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1 Introduction

Since 1978 many theoretical and experimental advances in mesoscopic physics were
recorded. This branch of condensed matter physics describes systems with interme-
diate sizes. Since the 1980s M. A. Kastner and his group have been studying narrow
transistors[1]. He describes his discovery in an article in Reviews of Modern Physics
(1992). Several years before this article was published he and his group accidentally
discovered the so called single-electron transistor and they studied how to control its
behaviour. First they saw oscillations of the conductance in narrow Si-transistors like
in Fig.1. To understand the dependence of the period of the oscillations they made
many experiments with GaAs transistors, which Meirav et. al [2] had discovered at
that time and they came to the result that each oscillation stands for adding one
electron.[1] Thus Kastner et al. conclude that submicronsize transistors, which are

Figure 1: Coulomb oscillations for a symmetric Si-transistor ([1])

connected to their lead electrodes via tunnel junctions, turn on and o� again every
time an electron is added. This was di�erent from the transistors, which were usu-
ally used at that time. They only turn on once as electrons are added.[1] L.Sohn,
L. Kouwenhoven and G. Schön describe in their work about the mesoscopic electron
transport([3]) the theory of single-electron tunnelling, with emphasis on the Coulomb
blockade e�ects. They studied the current in a symmetric single-electron transistor.[3]
In these devices the metallic island, which has a capacitance in the range of 10−15F or
smaller, is separated by tunnelling barriers with the tunnelling resistance RT > ( he2 ).
[4] Such systems are in a regime where the charging energy Ec is larger than the ther-
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mal energy kT . [5] Sohn et. al describe the so called Coulomb oscillations, where
the current (and the di�erential conductance) oscillates with the gate voltage, which
controls the additional energy of the metallic island. [3][4] This e�ect can be exploited
to control the transfer of a single charge from one island to another. [4]
S. Geiÿler et al. [6] studied Coulomb blockade e�ects in nano fabricated narrow

constrictions in thin (Ga,Mn)As �lms. They observed nested Coulomb diamonds and
anomalous conductance suppression in the vicinity of charge degeneracy points. They
analyzed the transport characteristics of the system with a modi�ed orthodox theory
of Coulomb blockade which takes into account the energy dependence of the density
of states in the metallic island. They assumed a density of states with an upward
shift in energy of the minority spin band with respect to the majority spin band and
saw that there is a conductance suppression for tunnelling if the chemical potential
lies between the bottom of the majority and of the minority spin band for low bias
voltages. But this does not describe the fact that there is a full suppression of the
conductance peaks.[6] Because of this we want to consider conductance suppression
for another density of states.
The aim of this work is to study the Coulomb blockade e�ects in semi-conductive is-
lands. We calculate the characteristics for tunnelling processes with a energy-dependent
density of states and compare this with the results of the energy-independent density
of states.
The thesis is structured as follows: Sec. 2 explains the building and functionality of
the single-electron transistor. In Sec. 3 we brie�y outline the calculations of the char-
acteristics of the transport theory. The framework is the orthodox theory of coulomb
blockade. To get a �nal analytical equation for the transition rates we �rst evaluate
the master equation for the reduced density matrix. Then the resulting current can
be evaluated with the calculated tunnelling rates. In Sec. 4 we present the results of
the transport theory with an energy-dependent density of states of the island. The
conclusion is written in Sec. 5.
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2 Single-Electron Transistor

An elementary Coulomb blockade circuit is the so called single-electron box. It consists
of a small metallic island, which is coupled via a tunnel junction to a source electrode.
There is also a gate connected via a capacitor to the system. The number of excess
electrons in the island can be varied by changing the gate voltage, due to the change
of the electrochemical potential of the island. The latter helps the electrons from the
source to tunnel in the island in discrete steps.[3][7] The single-electron-transistor, or
the SET, is very similar to the single-electron box. It has though three electrodes. The
island is coupled via two tunnel junctions to the the transport electrodes source and
drain. Furthermore, as well as in the single-electron box it is capacitively connected
to the gate.[3] The structure is sketched in Fig. 2. The charging energy is given as a
function of the integer number n of excess electrons and of the gate charge.

Figure 2: Schematics of a single-electron transistor. The island is coupled via a ca-
pacitor(purple) to the gate and via tunnel junctions to source and drain.

Ech(n,QG) =
(ne−QG)2

2C
(1)

The total capacitance C is expressed as the sum of the junction capacitances and
the gate capacitance. To calculate the gate charge we require also the three voltages,
VG for the gate, VR for the right lead and VL for the left lead.[3]
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QG = CGVG + CLVL + CRVR (2)

