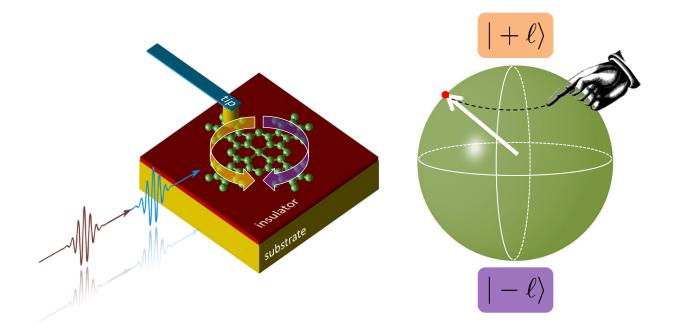
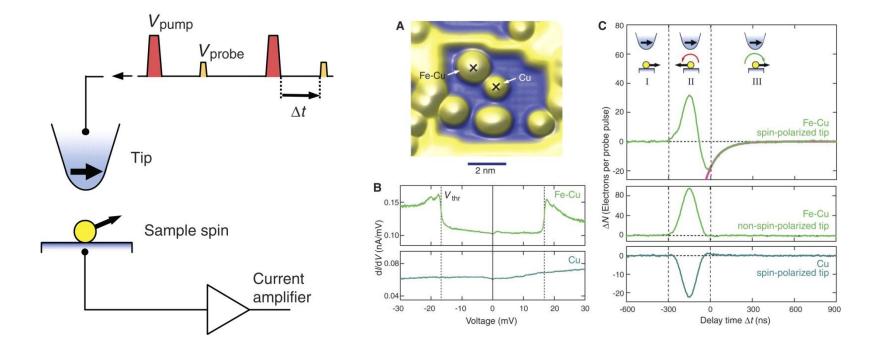


Time-dependent dynamics in molecular junctions

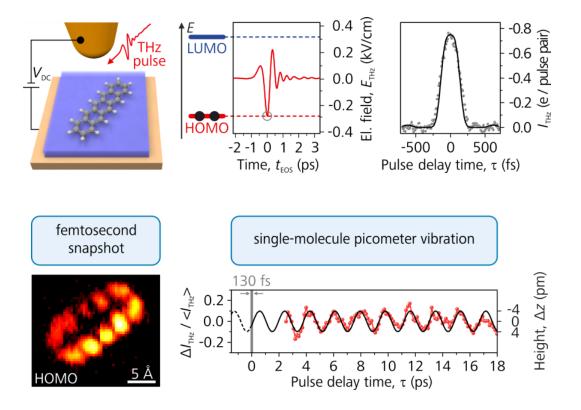
Moritz Frankerl, Andrea Donarini and Milena Grifoni





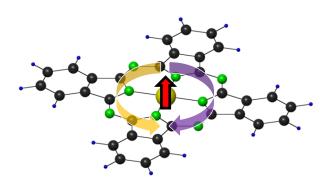
S. Loth, M. Etzkorn, C. P. Lutz, D. M. Eigler and A. J. Heinrich, Science 329, 1628 (2010)

Femtosecond orbital imaging



T. L. Cocker, D. Peller, P. Yu, J. Repp and R. Huber, Nature 539, 263 (2016)

Spin-orbit in Cu-Phthalocynine



The neutral molecule has an unpaired spin on the metallic center

The lowest unoccupied molecular orbitals (LUMOs) are orbitally degenerate

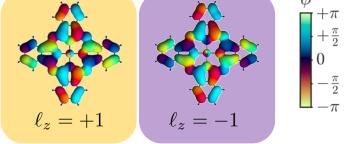
The spectrum of the **anion** is determined by the three energy scales

