Apparent Reversal of Molecular Orbitals Reveals Entanglement

P. Yu^{1,2}, N. Kocić¹, B. Siegert³, J. Repp¹, and <u>A.Donarini³</u>

¹ Institute of Experimental and Applied Physics, University of Regensburg, D-93053 Regensburg, Germany ² School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China ³ Institute of Theoretical Physics, University of Regensburg, D-93053 Regensburg, Germany

Work function

Open contradiction with a single particle interpretation (Sturm-Liouville theorem)

Explanation in a many-body theory Strongly entangled

doubly charged ground state

Phys. Rev. Lett. 119, 056801 (2017)

Electronic correlation

THIOPHENE

UMO OF

Particle-in-a-box-like states in oligothiophenes

DCV5T

In agreement with the general statement of the Sturm-Liouville theory for differential equations:

In one dimensional systems the eigenfunction of the **n-th** excited state has **n-1** nodes.

J. Repp *et al.*, Nat. Phys. **6**, 975 (2010)

5T

Level spacing engineering: the role of the dicyanovinyl moieties

 $\Delta = \epsilon_{\rm AS} - \epsilon_{\rm S}$

Many-body Hamiltonian for the molecule

Two-particle spectrum and eigenstates

 $\Delta_{\rm ST} \approx 58 \ {\rm meV}$

 $\tan\theta \approx 0.68$

Strongly entangled

ground state

 $+\tan\theta$

 $J/\Delta \approx 1$

The frontier orbitals are labeled according to their reflection symmetry

LUMO + 1 \rightarrow antisymmetric state (AS)

LUMO \rightarrow symmetric state (S)

Due to their larger electron affinity, the dicyanovinyl moieties reduce the energy spacing between the symmatric and the antisymetric state.

Orbital reversal

 $+\Delta$

0

 $-\Delta$

 $J/\Delta \ll 1$

singlet

-J triplet

 $-\sqrt{J^2+\Delta^2}$

 $\theta = \frac{\arctan(J/\Delta)}{2}$

+J

potential

K. Kaasbjerg and K. Flensberg, PRB **84**, 115457 (2011)