We assume that there are N extra electrons in the island. There are four possible
tunnelling processes, which change the current charge state. They are all depending
on the energy di�erence between the �nal and the initial state ∆Ech. One possible
electron transfer, which replaces N → N + 1 is characterized by the energy di�erence
Ech(N + 1, QG) − Ech(N,QG). It occurs when the electrochemical potential in the
left or in the right lead is high enough to compensate ∆Ech. Thus an electron can
tunnel in the island. After the increase of the electron number in the island due to an
electron transfer from i.e. the left lead to the island, it is possible that an electron of
the island tunnels to the right lead. Thus the island is again in charge state N. This
hole process runs if both

eVL > Ech(N + 1, QG)− Ech(N,QG) (3)

for the transition from N → N + 1 and

eVR < Ech(N + 1, QG)− Ech(N,QG) (4)

for N+1→ N are concurrently valid. This way a current �ows through the transistor.
The electrons are transferred one-by-one, due to the fact, that the number of excess
electrons, so the charge state, is an integer number.[7] One speaks of a Coulomb
blockade if none of the above equations Eq. (3) and Eq. (4) is satis�ed. The charge
state can be shifted by varying the gate voltage.[8] The quantum �uctuations in the
particle number N should be su�ciently small that the charge is well localized on the
island. We consider the uncertainty relationship ∆E∆t ≥ ~, where t gives the time to

transfer charge into and out of the island: ∆t ≈ RtC and ∆E ∝ e2

C . Combining these
two equations gives that the tunnel resistance should be su�ciently large:

Rt >
h

e2
.

In Fig 3 the voltage for the left electrode is above the threshold voltage to overcome
Coulomb blockade. Thus one electron can tunnel in the island. After this process the
island is in charge state N+1 and the fermi energy of the island is raised by Ech. There
will be a gap that prohibits a second electron from tunnelling into the island from the
left lead. No further charge �ows until the extra electron on the island tunnels into the
right electrode, taking it back to the N state. This process lowers the Fermi energy in
the dot and allows another electron to tunnel from the left electrode inside and then
the process repeats itself.[8]
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Figure 3: Band diagram of a single-electron transistor, illustrating the Coulomb
blockade e�ect for a applied bias voltage.
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3 Orthodox theory of Coulomb blockade

The above introduced device consists of an island in tunnelling contact with source
and drain leads (see Fig. 4). To shift the energy level in the island, it also interacts
capacitively with a nearby metallic gate. To study this problem we use the orthodox
theory of Coulomb blockade. The theory is based on the master equation for the
reduced density matrix.[3][5][7][9][10] To analyze the tunnelling processes in the tran-
sistor we will calculate the transition rates and the current. The time to tunnel from
one side of the barrier to the other is on the order of 10−14s, whereas the actual time
between tunnelling events themselves is on the order of 10−12s. The time for charge to
rearrange itself on the electrodes due to the transition of one particle is also very short.
Therefore we can consider that the junctions act as ideal capacitors which charge is
slowly gone through.[8] The hole system can be described by the Hamiltonian

H = Hsys +Hext +Htun +Hleads. (5)

We assume, that the island is large enough to have a quasi continuous single-
particle spectrum, but small enough that their charging energy dominates the transi-
tion process.[6] Hence the Hamiltonian for the island reads

Hsys =
∑
i,σ

εid
†
iσdiσ +

U

2
N̂(N̂ − 1). (6)

It describes the island with many-body eigenstates, where εi gives the single particle
energy, d†iσ creats a particle in the island and diσ annihilates one. U labels the charging

energy of the island and N̂ =
∑
iσ n̂iσ is the number operator.[11] The Hamiltonian

for the metallic leads

Hleads =
∑
α,k,σ

εkc
†
αkσcαkσ (7)

describes them as a Fermi-gas of noninteracting particles. The operator c†αkσ creates
a quasi-particle with spin σ and energy εk.[11] The index k labels the momentum of
the electrons in the source and drain contacts and α = l, r, for the left (source) and
the right lead (drain). The e�ects on the system caused by the gate voltage Vg are
described by the Hamiltonian:

Hext = eVgN̂ . (8)

To study the electron transfer between the leads and the system the tunnelling
Hamiltonian is introduced. It depends on the tunnel matrix elements Tki, which now
can be considered as a constant Tki = T :

Htun = |T |
∑
α,i,k,σ

(
c†αkσdiσ + d†iσcαkσ

)
. (9)
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3.1 Calculation of the transition rates

For the following calculations Htun is treated like a perturbation, because we assume
a weak coupling between leads and island.[11] The density matrix plays an important
role in the quantum statistic. It can deliver all informations about a system. The
equation of motion for the density matrix in the interaction picture can be calculated
with the quantum mechanical Liouville-equation:

∂ρI(t)

∂t
= − i

~
[Htun,I(t), ρI(t)] . (10)

Integration after t and reinserting in Eq. (10) gives an integral over a double-commutator.
Since we are not interested in the details of the dynamics of the leads, we trace over
the corresponding degrees of freedom. This gives for the equation of motion of the
reduced density matrix, approximated to second order:

ρ̇I,red(t) = − 1

~2

∫ t

t0

dt′Trleads{[Htun,I(t), [Htun,I(t
′), ρI(t

′)]]}. (11)

To bring this into a time-local form, we replace ρI(t
′) by ρI(t), which is allowed

to lowest order in the tunnelling coupling. The leads can be considered as thermal
reservoirs which stay in thermal equilibrium. We also assume that the in�uence of
the island on the system is weak.[11] Because of this the statistic operator can be
factorised: ρI(t) = ρred,I(t) ⊗ ρleads, where ρleads gives the density operator for the
leads in thermal equilibrium. The general transformation from the interaction picture
to the Schrödinger picture is given by the equation:ρI(t) = e

i
~H0tρIe

− i
~H0t. To apply

this on Eq. (11) this term has to be derived and changed. We substitute the time
t′′ = t − t′ and say t′′ = t′. In the introduced problem we �nd: H0 = Hsys + Hext.
Hence the equation of motion for the reduced density matrix in the Schrödinger picture
reads

