

Many-body correlations in STM single molecule junctions

Andrea Donarini

Institute of Theoretical Physics, University of Regensburg (Germany)

Motivation

T. Miyamachi et al. Nature comm. 3, 993 (2012)

- CuPc on Ag(100) is anionic (CuPc⁻)
- The ground state is a triplet
- Triplet-singlet splitting: 21 meV

A. Mugarza, et al. PRB 85, 155437 (2012)

Motivation

Alteration of the molecular orbitals due electronic correlation

$$\varphi(\mathbf{r}) = \sum_{i,j} (C_j^{N-1})^* C_i^N \sum_{\alpha} \phi_{\alpha}(\mathbf{r}) \langle \Phi_j^{N-1} | \hat{c}_{\alpha} | \Phi_i^N \rangle.$$

STM experiments probe quasiparticle wavefunctions which differ from the single particle molecular orbitals

D. Toroz, et al. PRL 110, 018305 (2013)

Visualization of many-body transitions in STM experiments

F. Schulz et al. Nat. Physics 11, 229 (2015)

Anomalous microscopy

The **anomalous current map** depends on the nature of the excited state

The **population inversion** relies on the strong asymmetry between substrate and tip tunneling rates and on the weak relaxation rate

Copper Phthalocyanine

Non-equilibrium spin crossover

TR

Spin crossover

Change in the occupation of the metal *d*-orbitals:

Interplay of:

- (Octahedral) ligand field splitting
- Exchange interaction

V. Meded, et al. PRB 83, 245415 (2011)

Non equilibrium spin-crossover

TR

 $V_{\text{bias}} = 1.38 \text{ V}$

TRMME, Donostia 17.06.2016

The Hamiltonian

The STM single molecule junction is described by the Hamiltonian

$\hat{H} = \hat{H}_{mol} + \hat{H}_{mol-env} + \hat{H}_{S} + \hat{H}_{T} + \hat{H}_{tun}$

Minimal basis set

The single particle Hamiltonian is constructed following LCAO schemes of Harrison [1] and Slater-Koster [2].

Many-body Hamiltonian

The many-body Hamiltonian for the molecule reads

$$\hat{\mathbf{H}}_{\mathrm{mol}} = \sum_{i} (\epsilon_{i} + \Delta) \,\hat{n}_{i} + \frac{1}{2} \sum_{ijkl} \sum_{\sigma\sigma'} V_{ijkl} \,\hat{\mathbf{d}}_{i\sigma}^{\dagger} \hat{\mathbf{d}}_{k\sigma'}^{\dagger} \hat{\mathbf{d}}_{l\sigma'} \hat{\mathbf{d}}_{j\sigma}$$

 Δ is a free parameter accounting for the crystal field of the protons and frozen electrons

 V_{ijkl} are ALL Coulomb integrals among the dynamical orbitals

The Coulomb integrals are calculated with the relative dielectric constant $\epsilon_{mol} = 2.2$. The atomic orbitals are of Slater type.

U_S	11.352 eV $J_{HL}^{\text{ex}} = -\tilde{J}_{H}^{\text{p}}$	$_{+-}$ 548 meV
U_H	$1.752 \text{ eV} J_{+-}^{\text{ex}}$	$258 \mathrm{~meV}$
$U_L = U_{+-}$	$1.808 \text{ eV } J^{\text{p}}_{+-}$	$168 { m meV}$
U_{SH}	1.777 eV $J_{SL}^{ex} = -\tilde{J}_{S+}^{p}$	$_{-}$ 9 meV
U_{SL}	$1.993 \text{ eV } J_{SH}^{\text{ex}} = J_{SH}^{\text{p}}$	$2 \mathrm{meV}$
U_{HL}	$1.758 {\rm eV}$	

Angular momentum conservation

The Coulomb interaction conserves the quasi angular momentum of the molecule

$$L_{z} = 0 \qquad \underbrace{\ell_{z} = +1}_{\ell_{z} = -1} \qquad \underbrace{\uparrow}_{\tilde{J}_{H+-}} \qquad \underbrace{\downarrow}_{L_{z} = 0} \qquad L_{z} = 0$$

$$L_{z} = 0 \qquad \underbrace{\ell_{z} = 2}_{\ell_{z} = 2} \qquad \underbrace{\uparrow}_{\tilde{J}_{H+-}} \qquad \underbrace{\downarrow}_{L_{z} = 0} \qquad L_{z} = 2$$

Many-body spectrum

Image charge effects

$$\hat{\mathrm{H}}_{\mathrm{mol-env}} = -\delta_{\mathrm{ic}}(\hat{N} - N_0)^2$$

This term incorporates the two main effects which stabilize the excess charge on the molecule

