Fano stability diagram of a symmetric triple quantum dot

PRB 95, 115133 (2017)

20.03.2017, DPG Meeting Michael Niklas michael.niklas@ur.de,

A. Trottmann, A. Donarini, M. Grifoni

Institute of theoretical physics, University of Regensburg

Triangular triple quantum dot

Triangular triple quantum dot

$$\hat{H} = \hat{H}_{\mathsf{TQD}} + \hat{H}_{\mathsf{res}} + \hat{H}_{\mathsf{tun}}$$

Why triangular triple quantum dot?

Smallest quantum dot system which shows

- orbitally induced interference ¹
- analytic, non trivial many-body states

¹A. Donarini et al. - PRB **82**, 125451 (2010)

Why triangular triple quantum dot?

Smallest quantum dot system which shows

- orbitally induced interference ¹
- analytic, non trivial many-body states

Why noise?

- holds information about interplay of statistics, geometry and interactions
- unravels underlying bunching mechanisms

¹A. Donarini et al. - PRB **82**, 125451 (2010)

V

U

Extended Hubbard model

$$\hat{H}_{\mathsf{TQD}} = \xi \sum_{i\sigma} n_{i\sigma} + b \sum_{i \neq j,\sigma} d_{j\sigma}^{\dagger} d_{i\sigma} + U \sum_{i} \left(n_{i\uparrow} - \frac{1}{2} \right) \left(n_{i\downarrow} - \frac{1}{2} \right) + V \sum_{i < j} \left(n_i - 1 \right) \left(n_j - 1 \right)$$

 \mathbf{O}

l = +1

Extended Hubbard model

$$\hat{H}_{\mathsf{TQD}} = \xi \sum_{i\sigma} n_{i\sigma} + b \sum_{i \neq j,\sigma} d^{\dagger}_{j\sigma} d_{i\sigma} + U \sum_{i} \left(n_{i\uparrow} - \frac{1}{2} \right) \left(n_{i\downarrow} - \frac{1}{2} \right) + V \sum_{i < j} \left(n_{i} - 1 \right) \left(n_{j} - 1 \right)$$

single particle part is diagonal in angular momentum basis

Extended Hubbard model

$$\hat{H}_{\mathsf{TQD}} = \xi \sum_{i\sigma} n_{i\sigma} + b \sum_{i \neq j,\sigma} d^{\dagger}_{j\sigma} d_{i\sigma} + U \sum_{i} \left(n_{i\uparrow} - \frac{1}{2} \right) \left(n_{i\downarrow} - \frac{1}{2} \right) + V \sum_{i} \left(n_{i} - 1 \right) \left(n_{j} - 1 \right)$$

single particle part is diagonal in angular momentum basis

i < j

• many-body states are fully characterized by $|N, E; S, S_z, L_z\rangle$

Extended Hubbard model

$$\hat{H}_{\mathsf{TQD}} = \xi \sum_{i\sigma} n_{i\sigma} + b \sum_{i \neq j,\sigma} d^{\dagger}_{j\sigma} d_{i\sigma} + U \sum_{i} \left(n_{i\uparrow} - \frac{1}{2} \right) \left(n_{i\downarrow} - \frac{1}{2} \right) + V \sum_{i} (n_{i} - 1) (n_{j} - 1)$$

single particle part is diagonal in angular momentum basis

i < j

- many-body states are fully characterized by $|N, E; S, S_z, L_z\rangle$
- analytical eigenstates