ρ̇red(t) = − i
~

[Hsys +Hext, ρred(t)]−

1

~2

∫ ∞
0

dt′Trleads{[Htun, [Htun,I(−t′), ρred,I(t)⊗ ρleads]]}.
(12)

The metallic island relaxes to equilibrium after each tunnelling process, because of
its continuous spectrum and to the action of additional sources of dissipation. Thus
the shape of the density matrix is: ρred =

∑
N PN (t)ρth,N . PN is the probability for

the island to be in charge state N and ρth,N represents the system in the local thermal
equilibrium. We de�ne

ρth,N =
1

ZN
exp [−β(Hsys +Hext)]PN , (13)

where ZN gives the partition function ZN = Trsys{exp [−β(Hsys +Hext]PN}, β = 1
kT

and PN is the projector on the subspace with N particles, which can be written as
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PN =
∑
N

= |N〉 〈N | . (14)

After inserting ZN in Eq. (13) and making use of the properties of the trace, the
density operator in the thermal equilibrium becomes

ρth,N =
e−β(

∑
iσ εin̂iσ )PN∑

{niσ}N 〈n̂iσ|e
−β(

∑
iσ εin̂iσ)|n̂iσ〉

. (15)

The approach for the normalization Trsysρsys(t) = 1 gives the result:

Trsys{
∑
N

PN (t)ρth,N} =
∑
N

PN

∑
{niσ}N′

〈n̂iσ|e−β(
∑
iσ εin̂iσ)PN |n̂iσ〉∑

{niσ}N 〈n̂iσ|e
−β(

∑
iσ εin̂iσ)|n̂iσ〉

=
∑
N

PN .

This result con�rmed that PN is a probability. From that the equation of motion
for PN (t) can be calculated. Because of the previous calculations it is known, that
ṖN = Trsys{ρ̇red(t)PN}. Thus with Eq. (9) follows

ṖN (t) = − 1

~2
|T |2Trsys

{
PN

∫ ∞
0

dt′Trleads

{[ ∑
α,i,k,σ

(c†αkσdiσ + d†iσcαkσ)

,

[
(c†αkσ(−t′)diσ(−t′) + d†iσ(−t′)cαkσ(−t′)),

∑
N ′

PN ′ρth,N ′ ⊗ ρleads

]]}}
.

This double-commutator can be �gured out. The outcome terms are separated in two
trace-parts. We also exploit the possibility to change the trace cyclical. Hence
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ṖN (t) = − 1

~2

∑
N ′

∫ ∞
0

dt′
∑

α,j,i,k,σ

|T |2
[

Trleads{cαkσc†αkσ(−t′)ρleads}Trsys{PNd†iσdjσ(−t′)ρth,N ′}PN ′−

Trleads{cαkσc†αkσ(−t′)ρleads}Trsys{d†iσPNdjσ(−t′)ρth,N ′}PN ′+

Trleads{c†αkσcαkσ(−t′)ρleads}Trsys{PNdiσd†jσ(−t′)ρth,N ′}PN ′−

Trleads{c†αkσcαkσ(−t′)ρleads}Trsys{diσPNd†jσ(−t′)ρth,N ′}PN ′−

Trleads{c†αkσ(−t′)cαkσρleads}Trsys{djσ(−t′)PNd†iσρth,N ′}PN ′+

Trleads{c†αkσ(−t′)cαkσρleads}Trsys{djσ(−t′)d†iσPNρth,N ′}PN ′−

Trleads{cαkσ(−t′)c†αkσρleads}Trsys{d†jσ(−t′)PNdiσρth,N ′}PN ′+

Trleads{cαkσ(−t′)c†αkσρleads}Trsys{d†jσ(−t′)diσPNρth,N ′}PN ′
]
.

In the next step we are making use of the following terms for the trace over the lead
degrees of freedom, where f gives the Fermi function which is de�ned as: f(εk−µα) =

1
1+eβ(εk−µα) . This describes the occupation probability for a state with energy εk.

Trleads{c†αkσcαkσ(−t′)ρleads} = f(εk − µα)eiεk
t′
~ (16)

Trleads{cαkσc†αkσ(−t′)ρleads} = [1− f(εk − µα)]e−iεk
t′
~ (17)

Trleads{cαkσ(−t′)c†αkσρleads} = [1− f(εk − µα)]eiεk
t′
~ (18)

Trleads{cαkσ(−t′)c†αkσρleads} = f(εk − µα)e−iεk
t′
~ (19)

The only statistically relevant term of Hsys is
∑
i,σ εid

†
iσdiσ.[6] Under this assump-

tions we can continue with the terms, where we take the trace over the leads in Eq.
(16). For this the explicit time evolution of the system operator should be calculated.
The time evolution operator is:

U0(t) = e
i
~
∑
i,σ εid

†
iσdiσt

′
e
i
~ (eVgN̂+U

2 N̂(N̂−1))t′ . (20)

The external and interacting components become numbers and can be evaluated im-
mediately. Now using the description of the projection operator in Eq. (14) and
inserting two identities with M and M':

∑
M |M〉 〈M | in front of the left and after the

right exponential function gives for the third term:

Trsys{PNdiσd†jσ(−t′)ρth,N ′} =

e−
i
~ (eVg+UN̂)t′Trsys

{
PNdiσe−

i
~
∑
iσ εin̂iσt

′
d†jσe

i
~
∑
iσ εin̂iσt

′
ρth,N ′

}
.

