Theory of STM junctions for π -conjugated molecules on thin insulating films

Andrea Donarini

Sandra Sobczyk, Benjamin Siegert and Milena Grifoni

University of Regensburg, Germany

STM on thin insulating films

Weak tip-molecule tunnelling coupling Low molecule-substrate hybridization

sequential tunnelling

URVisualization of molecular orbitals

Topography

Spectroscopy

J. Repp and G. Meyer, Physical Review Letters 94, 026803 (2005)

The total Hamiltonian

 $H = H_{\rm m} + H_{\rm sub} + H_{\rm tip} + H_{\rm tup}$

 $H_{\rm sub} = \sum_{\vec{k}} \varepsilon_{\vec{k}}^S c^{\dagger}_{S\vec{k}\sigma} c_{S\vec{k}\sigma} \qquad \varepsilon_{\vec{k}}^S = \varepsilon_0^S + \frac{\hbar^2 |\vec{k}|^2}{2m}$

R

No confinement in the x-y directions

 $H_{\rm tip} = \sum \varepsilon_{k_z}^T c_{Tk_z\sigma}^{\dagger} c_{Tk_z\sigma} \qquad \varepsilon_{k_z}^T = \varepsilon_0^T + \hbar\omega + \frac{\hbar^2 k_z^2}{2m} \quad \text{Parabolic confinement}$

in the x-y directions

 $H_{\rm tun} = \sum_{\chi k i \sigma} t^{\chi}_{k i} c^{\dagger}_{\chi k \sigma} d_{i \sigma} + h.c. \quad \text{It is a single particle operator} \\ \overbrace{}^{\text{Molecular orbital}}$

Bremen, 07.03.2013

Sobczyk, Donarini, Grifoni Phys. Rev. B 85, 205408 (2012)

Tunnelling amplitudes

$$h = \frac{p^2}{2m} + v_{\rm m} + v_{\rm sub} + v_{\rm tip} \qquad t_{ki}^{\chi} := \langle \chi k\sigma | h | i\sigma \rangle$$

Bremen, 07.03.2013

Sobczyk, Donarini, Grifoni Phys. Rev. B 85, 205408 (2012)

Tunnelling amplitudes (ii)

$$t_{ki}^{\chi} = \langle \chi k\sigma | \frac{p^2}{2m} + v_{\rm m} | i\sigma \rangle + \langle \chi k\sigma | v_{\rm sub} + v_{\rm tip} | i\sigma \rangle$$

$$=\varepsilon_i \langle \chi k\sigma | i\sigma \rangle = \varepsilon_i \sum_{\alpha} \langle \chi k\sigma | \alpha\sigma \rangle \langle \alpha\sigma | i\sigma \rangle$$

Valence atomic orbitals larger in the leads than in the molecule

More perpendicular nodal planes in the molecule than in the leads

$$\psi_{\chi k}(\vec{r})\phi_i(\vec{r})$$

is **shifted towards the molecu**le

Generalized Master Equation

- We start with the Liouville equation: $\dot{\rho} = -\frac{1}{\hbar}[H, \rho]$
- We define the reduced density matrix σ = Tr_{S+T}{ρ} σ = which is block-diagonal in

 $\dot{\sigma}$

TR

particle number spin energy

- We keep the coherences between orbitally degenerate states.
- The Generalized Master Equation is the equation of motion for σ :

Tunnelling Liouvillean

$$\mathcal{L}_{tum}\sigma^{NE} = -\frac{1}{2}\sum_{\chi\tau}\sum_{ij}\left\{\mathcal{P}_{NE}\left[d_{i\tau}^{\dagger}\Gamma_{ij}^{\chi}(E-H_{m})f_{\chi}^{-}(E-H_{m})d_{j\tau} + d_{j\tau}\Gamma_{ij}^{\chi}(H_{m}-E)f_{\chi}^{+}(H_{m}-E)d_{i\tau}^{\dagger}\right]\sigma^{NE} + h.c.\right\}$$

$$+\int_{\chi\tau}\sum_{ijE'}\mathcal{P}_{NE}\left[d_{i\tau}^{\dagger}\Gamma_{ij}^{\chi}(E-E')\sigma^{N-1E'}f_{\chi}^{+}(E-E')d_{j\tau} + d_{j\tau}\Gamma_{ij}^{\chi}(E'-E)\sigma^{N+1E'}f_{\chi}^{-}(E'-E)d_{i\tau}^{\dagger}\right]\mathcal{P}_{NE}$$

$$\mathcal{P}_{NE} = \sum_{\ell}|NE\ell\rangle\langle NE\ell|$$
Projector on the subspace of N particles and energy E.
Bremen, 07.03.2013