Eigenstates

N	Eigenenergy	S	S_z	L_z	Eigenstate in the basis $\{ n_{0\uparrow}, n_{1\uparrow}, n_{-1\uparrow}; n_{0\downarrow}, n_{1\downarrow}, n_{-1\downarrow}\rangle\}$
0	$E_0 = 0$	0	0	0	000,000
1	$E_{1_0} = \xi - \frac{U}{2} - 2V + 2b$	$\frac{1}{2}$	$-\frac{1}{2}$ $\frac{1}{2}$	0	$ 000, 100\rangle$
				Ŷ	100,000>
	$E_{1_1}=\xi-\tfrac{U}{2}-2V-b$	$\frac{1}{2}$	$-\frac{1}{2}$	-1	000,001
				1	$ 000, 010\rangle$
			1	-1	001,000
		0	2	1	
	$E_{2_0} = 2\xi - U - 3V + b + \frac{U}{2} - s_{-2}$	0	0	0	$\cos(\phi_{-2}) 100, 100\rangle - \sin(\phi_{-2}) \stackrel{*}{} (010, 001\rangle + 001, 010\rangle)$
	$E_{2_1} = 2\xi - U - 3V + b$	1	$^{-1}$	-1	$ 000, 101\rangle$
				1	
			0	-1	$\frac{1}{\sqrt{2}}(100,001\rangle - 001,100\rangle)$
				1	$\frac{1}{\sqrt{2}}(100,010\rangle - 010,100\rangle)$
			1	-1	101,000>
2			1	1	110,000>
	$E_{2_2} = 2\xi - U - 3V - \tfrac{b}{2} + \tfrac{U-V}{2} - s_1$	0	0	-1	$\cos(\phi_1) 010,010\rangle - \sin(\phi_1)\frac{1}{\sqrt{2}}(100,001\rangle + 001,100\rangle)$
				1	$\cos(\phi_1) 001,001\rangle - \sin(\phi_1)\frac{1}{\sqrt{2}}(100,010\rangle + 010,100\rangle)$
	$E_{2_3} = 2\xi - U - 3V - 2b$		-1 0 1		$ 000, 011\rangle$
		1		0	$\frac{1}{\sqrt{2}}(010,001\rangle - 001,010\rangle)$
					011,000>
	$E_{0} = 2\xi - U - 3V - \frac{b}{2} + \frac{U-V}{2} + s_{0}$	0	0	-1	$\sin(\phi_1) 010, 010\rangle + \cos(\phi_1)\frac{1}{\sqrt{2}}(100, 001\rangle + 001, 100\rangle)$
	$22_{24} = 20$ 0 0 21 2 101	Ň	Ŭ	1	$\sin(\phi_1) 001,001\rangle + \cos(\phi_1)\frac{1}{\sqrt{2}}(100,010\rangle + 010,100\rangle)$
	$E_{2_5} = 2\xi + b - U - 3V + \frac{U-V}{2} + s_{-2}$	0	0	0	$\sin(\phi_{-2}) 100, 100\rangle + \cos(\phi_{-2})\frac{1}{\sqrt{2}}(010, 001\rangle + 001, 010\rangle)$
	$E_{3_0} = 3\xi - \frac{3}{2}U - 3V + \frac{2}{3}\left(U - V\right)\left[1 - \lambda_0/(2 a)\right]$	$\frac{1}{2}$	$-\frac{1}{2}$	-1	$v_{0,1} 100, 101\rangle - v_{0,0} 010, 110\rangle - v_{0,-1} 001, 011\rangle$
				1	$v_{0,1} 100, 110\rangle + v_{0,0} 001, 101\rangle - v_{0,-1} 010, 011\rangle$
			$\frac{1}{2}$	-1	$ v_{0,1} 101, 100\rangle - v_{0,0} 110, 010\rangle - v_{0,-1} 011, 001\rangle$
				1	$v_{0,1} 110, 100\rangle - v_{0,0} 101, 001\rangle + v_{0,-1} 011, 010\rangle$
	$E_{3_1} = 3\xi - \frac{3}{2}U - 3V$		$-\frac{3}{2}$ $-\frac{1}{2}$ $\frac{1}{2}$		$ 000, 111\rangle$
		3		0	$\frac{1}{\sqrt{3}}(001, 110\rangle - 010, 101\rangle + 100, 011\rangle)$
		2			$\frac{1}{\sqrt{3}}(011,100\rangle - 101,010\rangle + 110,001\rangle)$

