

Modelling vibrations in STM single molecule junctions: a step beyond the Anderson-Holstein paradigm

Andrea Donarini, Raphael Kozlowsky, Wael Karain

University of Regensburg, Germany Birzeit University, Palestine

Vibrations in single molecule junctions

TR

H. Park et al. Nature 407, 57 (2000)

O. Tal et al. PRL 100, 196804 (2008)

E.A.Osorio et al. Advanced Mater. 19, 281 (2007)

Vibrations in single molecule junctions

TR

S. Sapmaz et al. PRL 96, 026801 (2006)

D. Rakhmilevitch et al. PRL 113, 236603 (2014)

Anderson-Holstein model

 $H = H_{\rm mol} + H_{\rm leads} + H_{\rm tun}$

$$H_{\rm mol} = \epsilon N + \frac{U}{2}N(N-1) + \hbar\omega \left(\frac{1}{2} + a^{\dagger}a\right) + \lambda N(a^{\dagger} + a)$$

Anderson-Holstein model

 $H = H_{\rm mol} + H_{\rm leads} + H_{\rm tun}$

$$H_{\text{mol}} = \epsilon N + \frac{U}{2}N(N-1) + \hbar\omega \left(\frac{1}{2} + a^{\dagger}a\right) + \lambda N(a^{\dagger} + a)$$
$$\frac{P^2}{2M} + \frac{1}{2}M\omega^2 X^2 + CX$$

Anderson-Holstein model

 $H = H_{\rm mol} + H_{\rm leads} + H_{\rm tun}$

$$H_{\rm mol} = \epsilon N + \frac{U}{2}N(N-1) + \hbar\omega \left(\frac{1}{2} + a^{\dagger}a\right) + \lambda N(a^{\dagger} + a)$$

$$H_{\text{leads}} = \sum_{\alpha \, k \, \sigma} \epsilon_{\alpha \, k \, \sigma} \, c^{\dagger}_{\alpha \, k \, \sigma} c_{\alpha \, k \, \sigma}$$

 $H_{\rm mol}$ is diagonalized by a polaron transformation

$$H_{\rm tun} = \sum_{\alpha \, k \, \sigma} t_{\alpha} \, c^{\dagger}_{\alpha \, k \, \sigma} d_{\sigma} + H.c.$$

Franck-Condon Picture

$$F(m,m';g) = |\langle 0m|d_{\sigma}|\sigma m' \rangle|^2$$

Franck-Condon Picture

$$F(m, m'; g) = |\langle 0m | d_{\sigma} | \sigma m' \rangle|^2$$

Dynamics: rate equations

$$\begin{split} \dot{P}_{n}^{N} &= -\sum_{\alpha m} (\Gamma_{\alpha,nm}^{N,+} + \Gamma_{\alpha,nm}^{N,-}) P_{n}^{N} + \sum_{\alpha m} \Gamma_{\alpha,mn}^{N-1,+} P_{m}^{N-1} + \sum_{\alpha m} \Gamma_{\alpha,mn}^{N+1,-} P_{m}^{N+1} \\ &- \Gamma_{\rm rel} (P_{n}^{N} - \delta_{n0} \sum_{m} P_{m}^{N}) \end{split} \end{split}$$

$$\Gamma_{\alpha,nm}^{M,+} = \frac{2\pi}{\hbar} |t_{\alpha}|^2 D_{\alpha} F(n,m;g) f^+ (E_{M+1,m} - E_{M,n} - \mu_{\alpha})$$

$$\Gamma_{\alpha,nm}^{M,-} = \frac{2\pi}{\hbar} |t_{\alpha}|^2 D_{\alpha} F(n,m;g) f^- (E_{M,n} - E_{M-1,m} - \mu_{\alpha})$$

Scanning tunnelling microscopy on thin insulating films

UR

Strong asymmetry in the barrier strengths

$$\bar{\Gamma}_{\rm tip} \ll \bar{\Gamma}_{\rm sub}$$

Several channels for vibrational relaxation

 $\Gamma_{\rm rel} \gg \bar{\Gamma}_{\rm tip}$

Bias drop mainly on the tip side

$$\mu_{\rm tip} = \mu_0 + eV_{\rm bias}$$

Current

$$I_{\rm tip} = e \int_0^0 \sum_m \Gamma_{0,\rm tip} F(0,m;g) f^+[\epsilon + m\hbar\omega - \mu_0 - eV_{\rm bias}]$$

Theory Seminar – Regensburg, 23.11.2016

Role of the tip position?