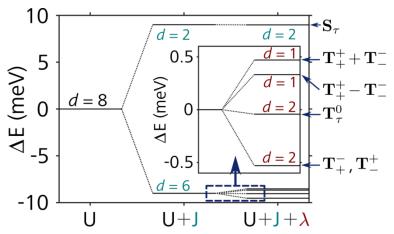
Charging energy

Exchange coupling

Spin-orbit coupling

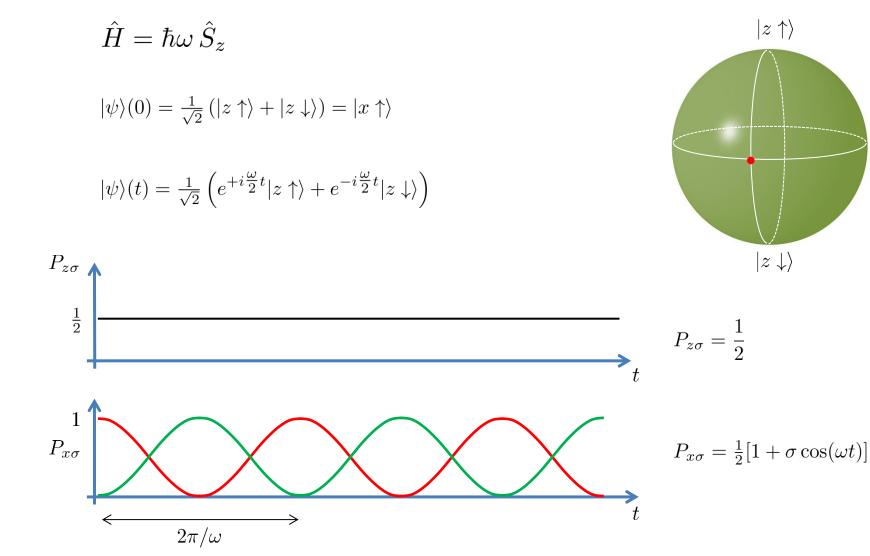
 $U \approx 1 \text{ eV}$ $J \approx 10^{-2} \text{ eV}$ $\lambda \approx 10^{-3} \text{ eV}$





B. Siegert, A. Donarini and M. Grifoni, Beilstein J. of Nanotech. 6, 2452 (2015)

TR Qubit coherent oscillations

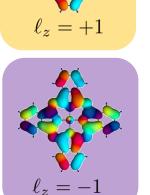


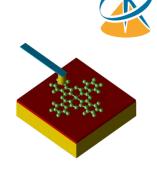
The two orbitals model

We consider for simplicity a **spinless** model for the CuPc LUMOs:

$$\hat{H}_{\rm mol} = \sum_{\ell_z = \pm 1} \left(\epsilon + \ell_z \frac{\hbar\omega}{2} \right) \hat{d}^{\dagger}_{\ell_z} \hat{d}_{\ell_z} + U\hat{N}(\hat{N} - 1).$$

TR





Laser pulse

The two orbitals model

We consider for simplicity a **spinless** model for the CuPc LUMOs:

$$\hat{H}_{\rm mol} = \sum_{\ell_z = \pm 1} \epsilon \hat{N} + \hbar \omega \hat{T}_z + U \hat{N} (\hat{N} - 1).$$
 Pseudo-spin

The **tip** and **substrate** are non-interacting Fermi seas with adiabatically modulated energies

$$\hat{H}_{\text{leads}} = \sum_{\eta \mathbf{k}} [\epsilon_{\eta \mathbf{k}} + \alpha_{\eta} e V_{\text{bias}}(t)] \hat{c}_{\eta \mathbf{k}}^{\dagger} \hat{c}_{\eta \mathbf{k}}$$

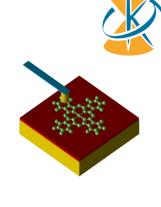
R

kept at the quasi-equilibrium chemical potentials $\mu_{\eta}(t) = \mu_0 + \alpha_{\eta} e V_{\text{bias}}(t)$. The **tunnelling** Hamiltonian reads:

$$\hat{H}_{\text{tun}} = \sum_{\ell_z \mathbf{k}} t_{\ell_z \mathbf{k}}^{\text{tip}}(\mathbf{r}_{\text{tip}}) \, \hat{c}_{\text{tip},\mathbf{k}}^{\dagger} \hat{d}_{\ell_z} + t_{\ell_z \mathbf{k}}^{\text{sub}} \, \hat{c}_{\text{sub},\mathbf{k}}^{\dagger} \hat{d}_{\ell_z} + h.c.$$