Image charge effect

K. Kaasbjerg and K. Flensberg *PRB* **84**, 115457 (2011) F. E. Olsson *et al., PRL* **98**,176803 (2007)

Leads and tunnelling

The tip and substrate are modeled as reservoirs of non interacting fermions

$$\hat{\mathbf{H}}_{\mathrm{S/T}} = \sum_{\mathbf{k}\sigma} \epsilon_{\mathbf{k}}^{S/T} \, \hat{\mathbf{c}}_{S/T\mathbf{k}\sigma}^{\dagger} \hat{\mathbf{c}}_{S/T\mathbf{k}\sigma}^{\dagger}$$

The tunnelling Hamiltonian is calculated following the tunnelling theory of Bardeen.

$$\hat{\mathbf{H}}_{\mathrm{tun}} = \sum_{\chi \mathbf{k} i \sigma} t_{\mathbf{k} i}^{\chi} \hat{\mathbf{c}}_{\chi \mathbf{k} \sigma}^{\dagger} \hat{\mathbf{d}}_{i \sigma} + \mathrm{h.c.}$$

The tip tunnelling amplitudes follow the **Chen's derivative rule**. The substrate tunnelling amplitudes are proportional to the **overlap** of the molecule and substrate wavefunctions.

S. Sobczyk, AD, and M. Grifoni, PRB 85, 205408 (2012)

Transport calculations

The dynamics is calculated via a generalized master equation for the reduced density matrix $\sigma = \text{Tr}_{S,T}(\rho)$

 $\mathcal{L}[\sigma^{\infty}] \equiv 0$ defines the stationary reduced density matrix.

Tunnelling Liouvillean

$$\mathcal{L}_{tun}\sigma^{NE} = -\frac{1}{2}\sum_{\chi\tau}\sum_{ij}\left\{\mathcal{P}_{NE}\left[d^{\dagger}_{i\tau}\Gamma^{\chi}_{ij}(E-H_{m})f^{-}_{\chi}(E-H_{m})d_{j\tau} + d_{j\tau}\Gamma^{\chi}_{ij}(H_{m}-E)f^{+}_{\chi}(H_{m}-E)d^{\dagger}_{i\tau}\right]\sigma^{NE} + h.c.\right\}$$

$$+\sum_{\chi\tau}\sum_{ijE'}\mathcal{P}_{NE}\left[d^{\dagger}_{i\tau}\Gamma^{\chi}_{ij}(E-E')\sigma^{N-1E'}f^{+}_{\chi}(E-E')d_{j\tau} + d_{j\tau}\Gamma^{\chi}_{ij}(E'-E)\sigma^{N+1E'}f^{-}_{\chi}(E'-E)d^{\dagger}_{i\tau}\right]\mathcal{P}_{NE}$$

Tunnelling rate matrix

$$H_{\text{eff}} = \frac{1}{2\pi} \sum_{NE} \sum_{\chi\sigma} \sum_{ij} \mathcal{P}_{NE} \begin{bmatrix} d_{i\sigma}^{\dagger} \Gamma_{ij}^{\chi} (E - H_{\text{m}}) p_{\chi} (E - H_{\text{m}}) d_{j\sigma} \\ + d_{j\sigma} \Gamma_{ij}^{\chi} (H_{\text{m}} - E) p_{\chi} (H_{\text{m}} - E) d_{i\sigma}^{\dagger} \end{bmatrix} \mathcal{P}_{NE}$$
Effective Hamiltonian
$$I_{\chi} = \sum_{NE\sigma ij} \mathcal{P}_{NE} \begin{bmatrix} d_{j\sigma} \Gamma_{ij}^{\chi} (H_{\text{m}} - E) f_{\chi}^{+} (H_{\text{m}} - E) d_{i\sigma}^{\dagger} \\ - d_{i\sigma}^{\dagger} \Gamma_{ij}^{\chi} (E - H_{\text{m}}) f_{\chi}^{-} (E - H_{\text{m}}) d_{j\sigma} \end{bmatrix} \mathcal{P}_{NE}$$
Current operator

$$\Gamma^{\chi}_{ij}(\Delta E) = \frac{2\pi}{\hbar} \sum_{\mathbf{k}} (t^{\chi}_{\mathbf{k}i})^* t^{\chi}_{\mathbf{k}j} \delta(\epsilon^{\chi}_{\mathbf{k}} - \Delta E)$$

Many-body rate matrix

The current is proportional to the transition rate between many-body states

$$R_{N E_{0} \to N+1 E_{1}}^{\chi \tau} = \sum_{ij} N+1E_{1} |d_{i\tau}^{\dagger}|NE_{0}\rangle \Gamma_{ij}^{\chi}(E_{1}-E_{0}) \times \langle NE_{0}|d_{j\tau}N+1E_{1}\rangle f^{+}(E_{1}-E_{0}-\mu_{\chi})$$

