be assigned
to the elastic tunneling contribution |m = 0〉 → |m′ = 0〉 and its peak height is
labeled by C00

ymax . The peak of the red curve corresponds to the inelastic transition
|m = 0〉 → |m′ = 1〉, hence its height is labeled by C01

ynp . The peak ratio R defined as
R ≡ C01

ynp/C
00
ymax measures the relative size of the inelastic to the elastic peak and therefore

quantifies the strength of the vibron-assisted tunneling effect.
Fig. 5.9(b) depicts R as a function of ∆x0 and the ratio between the tip and the

relaxation rate Γmax
tip · τ . The zero-point fluctuation is given in the range a

100 ≤ ∆x0 ≤ a
10 .

As expected, R grows for increasing ∆x0 and Γmax
tip · τ . The reason for this is that the

relative size of the MFC factors are directly influenced by ∆x0, which is discussed at the
end of this section. Γmax

tip · τ does not influence the relative size of the MFC factors, but
affects the enhancement effect we introduced in the previous section. For larger Γmax

tip · τ ,
the populations of highly excited states increase, leading to a larger height of the inelastic
peak. If Γmax

tip · τ gets too large, NDC is occurring, which is indicated by the white region
in Fig. 5.9(b).

As mentioned in the previous section, experiments indicate that the strength of the
vibron-assisted tunneling effect is independent from the tip rate. However, in our model,
R obviously depends on the tip rate. Yet, for small enough Γmax

tip · τ , effectively only the
ground state is populated and a change in Γmax

tip · τ even by a factor of ten cannot be
observed in the differential conductance. In that case, we are close to the limit 1

τ
→∞

and the enhancement effect vanishes. R is then just the ratio of the MFC factors which
can be assigned to the elastic peak (for ytip = ymax) and the inelastic peak (for ytip = ynp).
The explanation for that is the same as in Sec. 4.2, only there the depopulation of the
excited states is due to the substrate instead of relaxation processes.

The question we want to answer is if it is possible to increase R significantly without
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a)
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V
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R ≡ C01
ynp

C00
ymax
≈ 0.3

b)

NDC

Figure 5.9: The purpose of (a) is to visualize the peak ratio R. The differential conductance
is shown as a function of bias voltage for ytip = ymax (blue curve) and ytip = ynp (red
curve). In the parameter range chosen here, the vibron-assisted tunneling effect leads
to a height of the inelastic peak which is about one third of the elastic one. (b) shows
R as a function of Γmax

tip · τ and ∆x0. Γmax
tip · τ is the ratio between the maximal tip rate

(for ytip = ymax) and the relaxation rate. For Γmax
tip · τ , we have chosen a logarithmic scale.

NDC occurs in the white region (cf. Fig. 5.5(c)).

the enhancement effect (i.e. without the contribution of highly excited states). Thus,
we consider the parameters that have a direct influence on the MFC factors. These
parameters are ∆x0, Zeff , a and ztip. Figs. 5.10(a)-(d) show R in the limit 1

τ
→∞ as a

function of one of these parameters, where the other three are fixed with default values
given in the caption.

The effective atomic number Zeff and the distance between the nuclei a change the
form of the molecular orbital, which enters into the MFC via Eq. 5.2. According to Fig.
5.10(b) and (c), a small a and a large Zeff lead to an increased R. Nevertheless, the effect
is very limited, i.e. it is not possible to change R by orders of magnitude for realistic Zeff

and a. The reason for the small impact of a and Zeff on R is the following: A large Zeff

decreases the height of the elastic peak because the orbital wave function decays faster.
However, a large Zeff also decreases the steepness of the orbital at the nodal plane, which
leads to a decreased MFC factor for the inelastic peak. A small a decreases the amplitude
of the orbital at ytip = ymax, which decreases the height of the elastic peak. However, a
small a also leads to a decreased steepness of the nodal plane (at least for the default
value of ztip = 4Å we are considering) and thus to a small height of the inelastic peak.
Hence, for each parameter there are two effects which partially cancel, which leads to the
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a) b)

c) d)

Figure 5.10: Ratio of the first inelastic MFC for ytip = ynp to the elastic one for ytip = ymax.
In the limit 1

τ
→∞ (which we consider here) this ratio equals R. The default parameters

are: a = 1.34Å, ∆x0 = 0.134, Zeff = 2.9629 and ztip = 4Å.

net result seen in Fig. 5.10(b) and (c).
R as a function of ztip is depicted in (d). It has a maximum at ztip = 0.83Å with

R = 0.038. Hence, it seems also not capable of increasing R by orders of magnitude.
The influence of ∆x0 on R is depicted in (a), where the range of ∆x0 is a

100 to a
2 .