The tunnelling amplitude between the tip and the molecule depends on the tip position. E.g. for a tip with *spherical* symmetry:

$$t_{\rm tip}(\mathbf{R}_{\rm tip}) = C\psi_{\rm mol}(\mathbf{R}_{\rm tip})$$
$$\int$$
$$\int$$
$$\Gamma_{0,\rm tip} = \frac{2\pi}{\hbar} D_{\rm tip} C^2 |\psi_{\rm mol}(\mathbf{R}_{\rm tip})|^2$$

By changing the tip position the current is **rescaled** by the profile of the molecular orbital which participates in the transport.

According to the Anderson-Holstein model, though, the current should NOT change its SHAPE.

BIR HITE AL

Spatially resolved vibronic spectroscopy

UR

- position dependent dl/dV peaks
- the energy scale excludes higher electronic excitations
- if the tip and the (local) molecule symmetries match, the vibronic ground state transition is allowed
- if the symmetries do not match only transitions involving vibrational excited states are observed
 - ⇒ "vibron-assisted tunnelling"

UR

Spatially resolved vibronic spectroscopy

- position dependent dl/dV peaks
- the energy scale excludes higher electronic excitations
- if the tip and the (local) molecule symmetries match, the vibronic ground state transition is allowed
- if the symmetries do not match only transitions involving vibrational excited states are observed
 - ⇒ "vibron-assisted tunnelling"

N. Pavliček et al. PRL 110, 13601 (2013) Theory Seminar – Regensburg, 23.11.2016

Chen's derivative rule

$$t_{\rm tip}(R_{\rm tip}) = C\psi_{\rm mol}(R_{\rm tip})$$

Tunnelling into an odd molecular orbital formed by two p_z orbitals:

$$\psi_{\text{odd}}(\mathbf{r}) = \frac{1}{\sqrt{2}} \left[p_z(\mathbf{r} - \mathbf{r}_1) - p_z(\mathbf{r} - \mathbf{r}_2) \right]$$

Mechanical feedback

The molecular orbitals change their shape due to the molecular vibrations. Thus, the tunnelling amplitude is a function of the vibration coordinate

$$t_{\rm tip}(\mathbf{R}_{\rm tip}, X) = C\psi_{\rm mol}(\mathbf{R}_{\rm tip}, X)$$
$$\int_{\rm tip} = \frac{2\pi}{\hbar} D_{\rm tip} C^2 |\psi_{\rm mol}(\mathbf{R}_{\rm tip}, X)|^2$$

The tunnelling rates connecting the eigenstates are proportional to a set of modified Franck-Condon coefficients, e.g.

$$\Gamma_{\alpha,nm}^{M,+} = \frac{2\pi}{\hbar} D_{\alpha} \,\tilde{F}(n,m;g,\mathbf{R}_{\rm tip}) f^+ (E_{M+1,m} - E_{M,n} - \mu_{\alpha})$$

$$\tilde{F}(n,m;g,\mathbf{R}_{\rm tip}) = |\langle m|t_{\rm tip}(\mathbf{R}_{\rm tip},X)e^{-ig\Delta X_0 P/\hbar}|n\rangle|^2$$

Minimal model for the molecule

- molecular orbital with one nodal plane
- two vibrational modes
 - one mode moves the nodal plane
 - one mode does not move the nodal plane

Spatially resolved vibronic spectroscopy

R. Kozlowsky, Master Thesis 2015

Size of the effect

For realistic zero-point fluctuations the peak height in the center of the molecule is much smaller than the peak height at the end.

R. Kozlowsky, Master Thesis 2015

The vibrational modes of pentacene

UR

Frequencies and eigenmodes calculated with FHI-AIMS

0.2

0.25

0.3

0.35

0.4

Theory Seminar – Regensburg, 23.11.2016

The vibrational modes of pentacene

Frequencies and eigenmodes calculated with FHI-AIMS

Theory Seminar – Regensburg, 23.11.2016

25Å x 20Å

The vibrational modes of pentacene

UR

The vibrational modes of pentacene

TR

Theory Seminar – Regensburg, 23.11.2016

Destructive interference

Electronic destructive interference hardly affected by the vibration

Electronic destructive interference strongly affected by the vibration

Moreover, the out of plane oscillations of the H atoms causes in the higher energy modes a $\sigma\pi$ of the molecular orbitals.

The vibrational modes of pentacene

Relevance = norm of the variation of the (convoluted) tunnelling rate with respect to the mode coordinate

Theory Seminar – Regensburg, 23.11.2016

Summary

- 1. The Anderson-Holstein model fails in describing molecular vibrations in the STM setup
- 2. Position resolved spectroscopy reflecting tip-molecule symmetry matching has been obtained by including a mechanical feedback to the tunnelling rate
- 3. The effect predicted by the minimal model is much weaker than the one experimentally observed
- 4. A detailed analysis of the vibrational eigenmodes of pentacene reveals promising vibrational modes for a realistic improvement of the theory

Thank you for your attention!

Theory Seminar – Regensburg, 23.11.2016