$$\ell_z = +1$$

$$\ell_z = -1$$



Tunnelling rate matrices

The single particle rate matrices

R

$$\Gamma^{\eta}_{\ell_z \ell'_z}(E) = \frac{2\pi}{\hbar} \sum_{\mathbf{k}} t^{\eta}_{\ell_z \mathbf{k}} {}^* t^{\eta}_{\ell'_z \mathbf{k}} \delta(E - \epsilon_{\eta \mathbf{k}})$$

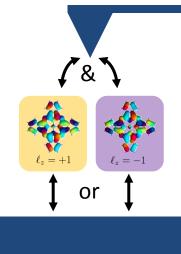
contain the geometrical information concerning the tunnelling process:

$$\Gamma^{\rm tip}_{\ell_z \ell'_z} = \tilde{\Gamma}^{\rm tip}_0 \psi^*_{\ell_z}(\mathbf{r}_{\rm tip}) \psi_{\ell'_z}(\mathbf{r}_{\rm tip})$$

Local tunnelling: angular momentum mixing

 $\Gamma^{\rm sub}_{\ell_z\ell'_z} = \Gamma^{\rm sub}_0 \delta_{\ell_z\ell'_z}$

Extendend tunnelling: angular momentum conservation



S. Sobczyk, A. Donarini, and M. Grifoni Phys. Rev. B 85, 205408 (2012)

Tunnelling rate matrices

We express the tunnelling matrix in terms of Pauli matrices and pseudo-spin polarization

$$\Gamma^{\rm tip} = \Gamma_0^{\rm tip} (\mathbf{1} + \mathbf{P}_{\rm tip} \cdot \boldsymbol{\sigma})$$

$$\mathbf{P}_{\rm tip} = \begin{pmatrix} \cos \phi_{\rm tip} \\ \sin \phi_{\rm tip} \\ 0 \end{pmatrix} \qquad \phi_{\rm tip} = \arctan\left(\frac{2\psi_x\psi_y}{\psi_y^2 - \psi_x^2}\right) + \frac{\pi}{2}[\operatorname{sgn}(\psi_y^2 - \psi_x^2) - 1]$$

where we introduced the real orbitals

$$\psi_x = \underbrace{\psi_x}_{\ell_z} \quad \psi_y = \underbrace{\psi_y}_{\ell_z} \quad \psi_{\ell_z} = \frac{1}{\sqrt{2}} (\psi_x - i\ell_z \psi_y)$$

 $|\mathbf{P}_{tip}|$ is a measure of the tip **sharpness** and ϕ_{tip} is the direction of the tip **polarization**

Open system dynamics

We describe the dynamics of this **driven open system** with a generalized master equation for the **reduced density operator** $\hat{\rho} = \text{Tr}_{\text{leads}}\{\hat{\rho}_{\text{tot}}\}$

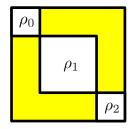
$$\dot{\hat{\rho}} = -\frac{i}{\hbar} [\hat{H}_{\text{mol}}, \hat{\rho}] - \frac{i}{\hbar} [\hat{H}_{\text{LS}}(t), \hat{\rho}] + \mathcal{L}_{\text{tun}}(t) [\hat{\rho}]$$