(21)
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Moreover, we calculate the time evolution with the left exponential-function in Eq.
(21):

d

dt
d†jσ(−t′) =

i

~
e−

i
~ εin̂iσt

′
[
d†jσ, εin̂iσ

]
e
i
~ εin̂iσt

′
. (22)

The commutator gives
[
d†jσ, εin̂iσ

]
= −εid†jσδij . This yields a di�erential equation,

which can be easily solved: d†iσ(−t′) = e−
i
~ εit

′ · d†iσ. Putting all results together gives

Trsys{PNdiσd†jσ(−t′)ρth,N ′} = e−
i
~ (εi+eVg+UN)t′ ·δij ·δNN ′Trsys

{
diσd

†
iσρth,N ′

}
. (23)

These are behaving a little bit di�erent, if the order of the operator in the trace is
another. I.e.:

Trsys{djσ(−t′)PNd†iσρth,N ′} = e
i
~ (εi+eVg+U(N−1))t′ · δij · δN ′N−1Trsys

{
diσd

†
iσρth,N ′

}
.

(24)
The left terms can be evaluated in the same way. Here we see the di�erence of the
charging energy ∆Ech in the exponential function. The form of the delta-function
depends on the position of the projection operator. The problem now is, that ρ̂th,N

�xes the total particle number of the system to N. In the limit of large particle numbers
the canonical and the grand canonical ensembles coincide. Thus we can make the
approximation:

Trsys

{
diσd

†
iσρ̂th,N

}
≈ Trsys

{
diσd

†
iσρ̂µN

}
, (25)

where

ρ̂µN =
exp−β[

∑
iσ(εi − µN )n̂iσ]

Trsys{exp−β[
∑
iσ(εi − µN )n̂iσ]}

.

Under these assumptions the trace in Eq. (23) can be evaluated. We use the
abbreviations: f(εk − µα) = f+

α (εk) and [1 − f(εk − µα)] = f−α (εk). Furthermore, we
introduce µN = µsys. The above assumption in Eq. (25) carries

Trsys

{
diσd

†
iσρ̂µN

}
= 1− f(εi − µsys). (26)

The other system traces can be evaluated in complete analogy. Now we use these
results and the equations for the trace over the lead degrees of freedom and combine
them in Eq. (16). Thus we can write ṖN (t) as
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ṖN (t) = −1

~

∫ ∞
0

dt′
∑
ασ

∑
ik

|T |2

f+
α (εk)f−sys(εi) exp

[
− i
~

(εi + eVg + UN − εk)t′
]
PN (t)+

f−α (εk)f+
sys(εi) exp

[
i

~
(εi + eVg + U(N − 1)− εk)t′

]
PN (t)−

f−α (εk)f+
sys(εi) exp

[
− i
~

(εi + eVg + UN − εk)t′
]
PN+1(t)−

f+
α (εk)f−sys(εi) exp

[
i

~
(εi + eVg + U(N − 1)− εk)t′

]
PN−1(t)−

f−α (εk)f+
sys(εi) exp

[
i

~
(εi + eVg + UN − εk)t′

]
PN+1(t)−

f+
α (εk)f−sys(εi) exp

[
− i
~

(εi + eVg + U(N − 1)− εk)t′
]
PN−1(t)+

f+
α (εk)f−sys(εi) exp

[
i

~
(εi + eVg + UN − εk)t′

]
PN (t)−

f−α (εk)f+
sys(εi) exp

[
− i
~

(εi + eVg + U(N − 1)− εk)t′
]
PN (t).

In the next step we can combine respectively two terms: The �rst and the seventh,
the second and the eight, the third and the �fth and the fourth and the sixth. This
process results in four terms. Each of them can be written as two times the real
part of the exponential function. Substituting t′

~ = x and using 2~Re
∫∞

0
dxei∆Ex =

2π~δ(∆E) yields

ṖN = − 1

~2

∑
ασ

∑
ik

|T |2
[
f+
α (εk)f−sys(εi)2π~δ(εi + eVg + UN − εk)PN (t)+

f−α (εk)f+
sys(εi)2π~δ(εi + eVg + U(N − 1)− εk)PN (t)−

f−α (εk)f+
sys(εi)2π~δ(εi + eVg + UN − εk)PN+1(t)−

f+
α (εk)f−sys(εi)2π~δ(εi + eVg + U(N − 1)− εk)PN−1(t)

]
.