For uncorrelated and non-degenerate systems the many-body rate reduces to

$$R_{N E_0 \to N+1 E_1}^{\chi \tau} = \Gamma_{\text{orb}}^{\chi}(\epsilon_{\text{orb}})f^+(\epsilon_{\text{orb}} - \mu_{\chi})$$

$$\epsilon_{\text{orb}}$$

Close to equilibrium, the **constant current map** is the **isosurface** of a **specific molecular orbital** (Tersoff-Hamann theory of STM)

Topography of CuPc

$$I_{\chi}(\mathbf{r}_{\mathrm{T}},V_b)=\mathrm{Tr}_{\mathrm{mol}}\left(\hat{N}\mathcal{L}_{\chi}[\sigma^{\infty}(\mathbf{r}_{\mathrm{T}},V_b)]
ight)$$

cationic resonance: $\phi_0 = 4.65 \text{ eV}$

$$I_{\chi}(\mathbf{r}_{\mathrm{T}}, V_{\mathrm{res}}) = 0.5 \,\mathrm{pA}$$

anionic resonance: $\phi_0 = 4.65 \text{ eV}$

$$I_{\chi}(\mathbf{r}_{\mathrm{T}}, V_{\mathrm{res}}) = 0.75 \,\mathrm{pA}$$

B. Siegert, A. Donarini, and M. Grifoni PRB 93 121406(R) (2016) TRMME, Donostia 17.06.2016

ЛR

 $S(\mathbf{r}_{\mathrm{T}}, V_b) = \sqrt{\langle \hat{S}^2 \rangle (\mathbf{r}_{\mathrm{T}}, V_b) + \frac{1}{4}} - \frac{1}{2} \quad \text{with} \quad \langle \hat{S}^2 \rangle (\mathbf{r}_{\mathrm{T}}, V_b) = \mathrm{Tr}_{\mathrm{mol}} \left(\hat{S}^2 \rho_{\mathrm{red}}^{\infty}(\mathbf{r}_{\mathrm{T}}, V_b) \right)$

cationic resonance: $\phi_0 = 4.65 \text{ eV}$

anionic resonance: $\phi_0 = 4.65 \text{ eV}$

B. Siegert, A. Donarini, and M. Grifoni PRB 93 121406(R) (2016) TRMME, Donostia 17.06.2016

0.2

The anomalous case

cationic resonance: $\phi_0 = 4.65 \text{ eV}$

1 S

0.8

0.6

5.

Population inversion

The current and topographic maps of an anionic transition resembles the HOMO

The average **spin** of the molecule varies with the tip position and does **not** correspond to the one of the **molecular ground state**

The molecule undergoes a **population inversion** which depends on the tip position

The anomalous current map

Necessary and sufficient conditions for the appearance of non equilibrium spin-crossover:

A class of single molecule junctions

 $\Delta_{\rm tr} = \rm IP - EA - 2\delta_{\rm ic}$ $\Delta_{\rm opt} = E_{N_e} - E_{N_g}$

TRMME, Donostia 17.06.2016

- We have developed a minimal model for the Cu-Phthalocyanine in terms of four interacting frontier orbitals.
- Upon fitting three free parameters to experimental constraints, the model correctly reproduces the low energy spectrum and eigenstates of the molecule
- For an experimentally accessible substrate workfunction of 5 eV, we predict the appearance, close to the anionic resonance of non equilibrium spincrossover.
- Dramatic changes in the current and topographical maps with respect to standard LUMO resonances are found as fingerprints of the spin-crossover
- A class of single molecule junctions candidates for the observation of non equilibrium spin-crossover is defined in terms of relations between transport gap, optical gap and substrate workfunction.

- Incorporate a quantitative treatment of the electrostatic interactions within the junction
- Calculate the magnetotransport characteristics in presence of non-collinearly polarized ferromagnetic contacts
- Investigate the position resolved spin and/or orbital Kondo effect
- Study the time resolved evolution of electronic and spin excitations within an electronic or optoelectronic pump-probe scheme

Aknowledgments

Milena Grifoni

J. Repp

T. Niehaus D. I TRMME, Donostia 17.06.2016

D. Ryndyk

R. Korytar

Thank you for your attention!