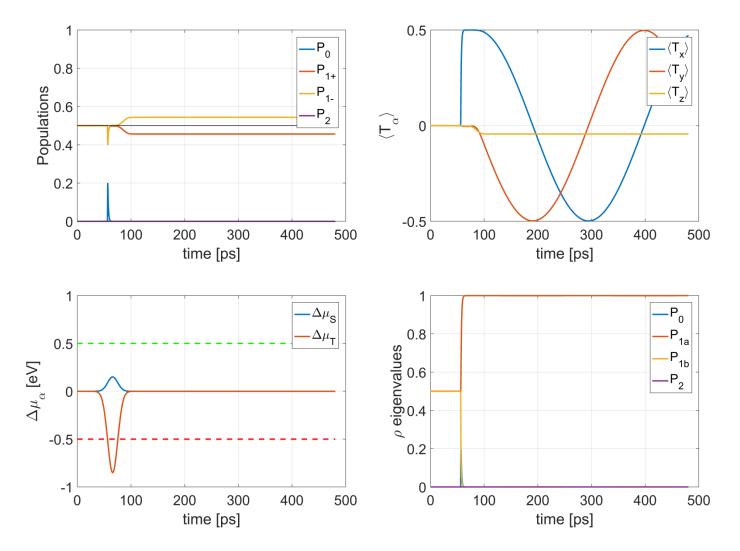
internal dynamics time dependent coupling to the leads

The density operator assumes a block-diagonal form in the basis of the molecular eigenstates

We represent the dynamics in terms of occupation probabilities and pseudo-spin

$$\rho_0 = P_0$$
 $\rho_1 = \frac{P_1}{2} \mathbf{1} + \mathbf{T} \cdot \boldsymbol{\sigma}$
 $\rho_2 = P_2$





At the charge neutrality point $\mu_0=\epsilon+rac{U}{2}$, and deep in the Couolomb blockade regime $k_BT\ll U$

we distinguish three dynamical regimes:

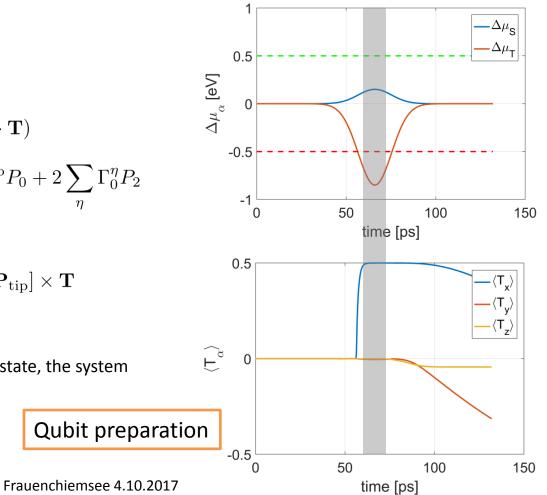
Above threshold

R

$$\begin{split} \dot{P}_0 &= -2\Gamma_0^{\mathrm{sub}} P_0 + 2\Gamma_0^{\mathrm{tip}} (\frac{P_1}{2} + \mathbf{P}_{\mathrm{tip}} \cdot \mathbf{T}) \\ \dot{P}_1 &= -2\Gamma_0^{\mathrm{tip}} (\frac{P_1}{2} + \mathbf{P}_{\mathrm{tip}} \cdot \mathbf{T}) + 2\Gamma_0^{\mathrm{sub}} P_0 + 2\sum_{\eta} \Gamma_0^{\eta} P_2 \\ \dot{P}_2 &= -2\sum_{\eta} \Gamma_0^{\eta} P_2 \\ \dot{\mathbf{T}} &= [\omega \mathbf{e}_z - \Gamma_0^{\mathrm{tip}} \frac{1}{\pi} (\bar{p}_{01,\mathrm{tip}} - \bar{p}_{12,\mathrm{tip}}) \mathbf{P}_{\mathrm{tip}}] \times \mathbf{T} \\ &- \Gamma_0^{\mathrm{tip}} [\mathbf{T} + (\frac{P_1}{2} + P_2) \mathbf{P}_{\mathrm{tip}}] \end{split}$$

After a short excursion into the 0-particle state, the system is **trapped** in the 1-particle pure state:

$$P_1 = 1$$
 $\mathbf{T} = -\frac{1}{2}\mathbf{P}_{tip}$



At the charge neutrality point $\mu_0=\epsilon+rac{U}{2}$, and deep in the Couolomb blockade regime $k_BT\ll U$