(27)

Next we transform:
∑
ik −→

∫∞
−∞ dεiDsys

∫∞
−∞ dεkDα, where the density of states

Dα and Dsys were introduced. This de�nes the number of states per energy interval.
In this chapter we assume that the density of states for both, the island and the leads
is constant.
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Thus

ṖN = −
∑
ασ

1

~
|T |22πDαDsys

∫ +∞

−∞
dεi

∫ +∞

−∞
dεk

[
f+
α (εk)f−sys(εi)2πδ(εi + eVg + UN − εk)PN (t)+

f−α (εk)f+
sys(εi)2πδ(εi + eVg + U(N − 1)− εk)PN (t)−

f−α (εk)f+
sys(εi)2πδ(εi + eVg + UN − εk)PN+1(t)−

f+
α (εk)f−sys(εi)2πδ(εi + eVg + U(N − 1)− εk)PN−1(t)

]
.

(28)

These terms can be interpreted as transition rates. They describe the tunnelling of
one particle of the states k in the leads to one of the free states i in the island. The
�rst term characterizes the transition from the state with N particles to N+1. The
second one describes the change of N to N-1 and the last two terms describe the
tunnelling process from N+1 and N-1 to N. The energy conservation is expressed by
the δ-function. It contains the change of the charging energy, which is required for
the transition and also for the energies of the particle states εk,i. Now we can make
the �nal integrations. First we substitute the constant γα = 2 2π

~ DαDsys|T |2 and then
continue with the integration over εk. Exploiting the properties of the delta function
carries

ṖN (t) =
∑
α

γα

∫ +∞

−∞
dεi

[
−(

f+
α (εi + eVg + UN)f−sys(εi) + f−α (εi − eVg + U(N − 1))f+

sys(εi)
)
PN (t)+

f−α (εi + eVg + UN)f+
sys(εi)PN+1(t) + f+

α (εi + eVg + U(N − 1))f−sys(εi)PN−1(t)

]
.

(29)

For solving the last integral we want to rewrite the above equation. We make a
partial fraction expansion for f+(ε1)f−(ε2). This results in

f+(ε1)f−(ε2) = nB(ε1 − ε2)[f+(ε2)− f+(ε1)]. (30)

Furthermore, we can make use of the following relation:∫ +∞

−∞
dε
[
f+(ε)− f+(ε+ ω)

]
= ω, (31)

where nB(ε1 − ε2) = 1
eβ(ε1−ε2)−1

de�nes the Bose-Einstein function. Using the �rst

identity (Eq. (30)) gives
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ṖN (t) =
∑
α

γα

∫
dεi

[
−[

nB(−µα + eVg + UN + µsys)(f
+
sys(εi)− f+

α (εi + eVg + UN))
]
PN (t)−[

nB(µα − eVg − U(N − 1)− µsys)(f
+
α (εi + eVg + U(N − 1))− f+

sys(εi)
]
PN (t)+[

nB(µα − eVg − UN − µsys)(f
+
α (εi + eVg + UN)− f+

sys(εi)
]
PN+1(t)+[

nB(−µα + eVg + U(N − 1) + µsys)(f
+
sys(εi)− f+

α (εi + eVg + U(N − 1))
]
PN−1(t)

]
.

(32)

Now we can apply the second relation on Eq. (29) and obtain

ṖN (t) =
∑
α

γα

[
−

nB(−µα + eVg + UN + µsys) [−µα + eVg + UN + µsys]PN (t)−
nB(µα − eVg − U(N − 1)− µsys) [µα − eVg − U(N − 1)− µsys]PN (t)+

nB(µα − eVg − UN − µsys) [µα − eVg − UN − µsys]PN+1(t)+

nB(−µα + eVg + U(N − 1) + µsys) [−µα + eVg + U(N − 1) + µsys]PN−1(t)

]
.

(33)

With Fermi`s golden rule we can identify the tunnelling rates, so we can present the
master equation for the orthodox theory of coulomb blockade:

ṖN (t) = −[
ΓN→N+1

l + ΓN→N+1
r + ΓN→N−1

l + ΓN→N−1
r

]
PN (t)+[

ΓN+1→N
l + ΓN+1→N

r

]
PN+1(t) +

[
ΓN−1→N

l + ΓN−1→N
r

]
PN−1(t),

(34)

where we have introduced the equations for the transition rates, which describe the
tunnelling processes in and out of the island. In the following calculations we only
consider the transitions from the state with N excess electrons to N+1 and the reverse
process (compare with Fig. 4).
For the left lead we de�ne

Γ±l = γl
±(eVg + UN − e

2Vb)

e±(eVg+UN− e2Vb) − 1
. (35)

Here we assume a junction with symmetric bias voltage. Such that we can de�ne the
chemical potential for the leads as µl = µ0 + eVb

2 and µr = µ0 − eVb
2 . We introduce
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Figure 4: Schematics of the island with source and drain leads. The island is capac-
itively coupled to the leads. Transitions from N to N+1 and from N+1 to
N for the source lead are also sketched.