Eigenstates

N	Eigenenergy	S	S_z	L_z	Eigenstate in the basis $\{ n_{0\uparrow}, n_{1\uparrow}, n_{-1\uparrow}; n_{0\downarrow}, n_{1\downarrow}, n_{-1\downarrow}\rangle\}$
0	$E_0 = 0$	0	0	0	000,000
	$E_{1_0}=\xi-\tfrac{U}{2}-2V+2b$	$\frac{1}{2}$	$\frac{-\frac{1}{2}}{\frac{1}{2}}$	0	000, 100> 100, 000>
1	$E_{1_1}=\xi-\tfrac{U}{2}-2V-b$	1	$-\frac{1}{2}$	-1	000,001> 000,010>
		2	$\frac{1}{2}$	-1	001,000> 010,000>
	$E_{2_0} = 2\xi - U - 3V + b + \frac{U - V}{2} - s_{-2}$	0	0	0	$\cos(\phi_{-2}) 100,100\rangle - \sin(\phi_{-2})\frac{1}{\sqrt{2}}(010,001\rangle + 001,010\rangle)$
	$E_{2_1} = 2\xi - U - 3V + b$	1	-1	-1 1	000, 101/
			0	-1	$\frac{1}{\sqrt{2}} \left(100,001\rangle - 001,100\rangle \right)$
			1	-1	$\frac{\sqrt{2}}{101,000}$ $ 010,100/\rangle$
2			1	1	110,000>
-	$E_{2_2} = 2\xi - U - 3V - \frac{b}{2} + \frac{U-V}{2} - s_1$	0	0	-1	$\frac{\cos(\phi_1) 010,010\rangle - \sin(\phi_1)\frac{1}{\sqrt{2}}(100,001\rangle + 001,100\rangle)}{\cos(\phi_1) 001,001\rangle - \sin(\phi_1)\frac{1}{\sqrt{2}}(100,010\rangle + 010,100\rangle)}$
	$E_{2_3} = 2\xi - U - 3V - 2b$		-1	-	$ 000,011\rangle$
		1	0	0	$\frac{1}{\sqrt{2}}(010,001\rangle - 001,010\rangle)$
			1		011,000>
	$E_{2_4} = 2\xi - U - 3V - \frac{b}{2} + \frac{U-V}{2} + s_1$	0	0	-1	$\sin(\phi_1) 010,010\rangle + \cos(\phi_1)\frac{1}{\sqrt{2}}(100,001\rangle + 001,100\rangle)$
		0		1	$\frac{\sin(\phi_1) 001,001\rangle + \cos(\phi_1)\frac{1}{\sqrt{2}}(100,010\rangle + 010,100\rangle)}{\sin(\phi_1) 001,000\rangle + \cos(\phi_1)\frac{1}{\sqrt{2}}(100,001\rangle + 001,010\rangle)}$
-	$E_{22} = 2\xi + 0 - U - 3V + \frac{1}{2} + s_{-2}$	0	0	0	$\sin(\phi_{-2})(100, 100) + \cos(\phi_{-2}) \rightarrow (1010, 001) + (001, 010))$
	$E_{3_0} = 3\xi - \frac{3}{2}U - 3V + \frac{2}{3}\left(U - V\right)\left[1 - \lambda_0/(2 a)\right]$		$-\frac{1}{2}$	-1	$v_{0,1} 100,101\rangle - v_{0,0} 010,110\rangle - v_{0,-1} 001,011\rangle$
		$\frac{1}{2}$	1 2	1	$v_{0,1} 100,110\rangle + v_{0,0} 001,101\rangle - v_{0,-1} 010,011\rangle$
l				1	$\frac{v_{0,1} 101,100\rangle - v_{0,0} 110,010\rangle - v_{0,-1} 011,001\rangle}{v_{0,1} 110,100\rangle - v_{0,0} 101,001\rangle + v_{0,-1} 011,010\rangle}$
			-7		000,111)
	$E_{3_1} = 3\xi - \frac{3}{2}U - 3V$	3	$-\frac{1}{2}$	0	$\frac{1}{\sqrt{3}}(001,110\rangle - 010,101\rangle + 100,011\rangle)$
		2			$\frac{1}{\sqrt{3}}(011,100\rangle - 101,010\rangle + 110,001\rangle)$

Method

Generalized reduced density matrix

$$\rho_{\chi} = \operatorname{tr}_{\mathsf{res}} \left\{ e^{i\chi N} \rho^{\operatorname{tot}} \right\} = \rho + \sum_{k=1}^{\infty} \frac{(i\chi)^k}{k!} \mathcal{F}_k$$

Generalized master equation

$$\dot{\rho}_{\chi} = \mathcal{L}\rho_{\chi} + \left(e^{i\chi} - 1\right)\mathcal{J}^{+}\rho_{\chi} + \left(e^{-i\chi} - 1\right)\mathcal{J}^{-}\rho_{\chi}$$