Obviously, R strongly depends on ∆x0. From ∆x0 = a
100 to ∆x0 = a

2 it changes by a
factor of 2 · 103. R > 0.1 is reached for ∆x0 > 0.34Å, which is around a

4 . We can conclude
that for large zero-point fluctuations, R can be on the order of 1 without the enhancement
effect. Considering Eq. 5.2 together with Fig. 5.6(b) and 5.7(b) clarifies the strong
dependence of R on ∆x0. ∆x0 is responsible for the spatial extension of the harmonic
oscillator functions and thus determines the contributions of the orbital wave function to
the integral 5.2. For example, let us consider a large ∆x0: For ytip = ynp (ytip = ymax) the
contribution of the parts of the orbital with large (small) amplitude is increased. Thus
the relative size of the first inelastic MFC factor at the center is increased compared to
the elastic MFC factor at the end.

Fixing three of the parameters in R(∆x0, Zeff , a, ztip) and plotting R as a function of
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the remaining one is convenient for visualization purposes. However, in order to find the
global maximum in a certain parameter range, we have to consider the entire function at
once. The intervals we choose are ∆x0 = [0.67Å, 0.0134Å], Zeff = [1, 5], a = [0.5Å, 3Å]
and ztip = [2Å, 8Å]. As expected by the tendencies depicted in Fig. 5.10, the maximum
of R lies at ∆x0 = 0.67Å, Zeff = 5, a = 0.5Å and ztip = 2Å. With these values we get
R = 0.96, i.e. the peak heights are almost identical.

Summarizing, we can say that in our model there are two ways to receive peak ratios
comparable to the experiments [2]. One is to choose a zero-point fluctuation which is on
the order of the atomic bond length, the other is to choose a ratio between the relaxation
and tip rate such that highly excited vibronic states contribute. Both ways seem to match
the classical intuitive picture where the amplitude of the vibration is large enough to
move the orbital lobe under the tip. However, a zero-point fluctuation of an inherent
vibrational mode of a molecule that is on the order of the atomic bond length seems
rather unrealistic. Moreover, the contribution of highly excited vibrational states imply
that the dI/dVb - peak structure depends on the tip rate, which is not supported by
experimental observations [33].



6
Summary and Outlook

In this thesis, we analyzed the effect of a vibrational degree of freedom in the probed
molecule on the transport characteristics of STM with an additional thin insulating layer
between molecule and substrate. We described the quantum transport in this system
with the Liouville equation approach and developed a minimal model that allows to
perform spatially resolved vibronic spectroscopy calculations that reflect tip-molecule
symmetry matching. We observed vibron-assisted tunneling for vibronic modes that
shift the positions of the nodal planes of the molecule. In our model, the strength of
the vibron-assisted tunneling is mainly determined by the zero-point fluctuation of the
vibronic mode, and the ratio between the tip-molecule and relaxation rate. The former
determines the size of the vibration per vibron, whereas the latter is responsible for the
number of vibrons in one mode. In both cases, the classical intuitive picture seems to be
correct. The size of the deformation of the molecule due to the vibration has to be large
enough to move the orbital lobe near the position of the nodal plane. The apex of the tip
has to “see” the orbital lobe in order to get a strength of vibron-assisted tunneling which
is comparable to the experiment.

Nevertheless, open questions still remain. Experiments indicate that the strength of
the vibron-assisted tunneling seen in [2] cannot be explained by highly excited vibronic
states [33]. Thus, an unrealistically large zero-point fluctuation would be necessary to
match the results quantitatively. This discrepancy is subject to further investigations.
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There are several possibilities to extend our model. In the derivation of the rate
equations, we applied the secular approximation, i.e. we neglected all the coherences of
the reduced density matrix. These coherences could be included at the price of highly
increasing computational costs. Moreover, one could go beyond the second order in the
perturbative expansion in the tunneling Hamiltonian by including charge fluctuations at
the substrate, which is done by the so-called dressed second order [34]. This would lead
to an additional broadening of the excitation lines.