µ0, which gives the chemical potential for the leads at zero bias voltage and we also
assume, that µsys = µ0. In analogy to Eq. (35) we obtain

Γ±r = γr
±(eVg + UN + e

2Vb)

e±(eVg+UN+ e
2Vb) − 1

. (36)

In this two equations we use the short-cut for the transition from N to N+1 (+) and
N+1 to N (-). Looking at Fig. 5a), which represents the transition rate for the process,
where one particle tunnels from the left lead into the island, one can see the positive
slope. There is almost no suppression of the transition at low gate voltages. The
transition is getting higher with the bias voltage. Looking at bigger gate voltages the
linear increase of the region where no transition takes place is good to see. Thus the
transition rate is very small at zero gate voltage. This information can be compared
with Eq. (36). At constant bias voltage we can see on Fig. 5b), that the transition
starts suddenly at one point. This happens if the chemical potential of the lead is
big enough to compensate the di�erence of the charge energies. In the example of our
plot, we assumed that eVg = −U , so that the transition starts at zero bias. Eq. (33)
reveals that there is a Coulomb blockade, if ∆Ech− µα = 0. The pre factor γα can be
written as γα = 1

e2Rt,α
, where Rt gives the tunnel resistance.
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(a) (b)

Figure 5: Tunnelling rate for the transition from state N to N+1 for the source elec-
trode: a) Depending on bias and gate-voltage. b)With constant gate volt-
age. The rate was plotted for the source electrode an with following pa-
rameters: U = 10meV, N = 1, kT = 0.01meV, eVg = −10meV.

3.2 Calculation of the current

The above results also determine the current. Considering the latter example for the
left lead, we we �nd the equation:

Il(t) = −e
∑
N

[
ΓN→N+1
l PN (t)− ΓN+1→N

l PN+1(t)
]
. (37)

Taking into account that we are talking about a stationary state, we exploit the prin-
ciple of detailed balance. This expresses

PN (ΓN→N+1
l + ΓN→N+1

r ) = PN+1(ΓN+1→N
l + ΓN+1→N

r ). (38)

To get the �nal equation for the current we also use that the sum over all prob-
abilities is equal to one and at low bias voltages only two charge states play a role:
PN (t) + PN+1(t) = 1. Putting this two identities together gives expressions for the
probabilities.

PN =
∑
α

ΓN+1→N
α(

ΓN→N+1
α + ΓN+1→N

α

) , (39)

PN+1 =
ΓN→N+1
l + ΓN→N+1

r∑
α

(
ΓN→N+1
α + ΓN+1→N

α

) . (40)

Inserting this in Eq. (37), we �nd

Il(t) = −e
∑
N

[
ΓN→N+1
l ΓN+1→N

r − ΓN+1→N
l ΓN→N+1

r

]
ΓN→N+1
l + ΓN+1→N

r + ΓN+1→N
l + ΓN→N+1

r

, (41)
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Figure 6: The resulting current for the left lead for the transition from N to N+1 and
from N+1 to N. Following parameters were assumed: U = 10 meV, N=1,
kT = 0.01 meV, γl = γr = 1012 1

Js.

which gives us Fig. (6). This shows the current, depending on gate-and bias-voltage,
where the slopes of the plot provides informations on source- and drain leads. There
are two di�erent slopes. The negative slope represents transitions from or in the drain,
where the upper part determines a process where one particle goes into the drain, the
lower stands for the reverse process. The positive inclination provides informations
about the transition processes in the source lead. The upper slope can be compared
with Fig. 5a), thus we �nd that this is related to the transition from N to N+1 and
the lower is again the reverse process.
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4 Calculations with a energy-dependent density of

states of the island

In the previous chapter, it was assumed, that the density of states is independent of the
energy. But especially in semiconducting islands the energy dependence of the density
of states of the island should also be taken into account. In our following calculations
we want to consider a density of state of the island which has got a gap between two
di�erent band edges (see Fig. 7). The two edges can be interpreted as the valence-
and the conduction band in semi-conductive materials. We �rst assume a symmetric
distribution and de�ne the size of the gap as ∆. In the middle of the gap lies the
chemical potential of the lead, so that there should be no transition. In the following
calculations we want to check if increasing the voltage enforces transition processes.
The density of states of the island is given by

Figure 7: Sketch of the density of states of the island.

Dsys(εi) = D̃sys

(
Θ(εi − µsys −

∆

2
) + Θ(−εi + µsys −

∆

2
)

)
. (42)

Here the constant D̃sys de�nes the strength of the density of states. The step functions
can be approximated as Fermi functions, because the upper one goes to in�nity and
the limit of the lower one is minus in�nity. This yields

Dsys(εi) = D̃sys

(
f−(εi−µsys−

∆

2
)+f+(εi−µsys+

∆

2
)

)
= D̃sys

∑
τ

fτ (εi−µsys+τ
∆

2
),

(43)
where we have de�ned τ = ±1.
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4.1 Calculation of the transition rates

For the following calculations we take Eq.(28) and replace Dsys by Dsys(εi). Thus
Eq.(29) becomes

ṖN =
∑
ατ

γ̃α

∫
dεif

τ (εi − µsys + τ
∆

2
)

[
−
(
f+
α (εi + eVg + UN)f−sys(εi) + f−α (εi − eVg + U(N − 1))f+

sys(εi)
)
PN (t)

+ f−α (εi + eVg + UN)f+
sys(εi)PN+1(t) + f+

α (εi + eVg + U(N − 1))f−sys(εi)PN−1(t)

]
,

(44)

where γ̃α is given as: γ̃α = 2 2π
~ DαD̃sys|T |2. The di�erence to Eq. (29) is, that

when we sum over τ we have one part (for τ = −1) where the integrals look like:∫ +∞
−∞ f+(x + a)f−(x + b)f−(x + c) dx and the others (τ = +1) have the shape of:∫ +∞
−∞ f+(x + a)f−(x + b)f+(x + c) dx. First we make the integration over the terms
with τ = −1:

∫ +∞

−∞
dx f+(x+ a)f−(x+ b)f−(x+ c) =∫ +∞

−∞
dxnB(a− b)

(
f+(x+ b)− f+(x+ a)

)
f−(x+ c) =

nB(a− b)
[
nB(b− c)

∫ ∞
−∞

dx

(
f+(x+ c)− f+(x+ b)

)
−nB(a− c)

∫ +∞

−∞
dx

(
f+(x+ c)− f+(x+ a)

)]
=

nB(a− b)
(
F (b− c)− F (a− c)

)
.