Liouvillian

$$\mathcal{L}\rho = -\frac{i}{\hbar} \left[\begin{array}{c} \hat{H}_{\mathsf{TQD}} \end{array} + \begin{array}{c} \hat{H}_{\mathsf{LS}} \end{array}, \rho \right] + \begin{array}{c} \mathcal{L}_{\mathsf{tun}} \end{array} \rho$$

orbital degeneracies require inclusion of coherences

Method

Stationary solution²

$$\mathcal{L}\rho^{\infty} = 0$$

$$\mathcal{L}\mathcal{F}_{1\perp}^{\infty} = \left(-eI - \mathcal{J}^{+} + \mathcal{J}^{-}\right)\rho^{\infty}$$

with $\mathcal{F}_{1\perp} = (1 - \rho^{\infty} \mathrm{tr}_{\mathsf{TQD}}) \mathcal{F}_1$

Current, noise and Fano factor $I = -e\partial_t \langle N \rangle = -e \operatorname{tr}_{\mathsf{TQD}} \left\{ \left(\mathcal{J}^+ - \mathcal{J}^- \right) \rho^{\infty} \right\}$ $S = e^2 \partial_t \left(\langle N^2 \rangle - \langle N \rangle^2 \right)$ $= e^2 \operatorname{tr}_{\mathsf{TQD}} \left\{ 2 \left(\mathcal{J}^+ - \mathcal{J}^- \right) \mathcal{F}_{1\perp}^{\infty} + \left(\mathcal{J}^+ + \mathcal{J}^- \right) \rho^{\infty} \right\}$ $F = \frac{S}{e|I|}$

²F. Kaiser and S. Kohler - Ann. Phys. **16**, 702 (2007)

The Fano factor

Stability diagram

 $U=5|b|\text{, }V=2|b|\text{, }k_BT=0.002|b|\text{, }k_BT=20\Gamma$ and b<0

 $\blacktriangleright \text{ interference blockade} \rightarrow \mathsf{dark \ states}$

¹A. Donarini et al. - PRB **82**, 125451 (2010)

Michael Niklas
University of Regensburg

 Dark states

 Dark states

$$|N, \alpha_i; DS\rangle = \frac{1}{\sqrt{2}} \left[e^{i\frac{2\pi}{3}} |N, \alpha_i, L_z = 1\rangle - e^{-i\frac{2\pi}{3}} |N, \alpha_i, L_z = -1\rangle \right]$$

- ▶ simple expression in angular momentum representation
- every level with angular momentum degeneracy can form a DS
- DS is antisymmetric with respect to σ_{v1}

fulfills³

$$\langle N-1, \alpha_i; L_z = 0 | d_{1\sigma} | N, \alpha_j; DS \rangle = 0$$

³T. Kostyrko and B. Bułka - PRB **79**, 075310 (2009)

Dark states

Example DSs in position basis:

one-particle first excited state with $S_z = 1/2$ ⁴

$$|1, \alpha_1; \mathrm{DS}\rangle = \frac{1}{\sqrt{2}} \left(\begin{array}{c} \bigcirc & \frown & \bigcirc \\ \bigcirc & \frown & \bigcirc \end{array} \right)$$

⁴B. Michaelis *et al.* - EPL **73**, 677 (2006)

Dark states

Example DSs in position basis:

one-particle first excited state with $S_z = 1/2$ ⁴

$$|1, \alpha_1; \mathrm{DS}\rangle = \frac{1}{\sqrt{2}} \left(\begin{array}{c} \bigcirc & \frown \\ \bigcirc & \frown \\ \bigcirc & \frown \\ \hline & \bigcirc \end{array} \right)$$

two-particle first excited state with $S_z = 0$

$$|2, \alpha_1; DS\rangle = \frac{1}{2\sqrt{3}} \left[\left(\begin{array}{c} \textcircled{} \textcircled{} \textcircled{} \textcircled{} \rule{0.5mm}{} \rule{0.5mm}{}$$

⁴B. Michaelis et al. - EPL **73**, 677 (2006)

Dark states

three-particle ground state with $S_z = 1/2$ $|3, \alpha_0; DS\rangle = v_1 \left(\begin{array}{c} & & & \\ &$

Michael Niklas University of Regensburg

Stability diagram for I and F

 $U=5|b|,\,V=2|b|,\,k_BT=0.002|b|,\,k_BT=20\Gamma$ and b<0

Stability diagram without principle parts Principal parts (H_{LS}) blur everything \rightarrow solve without

