

Thermally induced **subgap** features in the **cotunneling** spectroscopy of a carbon nanotube

<u>A. Donarini</u>

S. Ratz, D. Steininger, T. Geiger, A. Kumar, A. Huettel, Ch. Strunk and M. Grifoni

University of Regensburg

Several phenomena

Hybrid SC quantum dot devices in the Coulomb Blockade regime show several transport phenomena:

•	Supercurrent transport carried by Cooper pairs L. I. Glazman, and K. A. Matveev, <i>JETP Lett.</i> 49 , 659 (1989)		
	J. Baselmans, A. F. Morpurgo, et al., <i>Nature</i> 43 , 397 (1999) A. V. Rozhkov, D. P. Arovas, and F. Guinea, <i>Phys. Rev. B</i> 64 , 233301 (2001) P. Jarillo-Herrero, J. A. van Dam, and L. Kouwenhoven, <i>Nature</i> 439 , 953 (2006)		SC
•	Coherent electron transport in terms of multiple Andreev reflections		
	E. Scheer, W. Belzig, et al., <i>Phys. Rev. Lett.</i> 86 , 284 (2001)		
	M. R. Buitelaar, W. Belzig, et al., Phys. Rev. Lett. 91, 057005 (2003)	G	ρ
	B. M. Andersen, K. Flensberg K, et al., <i>Phys. Rev. Lett.</i> 107 , 256802 (2011)	ite	
	F. Deon, V. Pellegrini, et al., <i>Phys. Rev. B</i> 84 , 100506 (2011)		
• (Quasi-particle transport		
	A. Levy Yeyati, J. C. Cuevas, et al., Phys. Rev. B 55, 6137 (1997)		S
	V. N. Golovach and D. Loss, Phys. Rev. B 69, 245327 (2004)		\cap
	J. A. van Dam, Y. V. Nazarov , et al., <i>Nature</i> 442 , 667 (2006)		
	A. Eichler, M. Weiss, et al., <i>Phys. Rev. Lett.</i> 99 ,126602 (2007)		
	K. Grove-Rasmussen, H. I. Jørgensen et al., Phys. Rev. B 79 134518 (2009)		
	S. De Franceschi S, L. Kouwenhoven, et al., <i>Nat. Nanotechnol.</i> 5, 703(2010)		
	S. Ptaller, A. Donarini , and M. Gritoni, <i>Phys. Rev. B</i> 87, 155439 (2013)		
	M. Gaass, S. Pfaller, et al., <i>Phys. Rev. B</i> 89, 241405 (2014)		

A few energy scales define the hybrid junction:

- Temperature Lead-dot (bare) tunnelling rate Superconducting gap Charging energy
- T 24 1700 mK $\hbar\Gamma$ 0.1 meV Δ 0.26 (1.2) meV U 15 meV
- $\hbar\Gamma < \Delta ~
 ightarrow$ Suppression of Andreev reflection
- $\hbar \Gamma \ll U \;\; {
 ightarrow } \;\; {\rm Suppression \ of \ multiple \ quasiparticle \ tunnelling}$
- $k_BT \approx \Delta \rightarrow$ Thermal excitation of quasiparticles

Φ(R)

Motivation

Cotunnelling lines are
visible at: $V_b = \pm 2\Delta/e$
 $V_b = \pm (2\Delta + \delta_m)/e$ Elastic cotunnelling
Inelastic cotunnelling

 $\{\delta_m\}$ is the set of excitation energies for the quantum dot with N particles

- Standard sequential tun.
- – Standard cotunnelling

M. Gaass, et al. *Phys. Rev. B* **89**, 241405(R) (2014) S. Pfaller et al., *Phys. Rev. B* **87**, 155439 (2013)

- —— Therm. induced sequential tun.
- – Therm. induced cotunnelling.
- S. Ratz et al., New J. Phys. 16, 123040 (2014)

Model

$$E_{m\sigma} = \epsilon_d + \frac{1}{2}m\sigma\delta$$

$$\hat{H}_{l} = E_{l}^{0} + \sum_{\vec{k}\sigma} E_{l\vec{k}} \hat{\gamma}_{l\vec{k}\sigma}^{\dagger} \hat{\gamma}_{l\vec{k}\sigma} + \mu_{l} \hat{N}_{l}$$
Quasiparticle
excitations

$$E_{l\vec{k}} = \sqrt{(\epsilon_{\vec{k}} - \mu_l)^2 + \Delta^2}$$

The gap equation

$$\begin{split} \Delta &\equiv |V| \sum_{\vec{k}} \left\langle \hat{S}_{l}^{\dagger} \hat{c}_{l-\vec{k}\downarrow} \hat{c}_{l\vec{k}\uparrow} \right\rangle \\ \hat{H}_{T,l} &= T_{l} \sum_{\vec{k}\sigma m} \left(\hat{d}_{m\sigma}^{\dagger} \hat{c}_{l\vec{k}\sigma} + \text{h.c.} \right) \end{split}$$

Bogolioubov – Valatin particle conserving transformation

$$\hat{c}_{l\vec{k}\sigma}^{\dagger} = u_{l\vec{k}}\hat{\gamma}_{l\vec{k}\sigma}^{\dagger} + \sigma v_{l\vec{k}}\hat{S}_{l}^{\dagger}\hat{\gamma}_{l-\vec{k}\bar{\sigma}}$$
$$\hat{c}_{l\vec{k}\sigma} = u_{l\vec{k}}\hat{\gamma}_{l\vec{k}\sigma} + \sigma v_{l\vec{k}}\hat{S}_{l}\hat{\gamma}_{l-\vec{k}\bar{\sigma}}$$

Transport calculation

The dynamics is described by the generalized master equation

$$\dot{\hat{\rho}}_{\rm red}(t) = -\frac{i}{\hbar} \Big[\hat{H}_{\rm CNT}, \, \hat{\rho}_{\rm red}(t) \Big] + \int_{t_0}^t \, \mathrm{d}\tau \hat{K}(t - \tau) \hat{\rho}_{\rm red}(\tau)$$

Exemplarily, one elestic cotunnelling contribution to the evolution kernel reads:

Theory vs. Experiment

Conclusions and outlook

- We report on **new transport properties** of a CNT contacted with two superconducting Nb leads.
- Thermal replicas of the elastic and inelastic cotunnelling resonances are observed for a temperature above 600 mK ($k_BT \approx \Delta$) : i.e. an extra zero-bias peak and inelastic peak corresponding to the lower excitation energy.
- We develope a generalized master equation for the reduced density matrix in the charge-conserved regime applicable to **any intradot interaction** and **finite** superconducting gap.
- A model of the CNT with a low energy interacting spectrum gives **remarkable agreement** with the experimental results.
- Further developments of the theory to include multiple Andreev reflections and supercurrent transport carried by Cooper pairs is envisaged.