(45)

Here for the �rst two steps we made use of Eq. (30) and in the last step we exploited
Eq. (31). Like in Eq. (31) nB de�nes the Bose-Einstein function and F (x) reads:
F (x) = x ∗ nB(x) = x

eβx−1
.

For the remaining integration for τ = +1 we use: f+(x) = 1− f−(x). This results in

∫ +∞

−∞
dx f+(x+ a)f−(x+ b)f+(x+ d) =∫ +∞

−∞
dx

[
f+(x+ a)f−(x+ b)− f+(x+ a)f−(x+ b)f−(x+ d)

]
.

(46)

The �rst term can be calculated in the same way as we did in the previous chapter
and the last product is the same as for τ = −1, hence Eq.(46) reads
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F (a− b)− nB(a− b)
(
F (b− d)− F (a− d)

)
. (47)

With this considerations we arrive at the �nal equation for ṖN :

ṖN =
∑
ατ

γ̃α

[

−
{
F (−µα + µsys + eVg + UN) + nB(−µα + µsys + eVg + UN)

(
− τF (−τ ∆

2
) + τF (−µα + eVg + UN + µsys − τ

∆

2
)

)
+ F (µα − µsys − eVg + U(N − 1)) + nB(µsys + µα + eVg − U(N − 1))

(
− τF (−µα + µsys − eVg + U(N − 1)− τ ∆

2
) + τF (−τ ∆

2
)

)}
PN

+

{
F (µα − µsys − eVg − UN) + nB(µα − µsys − eVg − UN)

(
− τF (−µα + µsys + eVg + UN − τ ∆

2
) + τF (−τ ∆

2
)

)}
PN+1

+

{
F (−µα + eVg + U(N − 1) + µsys) + nB(−µα + eVg + U(N − 1) + µsys)

(
− τF (−τ ∆

2
)− F (−µα + µsys + eVg + U(N − 1)− τ ∆

2
)

)}
PN−1

]
.

(48)

Comparing this with Eq. (34) gives the transition rates. We again assume a symmetric
bias voltage and that the chemical potential of the island is µ0. Hence we �nd

Γ±α = γ̃α

[
F (±(−k e

2
Vb + eVg + UN)) + nB(±(−k e

2
Vb + eVg + UN))·(

±
(
F (

∆

2
)− F (−k e

2
Vb + eVg + UN +

∆

2
)

− F (−∆

2
) + F (−k e

2
Vb + eVg + UN − ∆

2
)

))]
,

(49)

where k is +1 for α =l and -1 for α =r. To see the behaviour of the particles we plot
the tunnelling rates for the left lead (see Fig. 8), where the system in charge state N
proceeds in charge state N+1.
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Figure 8: Transition rate for constant gate voltage and with following parameters:
U=10meV, kT=0.01meV, N=1, ∆=2meV, eVg=-10meV

The transitions begin when our bias voltage is about 2 mV. This reveals that the
gap between the two bands of our density of states prevents electron tunnelling. In
our example we have chosen ∆=2 meV and eVg = −U and it`s revealing to see that
with eVB=2 meV we can counteract the blockade.

4.2 Calculations of the current

The current can be evaluated in the same way as we did in the previous chapter.
Inserting the transition rates from Eq. (49) in Eq. (41) gives the �nal equation for
the current for the processes N to N+1 and N+1 to N. The resulting plot can be
seen in Fig. 9. Di�erent to our �rst current there is a gap in Fig. 9, due to the gap
in our density of states. The equation for the current (see Eq.(41)) can be used to
calculate de conductance G = dI

dVb
. The plot of G in the Vb-Vg-plane shows stable
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regions corresponding to each N for which no tunnelling may occur (see in Fig. 10).
These structures are called Coulomb diamonds. The dark areas correspond to regions
where the current vanishes and hence where Coulomb blockade exists. The brighter
the areas are, the higher the conductance is. Since there is a gap in the current, there
is also no conductance at the edges of our coulomb diamonds, thus there would be
no peak in a plot for the conductance at zero bias. Hence the tunnelling of a source
electron into the island is highly suppressed for low bias voltages, because no states
are available near the Fermi level. Only after the bias voltage exceeds the gap, the
suppression is lifted and the current increases.