Universität Regensburg

Predicting power

Fitting parameters

crystal field energy shift dielectric constant of the molecule image charge renormalization energy

	Contraints	
Δ	$V_{ m an}$	Experimental anionic resonance
$\epsilon_{ m mol}$	$V_{ m cat}$	Experimental cationic resonance
$\delta_{ m ic}$	$n_{\rm SOMO} = 1$	Equilibrium SOMO occupation

Confirmed Predictions

Triplet anionic ground state and triplet-singlet splitting of 18 meV (exp. 21 meV) HOMO (LUMO) like current maps for the cationic (anionic) resonance - Both for CuPc on NaCl(3ML)/Cu(100) and CuPc on NaCl(2ML)/Cu(111) -

Open Prediction

Non equilibrium spin-crossover for CuPc on a substrate with workfunction of 5 eV

Spin-orbit interaction (SOI) and Magnetic anisotropy

High density information storage devices

D. Gatteschi, R. Sessoli, J. Villain, *Molecular Nanomagnets*, Oxford University Press, (2006)
A. Chiesa, S. Carretta, P. Santini, G. Amoretti, E. Pavarini, *Phys. Rev. Lett.*, **110**, 157204 (2013)
J. S. Miller, *Chemical Society Reviews* **40**, 3266 (2011)

HOMO

LUMO-

SOI in the frontier orbitals basis

$$H_{\rm mol} = H_0 + V_{\rm ee} + V_{\rm SO}$$

 $V_{\rm SO} = \sum_{\alpha, \ell_{\alpha}} \xi_{\ell_{\alpha}} \, \boldsymbol{\ell}_{\alpha} \cdot \mathbf{s}_{\alpha}$

The dominat contribution is given by the third shell of Cu

SOMO

LUMO+

Projection onto the frontier orbital basis yields

$$V_{\rm SO} = \lambda_1 \sum_{\tau=\pm} \tau \left(d^{\dagger}_{L\tau\uparrow} d_{L\tau\uparrow} - d^{\dagger}_{L\tau\downarrow} d_{L\tau\downarrow} \right) \\ + \lambda_2 \left(d^{\dagger}_{S\uparrow} d_{L-\downarrow} + d^{\dagger}_{L+\uparrow} d_{S\downarrow} + \text{h.c.} \right)$$

where $\lambda_1 = \frac{1}{2} \xi_{Cu} |c_L|^2 = 0.47 \text{ meV}$ and $\lambda_2 = \xi_{Cu} \frac{c_S c_L}{\sqrt{2}} = 6.16 \text{ meV}$

Low energy spectrum of CuPc

 $H_{
m mol}$ contains three different energy scales $U > J > \lambda$

TR

B. Siegert, A. Donarini and M. Grifoni, *Beilstein J. of Nanotech.* 6, 2452 (2015)

External magnetic field

Orbital component described by the Peierls phase

R

$$b_{\alpha\beta} o b_{\alpha\beta} \,\mathrm{e}^{i\phi_{\alpha\beta}}$$

$$\phi_{\alpha\beta} = \frac{eB_z}{2\hbar} \left(y_\alpha + y_\beta \right) \left(x_\alpha - x_\beta \right)$$

By adding also the Zeeman term we obtain the effective Hamiltonian

 $H_{\text{eff}}^N = H_0^N + \mu_{\text{orb}} \,\hat{\tau}_z B_z + g_S \mu_{\text{B}} \,\hat{\mathbf{S}} \cdot \mathbf{B}$

where $\mu_{\rm orb} = 33.7 \mu {\rm eVT^{-1}}$, $\mu_{\rm B} = 57.9 \mu {\rm eVT^{-1}}$ and $\hat{\tau}_z = \hat{n}_{\rm L+} - \hat{n}_{\rm L-}$

B. Siegert, A. Donarini and M. Grifoni, Beilstein J. of Nanotech. 6, 2452 (2015)

Magnetotransport

B. Siegert, A. Donarini and M. Grifoni, Beilstein J. of Nanotech. 6, 2452 (2015)

TR

UR

UR

TR

 $|\mathbf{T}_{-}^{-}\rangle = \hat{d}_{L-\downarrow}^{\dagger} |\mathbf{D}_{0}^{\downarrow}\rangle \qquad \qquad |\mathbf{T}_{-}^{0}\rangle = \frac{1}{\sqrt{2}} \left[\hat{d}_{L-\uparrow}^{\dagger} |\mathbf{D}_{0}^{\downarrow}\rangle + \hat{d}_{L-\downarrow}^{\dagger} |\mathbf{D}_{0}^{\uparrow}\rangle \right]$

Magnetic anisotropy

B. Siegert, A. Donarini and M. Grifoni, Beilstein J. of Nanotech. 6, 2452 (2015)

Magnetic anisotropy

B. Siegert, A. Donarini and M. Grifoni, Beilstein J. of Nanotech. 6, 2452 (2015)

Conclusions II

- We developed a minimal model which captures the interplay of organic ligand configuration and spin orbit interaction in CuPc
- The low energy spectrum is characterized in terms of spin and pseudo-spin quantum numbers
- The calculated transport characteristics of an STM single molecule junction show signatures of sizeable magnetic anisotropy