Experiments indicate that Chen’s derivative rule should be extended in such a way,
that not only one single point at the apex of the tip contributes to the transport, but
also points in the vicinity of the apex [2, 33]. However, first calculations imply that this
extension does not change the strength of the vibron-assisted tunneling. Nonetheless, it
could explain the lack of spatial resolution for an s-symmetric tip.

Interesting results could also be obtained by studying certain quantities that are
not available in the experiments, as for example the average vibronic energy in the
molecule. Moreover, we did not treat the combination of a vibronic mode which moves
the nodal plane and intermediate (or even strong) electron-vibron coupling to that mode.
Nevertheless, preliminary calculations did not appear to improve the agreement between
theory and experiment.

Finally, our minimal model could be generalized to realistic molecules with many
different modes which extend in all three spatial dimensions.
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Appendix

A.1 Size of the zero-point fluctuations

The kinetic part T and the potential part V of the system specified in Fig. 3.1 are given
by

T = 1
2m(q̇2

L + q̇2
R) and V = 1

2k2(q2
L + q2

R) + 1
2k1(qR − qL)2. (A.1)

A transformation into the center of mass and relative coordinates, given by R = (qL+qR)/2
and r = qR − qL, yields

T = 1
2mSṘ

2 + 1
2mDṙ

2 and V = 1
2kSR

2 + 1
2kDr

2, (A.2)

where mD ≡ m/2 is the reduced mass, mS ≡ 2m, kD ≡ k2
2 + k1 and kS ≡ 2k2. The

motion of the center of mass and of the relative coordinate are separated. Hence, Eq.
A.2 describes two independent harmonic oscillators and we can directly read of the
frequency for the center of mass coordinate wS =

√
kS/mS =

√
k2/m, and for the relative

coordinate wD =
√
kD/mD =

√
(2k1 + k2)/m. Eq. A.2 also allows to construct the
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separated Schrödinger equations[
− ~2

2mS

∂2

∂R2 + 1
2kSR

2
]

Ψ(R) = ESΨ(R)[
− ~2

2mD

∂2

∂r2 + 1
2kDr

2
]

Φ(r) = EDΦ(r).
(A.3)

The usual quantization of the harmonic oscillator coordinate [35] yields the zero-point
fluctuations ∆x0D =

√
~/2mDwD =

√
~/mωD and ∆x0S =

√
~/2mSωS =

√
~/4mωS.

A.2 Factorization of the density operator

In this section, we present the proof of Eq. 3.54.
We assume that the molecule is totally decoupled from the lead at some time t0. Then,
one can factorize the density operator into a molecular and a lead part, which gives

ρ̂(t0) = ρ̂mol(t0)⊗ ρ̂res. (A.4)

The time evolution operator in the interaction picture is given by

Û I(t, t0) = T← exp
− i

~

t∫
t0

dτĤI
T (τ)

 = 1− i

~

t∫
t0

dτĤI
T (τ) +O((ĤT )2), (A.5)

where T← is the time ordering operator. We perform the time evolution of Eq. A.4, which
yields

ρ̂I(t) = Û I(t, t0)ρ̂mol(t0)⊗ ρ̂res(Û I(t, t0))†

= ρ̂mol(t0)⊗ ρ̂res −
i

~

t∫
t0

dτ
[
ĤI
T (τ), ρ̂mol(t0)⊗ ρ̂res

]
+O((ĤT )2).

(A.6)

By taking the trace over the reservoirs and performing the tensor product with ρ̂res, one
obtains

ρ̂Ired(t)⊗ ρ̂res = ρ̂mol(t0)⊗ ρ̂res +O((ĤT )2). (A.7)

We have used that Tr(ρ̂res) = 1 and that ρ̂res conserves the number of electrons in the
reservoir which is not the case for ĤT . Equations A.6 and A.7 finally yield the desired
result

ρ̂I(t) = ρ̂Ired(t)⊗ ρ̂res +O(ĤT ). (A.8)
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A.3 The Franck Condon factors

In this part, an analytical expression for the Franck Condon factors, given by

F (m,m′, λ) ≡
∣∣∣〈m|e−λ(â†−â)|m′〉

∣∣∣2 (A.9)

is derived. Here, â is the annihilation operator of an harmonic oscillator. Using the
Baker–Campbell–Hausdorff formula, one can rewrite Eq. A.9 into

F (m,m′, λ) =
∣∣∣∣e−λ2

2 〈m|e−λâ†eλâ|m′〉
∣∣∣∣2 . (A.10)

Expanding the exponentials, one gets

eλâ|m′〉 =
∞∑
l=0

λl

l! â
l|m′〉 =

m′∑
l=0

λl

l!