Figure 9: Current for the left lead, depending on bias-and gate-voltage with following
parameters: U=10meV, kT=0.01meV, N=1, ∆=2meV, γl = γr = 1012 1

Js
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Figure 10: Conductance plotted as a function of gate- and bias- voltage with following
parameters: kT= 0.07 meV, U=11.2 meV, µsys=-3.5U, µ0=0, γ̃l = γ̃r = 1

h

4.3 Variation of the density of states

Further we want to understand more about the behaviour of the conductance de-
pendent on the density of states. We �rst assume that the density of state is spin
dependent and there is a shift between spin-up and spin-down band. This assump-
tion modi�es Eq. (49). We assume that the density of state is not symmetric around
µsys. Because of this we set ∆

2 = B1up,
−∆
2 = B2up for spin up and ∆

2 = B1down,
−∆
2 = B2down for spin down. Moreover, there should be a pre factor of 1

2 in γ̃α. In
our �rst calculation the energy bands are shifted, such that the top of the spin down
band is above the chemical potential (see in Fig. 11). The result is plotted in Fig. 12.
It shows the Coulomb diamonds without suppression at the charge degeneracy points
around Vb = 0. This is fascinating, because despite the gap around µsys, there is no
current suppression. The reason for this is, that there is no full gap around Fermi
level, because the top of the lower spin-down band is on the height of the bottom of
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Figure 11: Sketch of the density of state with shifted spin-up and spin-down bands.

the upper spin-up band. According to this there are available states for an incoming
electron near the chemical potential. Further we assume to have an asymmetric bias
voltage, such that the potentials of the leads are:

µl = µ0 + e
1

3
Vb

µr = µ0 − e
2

3
Vb.

With the same band splitting as in the above example we get asymmetric coulomb
diamonds in Fig. 14, due to the unequal voltage input of source and drain. Further
thinking of a density of states, where the shift of spin-up structure to spin-down
structure is such, that there is again a gap around the chemical potential (see Fig.
13). We can observe asymmetric coulomb diamonds with current suppression around
zero bias (compare Fig. 15). That is how we have expected, because there are again
no available states around µsys.
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Figure 12: Conductance plotted as a function of gate- and bias- voltage with shifted
spin-up and spin-down band. Including following parameters: kT = 0.07
meV, U = 11.2 meV, µsys = −3.5U , µ0 = 0, B1up = 1, B2up = −4,
B1down = 3, B2down = 1, γ̃l = γ̃r = 1

h
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Figure 13: Schematics of a density of states with shifted spin-up and spin-down
bands. There are no available states around the Fermi level
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Figure 14: Conductance, depending on bias- and gate-voltage with its characteris-
tics, the coulomb diamonds. The plot is for an asymmetric bias voltage
and shifted spin-up and spin-down band( B1up=1, B2up=-4, B1down=3,
B2down=1), with following parameters: kT = 0.07 meV, U = 11.2 meV,
µsys = −3.5U , µ0 = 0, γ̃l = γ̃r = 1

h .
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Figure 15: Conductance for a asymmetric bias voltage and shifted spin-up and spin-
down band ( B1up = 2, B2up = −2, B1down = 3, B2down = 1). The plot
has following parameters: kT = 0.07 meV, U = 11.2 meV, µsys = −3.5U ,
µ0 = 0, γ̃l = γ̃r = 1

h .
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5 Conclusion

After a short introduction on the Coulomb blockade e�ects (Sec. 1), we introduce the
single-electron transistor. In the third section we have calculated the characteristics
of tunnelling with the orthodox theory of coulomb blockade. First we have evaluated
the equation of motion for the reduced density matrix. The density matrix is very
important for a system, because all physical observables can be calculated with it.
Furthermore, we have calculated the master equation, which is characteristic for the
orthodox theory of Coulomb blockade. Hence we got the transition rates for the
tunnelling processes. In Fig. 5b) we observed that if we choose: Vg = −U , the
transition begins when we switch on the bias voltage. This is according to Eq. (35).
The aim of this work was to study the causes for current suppression, which Geiÿler et
al. found in their work [6]. First we have assumed a density of states, which is energy-
dependent and has a structure where the chemical potential lies in a gap between
the lower and the upper band of the density of states (see Fig. 7). The resulting
conductivity-plot shows suppressions at the degeneracy points around zero bias. We
again considered the transition rate at Vg = −U in Fig. 49 and saw that there is no
tunnelling until the bias voltage exceeds the gap-width (in our example 2 meV). We
plotted the conductance for a shifted density of states, under the assumption that the
density of state is spin-dependent. There is a shift between the spin-up bands and
the spin-down bands. With this modelling the suppression at the charge degeneracy
points can be prevented, like we did in the �rst example. We also took into account
that a symmetric bias voltage is not realistic. The pre factor of the bias voltage
normally depends on the capacitances of the leads and of the gate. We saw that with
an asymmetric bias voltage the coulomb diamonds also get asymmetric, as one can
see in Fig. 14. In the last consideration we assumed an asymmetric bias voltage and
again a shifted density of states. We kept an eye on the vicinity of the Fermi level, so
that there is a full gap. Like expected there`s again no conductance at the degeneracy
points around zero bias.
The main result of this work is that with a gap in our density of states we can explain
current suppression at charge degeneracy points. In this work we used a very simpli�ed
model. We neglected the dependence of the density of states of the leads and other
spin e�ects. To understand the results of the experiments [6] better, there should be
a more realistic description of the density of states of the island.
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