- clear polygons
- ▶ super-Poissonian noise (F > 1) indicates blocking

Blockade mechanisms

Coulomb blockade

Channel blockade^{5,6} Interference blockade

⁵W. Belzig - PRB **71**, 161301(R) (2005) ⁶C.W. Groth et al. - PRB **74**, 125315 (2006)

Blockade mechanisms

Coulomb blockade

Channel blockade^{5,6} Interference blockade

Effective slow+fast channel model provides Fano factor

$$F_{nv} = 1 + \frac{2\Gamma_L^f}{\Gamma_L^s + \Gamma_R^s},$$

⁵W. Belzig - PRB **71**, 161301(R) (2005) ⁶C.W. Groth et al. - PRB **74**, 125315 (2006) **T**R

Michael Niklas University of Regensburg

Blockade mechanisms at the $2_0 \leftrightarrow 3_0$ resonance

?

 \Leftrightarrow

T_R

Michael Niklas University of Regensburg

Blockade mechanisms at the $2_0 \leftrightarrow 3_0$ resonance

$$F_{nv} = 1 + \frac{2\Gamma_L^f}{\Gamma_L^s + \Gamma_R^s},$$

 $\Gamma_R^s\approx 0$

 \Leftrightarrow

$$\Gamma_L^f = \Gamma_L^s$$
$$\downarrow$$
$$F_{nv} = 3$$

$$\Gamma_L^f \neq \Gamma_L^s \quad ?$$

$$\downarrow$$

$$F_{nv} = \frac{5}{3}$$

 $\frac{5}{3}$

Fingerprints of interference at $2_0 \leftrightarrow 3_0$

Dynamics for $\mu_L \gg \mu_R$

$$\dot{\rho}_3 = 0 = 2\Gamma \mathcal{R}_L \rho_2 - \frac{\Gamma}{2} \left\{ \mathcal{R}_R, \rho_3 \right\}$$

 $\Gamma_{\alpha}=\Gamma \mathcal{R}_{\alpha}$ and the rate matrices in

angular momentum basis
$$\mathcal{R}_L = \begin{pmatrix} 1 & e^{i\frac{2\pi}{3}} \\ e^{-i\frac{2\pi}{3}} & 1 \end{pmatrix}$$
$$\mathcal{R}_R = \begin{pmatrix} 1 & e^{-i\frac{2\pi}{3}} \\ e^{i\frac{2\pi}{3}} & 1 \end{pmatrix}$$

Fingerprints of interference at $2_0 \leftrightarrow 3_0$

Dynamics for $\mu_L \gg \mu_R$

$$\dot{\rho}_3 = 0 = 2\Gamma \mathcal{R}_L \rho_2 - \frac{\Gamma}{2} \left\{ \mathcal{R}_R, \rho_3 \right\}$$

 $\Gamma_{\alpha}=\Gamma \mathcal{R}_{\alpha}$ and the rate matrices in

angular momentum basis

$$\mathcal{R}_L = \begin{pmatrix} 1 & e^{i\frac{2\pi}{3}} \\ e^{-i\frac{2\pi}{3}} & 1 \end{pmatrix}$$

$$\mathcal{R}_R = \begin{pmatrix} 1 & e^{-i\frac{2\pi}{3}} \\ e^{i\frac{2\pi}{3}} & 1 \end{pmatrix}$$

$$F_{nv} = 1 + \frac{2\Gamma_L^f}{\Gamma_L^s + \Gamma_R^s}$$

dark state basis

$$\mathcal{R}_L = \begin{pmatrix} \frac{3}{2} & -i\frac{\sqrt{3}}{2} \\ i\frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}$$
$$\mathcal{R}_R = \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix}$$

 $\frac{5}{3}$

 $\frac{5}{3}$

Fingerprints of interference at $2_0 \leftrightarrow 3_0$

Dynamics for $\mu_L \gg \mu_R$

$$\dot{\rho}_3 = 0 = 2\Gamma \mathcal{R}_L \rho_2 - \frac{\Gamma}{2} \{\mathcal{R}_R, \rho_3\}$$