Single particle rate matrix

$$\Gamma_{ij}^{\chi}(\Delta E) = \frac{2\pi}{\hbar} \sum_{k} \left(t_{ki}^{\chi}\right)^* t_{kj}^{\chi} \,\delta(\varepsilon_k^{\chi} - \Delta E)$$

$$\begin{aligned} H_{\text{eff}} &= \frac{1}{2\pi} \sum_{NE} \sum_{\chi \sigma} \sum_{ij} \mathcal{P}_{NE} \left[d_{i\sigma}^{\dagger} \Gamma_{ij}^{\chi} (E - H_{\text{m}}) p_{\chi} (E - H_{\text{m}}) d_{j\sigma} \right. \\ &+ d_{j\sigma} \Gamma_{ij}^{\chi} (H_{\text{m}} - E) p_{\chi} (H_{\text{m}} - E) d_{i\sigma}^{\dagger} \right] \mathcal{P}_{NE} \end{aligned}$$

TR

Effective Hamiltonian

$$I_{\chi} = \sum_{NE\sigma ij} \mathcal{P}_{NE} \begin{bmatrix} d_{j\sigma} \Gamma_{ij}^{\chi} (H_{\rm m} - E) f_{\chi}^{+} (H_{\rm m} - E) d_{i\sigma}^{\dagger} \\ -d_{i\sigma}^{\dagger} \Gamma_{ij}^{\chi} (E - H_{\rm m}) f_{\chi}^{-} (E - H_{\rm m}) d_{j\sigma} \end{bmatrix} \mathcal{P}_{NE} \quad \begin{array}{c} \text{Current} \\ \text{operator} \end{bmatrix}$$

Many-body rate matrix

The current is proportional to the transition rate between many-body states

$$R_{N E_{0} \to N+1 E_{1}}^{\chi \tau} = \sum_{ij} (N+1E_{1}) d_{i\tau}^{\dagger} |NE_{0}\rangle \Gamma_{ij}^{\chi} (E_{1}-E_{0}) \times \langle NE_{0} | d_{j\tau} N+1E_{1} \rangle f^{+} (E_{1}-E_{0}-\mu_{\chi})$$

where

$$\Gamma_{ij}^{\chi}(E_1 - E_0) = \frac{2\pi}{\hbar} \sum_k (t_{ki}^{\chi})^* t_{kj}^{\chi} \delta(\epsilon_k^{\chi} - E_1 + E_0)$$

For uncorrelated and non-degenerate systems the many-body rate reduces to

 $\epsilon_{\rm orb}$

$$R_{N E_0 \to N+1 E_1}^{\chi \tau} = \Gamma_{\rm orb}^{\chi}(\epsilon_{\rm orb}) f^+(\epsilon_{\rm orb} - \mu_{\chi})$$

The constant current map is the isosurface of a specific molecular orbital.

Dynamics in energy space

Dynamics in energy space

Bremen, 07.03.2013

URVisualization of molecular orbitals

J. Repp and G. Meyer, Physical Review Letters 94, 026803 (2005)

Dynamics in energy space

Dynamics in energy space

Particle Number

 μ_{N+1}

 μ_N

μ_T

Tip tun.

Sub. tun.

Dynamics in energy space

Interference blocking

Donarini, Siegert, Sobczyk and Grifoni Phys. Rev. B 86, 155451 (2012)

Donarini, Siegert, Sobczyk and Grifoni Phys. Rev. B 86, 155451 (2012)

Bremen, 07.03.2013

 $V_{h}[V]$

Β

Topographical fingerprint

Phys. Rev. B 86, 155451 (2012)

Interference blocking

Necessary conditions:

 Quasi-degeneracy of the anionic ground state (e.g. Due to rotational symmetry);

2. Electron affinity approximately equals the (effective) substrate work function.

Fingerprints:

 Strong negative differential conductance at negative sample biases;

 Flattening of the constant height current images in the vicinity of the interference blockade regime.