1

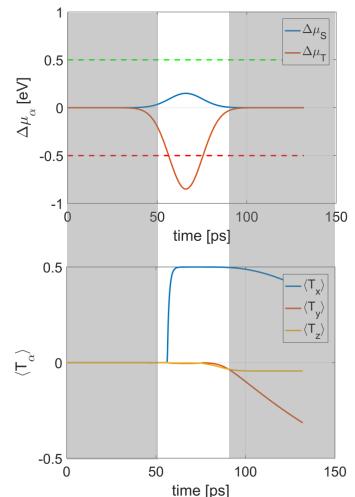
we distinguish three dynamical regimes:

Under threshold

IR

$$\dot{\mathbf{T}} = \omega(\mathbf{e}_z \times \mathbf{T}) + \Gamma_0^{\mathrm{tip}}(P_0 - P_2)\mathbf{P}_{\mathrm{tip}}$$

The system remains in the 1-particle subspace with the pseudo-spin precessing around the z axis.



Free evolution

At the charge neutrality point $\mu_0=\epsilon+rac{U}{2}$, and deep in the Couolomb blockade regime $k_BT\ll U$

we distinguish three dynamical regimes:

Close to resonance

IR

$$\dot{P}_{0} = -2 \sum_{\eta} \Gamma_{0}^{\eta} P_{0}$$

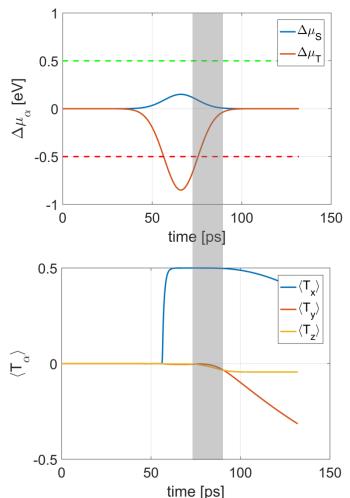
$$\dot{P}_{1} = 2 \sum_{\eta} \Gamma_{0}^{\eta} (P_{0} + P_{2})$$

$$\dot{P}_{2} = -2 \sum_{\eta} \Gamma_{0}^{\eta} P_{2}$$

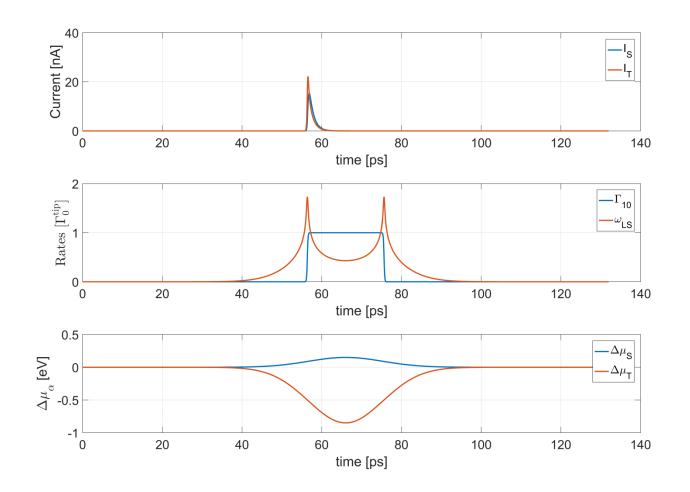
$$\dot{\mathbf{T}} = \left[\omega \mathbf{e}_z - \Gamma_0^{\text{tip}} \frac{1}{\pi} (\bar{p}_{01,\text{tip}} - \bar{p}_{12,\text{tip}}) \mathbf{P}_{\text{tip}} \right] \times \mathbf{T}$$