 $\Gamma_{\alpha}=\Gamma \mathcal{R}_{\alpha}$ and the rate matrices in

Conclusion

Michael Niklas University of Regensburg

PRB 95, 115133 (2017)

interference

Interference occurs when energetically equivalent paths involving degenerate states contribute to the dynamics

dark states

$$|2,\alpha_1;DS\rangle = \frac{1}{\sqrt{6}} \left(\begin{array}{c} \textcircled{} \\ \textcircled{} \\ \textcircled{} \\ \textcircled{} \\ \end{array} + \begin{array}{c} \textcircled{} \\ \textcircled{} \\ \textcircled{} \\ \end{array} + 2 \begin{array}{c} \textcircled{} \\ \textcircled{} \\ \textcircled{} \\ \end{array} \right)$$

fingerprints of interference

super-Poissonian Fano factors (e.g. F = 5/3) which indicate a characteristic bunching dynamics

Robustness

break angular momentum degeneracy

$$H_{\Delta} = -\Delta E \sigma_z / 2 \quad \Rightarrow \quad H_{\Delta} = \frac{1}{2} \begin{pmatrix} 0 & \Delta E \\ \Delta E & 0 \end{pmatrix}$$

 \Rightarrow stable up to perturbation of the order Γ_0

Super-Poissonian Fano factors

Two levels

- probability to enter the blocking state is $p = \frac{1}{2}$
- ► *F* = 3

⁵W. Belzig - PRB **71**, 161301(R) (2005) ⁶C.W. Groth et al. - PRB **74**, 125315 (2006)

Lamb shift

Hamiltonian

$$H_{\rm LS} = \hbar \sum_{\alpha} \omega_{\alpha} \mathcal{R}_{\alpha}$$

precession frequencies

The precession frequencies for the block $\rho^N(E^*)$ with spin S is independent of S_z ($\omega_{\alpha,S_z} = \omega_{\alpha}$)

$$\omega_{\alpha} = \frac{\Gamma_{0\alpha}}{2\pi} \sum_{\tau,E} \langle N, \alpha^*, L_z | d_{0\tau} \mathcal{P}_{N+1,E} d_{0\tau}^{\dagger} | N, \alpha^*, -L_z \rangle p_{\alpha} (E - E^*)$$
$$+ \langle N, \alpha^*, L_z | d_{0\tau}^{\dagger} \mathcal{P}_{N-1,E} d_{0\tau} | N, \alpha^*, -L_z \rangle p_{\alpha} (E^* - E)$$

$$\mathcal{P}_{NE} = \sum_{S_z, L_z} |N, E; S, S_z, L_z\rangle \langle N, E; S, S_z, L_z|$$

$$\mathbf{p}_{\alpha} (\Delta E) = -\operatorname{Re} \psi \left(\frac{1}{2} + i \frac{\Delta E - \mu_{\alpha}}{2\pi k_{\mathrm{B}} T} \right)$$

Lamb shift at the $5_0 \leftrightarrow 6$ resonance

master equation

$$0 = -\frac{i}{\hbar} [H_{\rm LS}, \rho_5] + 2\Gamma \mathcal{R}_R \rho_6 - \frac{\Gamma}{2} \{\mathcal{R}_L, \rho_5\},\$$

$$0 = \Gamma \mathrm{Tr}_{\rm TQD} (\mathcal{R}_L \rho_5) - 4\Gamma \rho_6$$

Lamb shift at the $5_0 \leftrightarrow 6$ resonance

$$\rho^{\infty} = \frac{1}{D} \begin{pmatrix} D - 3\omega_R^2 \\ 2\omega_R^2 \\ \omega_R^2 \\ -\sqrt{3}\omega_R(\Gamma - i2(\omega_L - \omega_R)) \\ -\sqrt{3}\omega_R(\Gamma + i2(\omega_L - \omega_R)) \end{pmatrix} \qquad \rho^{cd}$$

with $D = 2\Gamma^2 + 8\omega_L^2 - 12\omega_L\omega_R + 9\omega_R^2$.

$$I = -e4\Gamma\omega_R^2/3D$$

$$F = \frac{16\omega_R^2 \left(2\Gamma^2 + 53\omega_L^2\right) - 176\omega_L\omega_R \left(\Gamma^2 + 4\omega_L^2\right)}{3D^2} + \frac{20 \left(\Gamma^2 + 4\omega_L^2\right)^2 - 576\omega_L\omega_R^3 + 195\omega_R^4}{3D^2}$$

Michael Niklas University of Regensburg

Lamb shift at the $5_0 \leftrightarrow 6$ resonance