Interference: decoupling basis

Degenerate anionic ground state

 $\ell = +1$

 $\ell = -1$

Matrix form for the many-body tunnelling rate between the neutral and anionic ground states.

Angular momentum basis

Цр

Substrate

TR

$$\mathbf{R}^T = R_0^T \left(\begin{array}{c} 1 \\ \mathbf{e}^{+2i\phi} \\ 1 \end{array} \right) \mathbf{e}^{-2i\phi} \mathbf{e}^{+2i\phi} \mathbf{e}$$

Mixes angular momentum

$$\mathbf{R}^{S} = R_{0}^{S} \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right)$$

Conserves angular momentum

 $\tilde{\mathbf{R}}^T = R_0^T \left(\begin{array}{cc} 2 & 0\\ 0 & 0 \end{array} \right)$

Decoupling basis

One of the anionic state is decoupled from the tip

$$\tilde{\mathbf{R}}^S = R_0^S \left(\begin{array}{cc} 1 & 0\\ 0 & 1 \end{array} \right)$$

Notice that the decoupling basis **depends** on the **tip position**.

TR Interference: current blocking

A new bottle-neck process

The **depopulation** of the blocking state via a **substrate transition** dominates the transport.

- We developed a semi-quantitative model for the description of "weakly coupled" STM junctions with pi-conjugated molecules.
- The dynamics is described in terms of many-body transitions.
- Transport through degenerate states is associated to electron interference blockade at negative sample biases.
- In the vicinity of the interference blocking regime, flat constant height current maps indicate that the substrate tunnelling event becomes the new bottle-neck process.

Thanks

Milena Grifoni

Benjamin Siegert

Sandra Sobczyk

SPP 1243 Quantum Transport at the molecular scale

SFB 689 Spinphenomena in reduced dimensions

Thank you for your attention...

Bremen, 07.03.2013

SFB 689

Dynamics in a reduced space

$$\begin{pmatrix} \dot{\sigma}^{N} \\ \dot{\sigma}_{c}^{N+1\tau} \\ \dot{\sigma}_{d}^{N+1\tau} \end{pmatrix} = \begin{bmatrix} 2R^{T} \begin{pmatrix} -2f_{T}^{+} & 2f_{T}^{-} & 0 \\ f_{T}^{+} & -f_{T}^{-} & 0 \\ 0 & 0 & 0 \end{pmatrix} + R^{S} \begin{pmatrix} -4f_{S}^{+} & 2f_{S}^{-} & 2f_{S}^{-} \\ f_{S}^{+} & -f_{S}^{-} & 0 \\ f_{S}^{+} & 0 & -f_{S}^{-} \end{pmatrix} \end{bmatrix} \begin{pmatrix} \sigma^{N} \\ \sigma_{c}^{N+1\tau} \\ \sigma_{d}^{N+1\tau} \end{pmatrix}$$

$$I(\vec{R}_{\rm tip}, V_{\rm b}) = 2eR^S f_S^+ \sigma^N \left(1 - \frac{\sigma_{\rm c}^{N+1\tau}}{\sigma_{\rm d}^{N+1\tau}}\right)$$

TR

$$\sigma^{N} = \left(1 + 2\frac{R^{S}f_{S}^{+} + 2R^{T}f_{T}^{+}}{R^{S}f_{S}^{-} + 2R^{T}f_{T}^{-}} + 2\frac{f_{S}^{+}}{f_{S}^{-}}\right)^{-1}$$
$$\frac{\sigma_{c}^{N+1\tau}}{\sigma_{d}^{N+1\tau}} = \frac{R^{S}f_{S}^{+} + 2R^{T}f_{T}^{+}}{R^{S}f_{S}^{-} + 2R^{T}f_{T}^{-}} \cdot \frac{f_{S}^{-}}{f_{S}^{+}}.$$

Constant current maps

at working currents: I = 3.15, 3.075, 3.0, 2.925, and 2.85 pA