$$\omega_{LS}$$

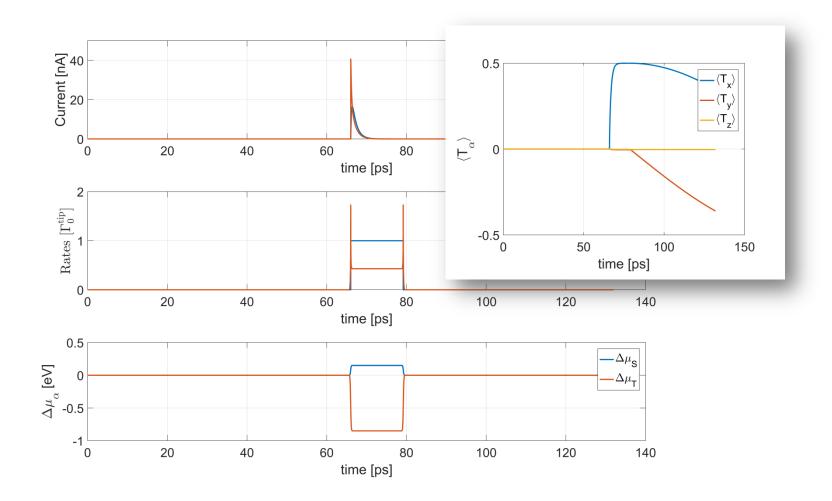
The Lamb shift correction is most effective in this regime.