√
m′!

(m′ − l!) |m
′ − l〉 (A.11)

and similarly

〈m|e−λa† = 〈m− k|
m∑
k=0

(−λ)k
k!

√
m!

(m− k)! . (A.12)

Combining Eqs. A.12 and A.11 yields

F (m,m′, λ) =

∣∣∣∣∣∣e−λ
2

2

m′∑
l=0

m∑
k=0

(−λ)k
k!

λl

l!

√
m!

(m− k)!

√
m′!

(m′ − l!)δm−k,m
′−l

∣∣∣∣∣∣
2

. (A.13)

For the case m′ ≥ m, one can perform the sum over l, which gives

F (m,m′, λ) =
∣∣∣∣∣e−λ2

2

m∑
k=0

(−1)k λ2k+m′−m

k!(m′ −m+ k)!

√
m!m′!

(m− k)!

∣∣∣∣∣
2

=

∣∣∣∣∣∣e−λ
2

2

√
m!
m′!λ

m′−m
m∑
k=0

(−λ2)k m′!
k!(m′ −m+ k)!(m− k)!

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣e−λ
2

2

√
m!
m′!λ

m′−mLm
′−m

m (λ2)

∣∣∣∣∣∣
2

,

(A.14)

where Lm′−mm (λ2) are the associated Laguerre polynomials, given by

Lm
′−m

m (λ2) =
m∑
k=0

(−λ2)k m′!
k!(m′ −m+ k)!(m− k)! . (A.15)
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The case m′ < m can be derived similarly by performing the sum over k in Eq. A.13.
Combining the two cases, one gets the final result

F (m,m′, λ) =

∣∣∣∣∣∣e− 1
2λ

2 [sgn(m′ −m)λ]|m′−m|
(
m!
m′!

) 1
2 sgn(m′−m)

L
|m′−m|
min(m,m′)(λ

2)

∣∣∣∣∣∣
2

= e−λ
2
λ2|m′−m|

(
m!
m′!

)sgn(m′−m) [
L
|m′−m|
min(m,m′)(λ

2)
]2
.

(A.16)

A.4 The Polaron transformation of the tunnelling
matrix element between tip and molecule

In this section, we want to obtain an expression for

t̃ tip
i (Q̂D, Q̂S) = eŜttipi (Q̂D, Q̂S)e−Ŝ. (A.17)

To this end, we expand the tunnelling matrix element in Q̂D, which yields

t̃ tip
i (Q̂D, Q̂S) =eŜ

∞∑
m=0

tm(Q̂S)Q̂m
D e−Ŝ

=
∞∑
m=0

tm(Q̂S)(eŜQ̂De
−Ŝ)m.

(A.18)

Here, we used the unitarity of the Lang Firsov transformation 3.21 and defined tm(Q̂S)
as the coefficients of the expansion.
Next, we define the function g(α) ≡ eαŜQ̂De

−αŜ and take the derivative with respect to α.
Using the commutation relations of the ladder operators of the harmonic oscillator yields

dg(α)
dα = −2∆x0

∑
σ

[λe(n̂eσ − 1) + λon̂oσ] . (A.19)

Solving the differential equation A.19 with g(0) = Q̂D gives

g(α) = Q̂D − 2∆x0
∑
σ

[λe(n̂eσ − 1) + λon̂oσ]α. (A.20)
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Finally, we insert g(1) into the expansion A.18 and obtain the desired result

t̃ tip
i (Q̂D, Q̂S) =

∞∑
m=0

tm(Q̂S)
{
eŜ
[
Q̂D − 2∆x0

∑
σ

[λe(n̂eσ − 1) + λon̂oσ]
]
e−Ŝ

}m

= t tip
i

(
Q̂D − 2∆x0

∑
σ

[λe(n̂eσ − 1) + λon̂oσ] , Q̂S

)
.

(A.21)
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