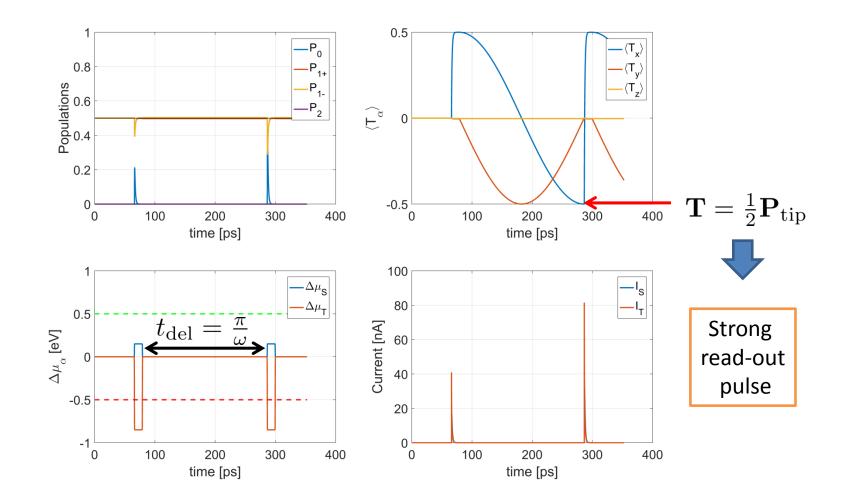
Pump pulse optimization



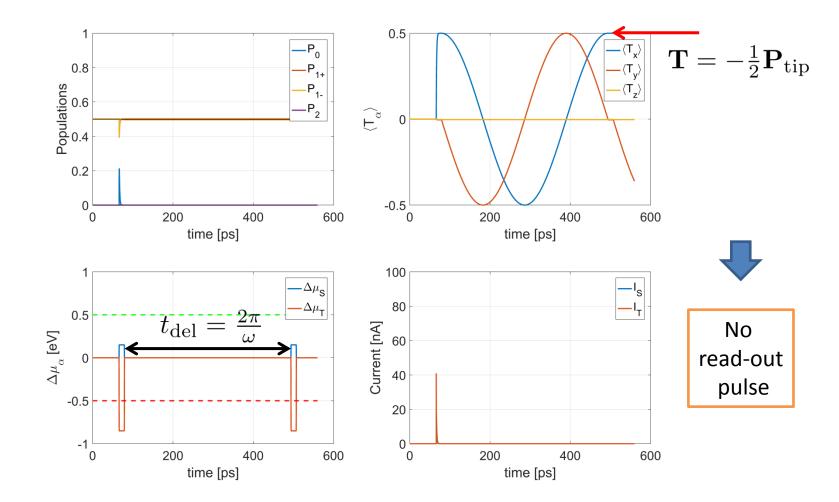
Pump pulse optimization



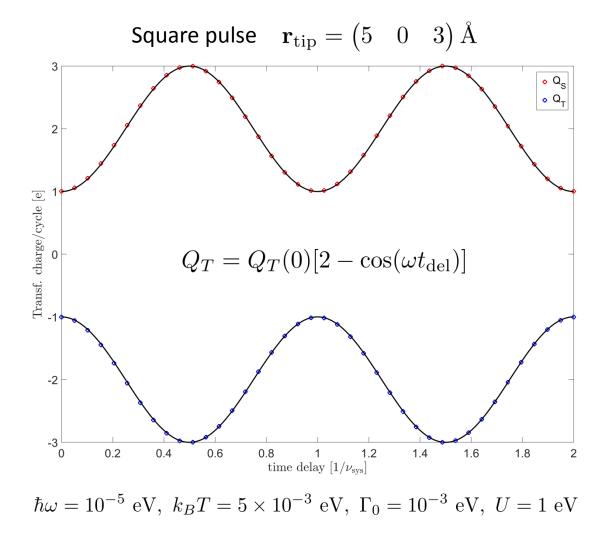
Read-out mechanism



Read-out mechanism

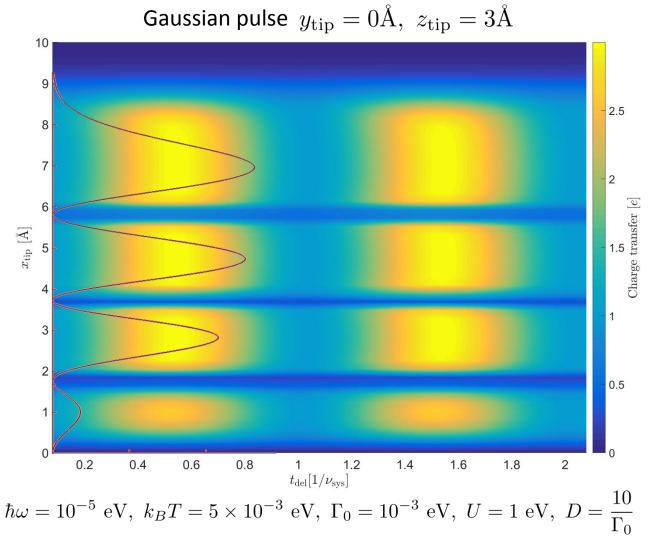


Transmitted charge



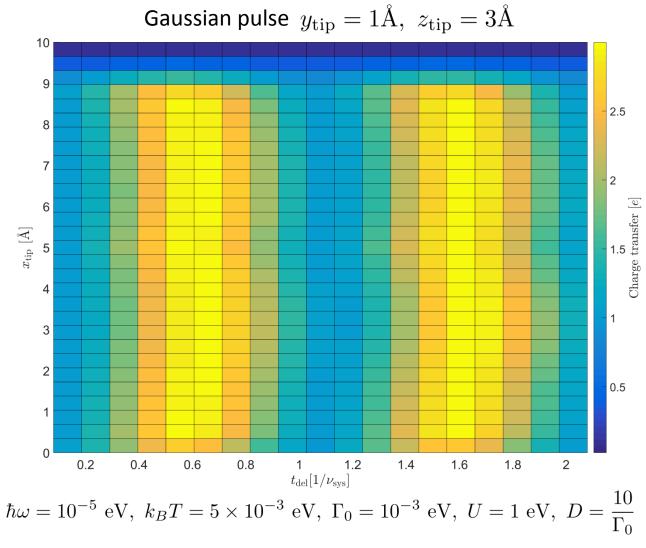
Transmitted charge

ΓR



Transmitted charge

R



- The two orbitals model for Cu-Pc shows pseudo-spin dynamics with tip depenent driving
- With a bias pulse we prepare the molecular qubit in an tip dependent anionic **pure state**.
- The **charge transfer** per pump-probe cycle allows for the **electrical read-out** of the coherent pseudo-spin precession.
- Spin and pseudo –spin dynamics will be combined for a more realistic model of Cu-Pc single molecule junction
- Impact of dephasing and relaxation processes which go beyond charge tunnelling shall be considered (e.g. Jahn-Teller effect)

Thank you for your attention !