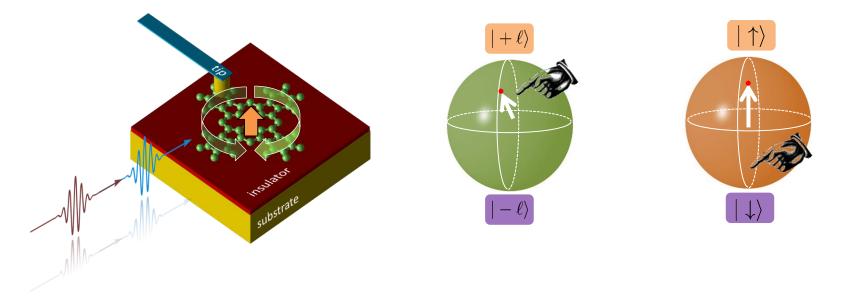


Pulse driven interacting single molecule junctions

Andrea Donarini



Schneefernerhaus, 29.05.2019

Time dependent driving

External driving introduces explicit time dependence in the Hamiltonian

$$\hat{H}(t) = \hat{H}_{\text{mol}}(t) + \hat{H}_{\text{leads}}(t) + \hat{H}_{\text{tun}}(t)$$

The Liouville von Neumann (LvN) equation in interaction picture remains

$$\dot{\hat{\rho}}_{\text{tot},I}(t) = -\frac{i}{\hbar} [\hat{H}_{\text{tun},I}(t), \hat{\rho}_{\text{tot},I}(t)]$$

where the operators in interaction picture read

R

$$\hat{O}_I(t) = \hat{U}_0^{\dagger}(t, t_0) \hat{O}_S(t) \hat{U}_0(t, t_0)$$
$$\hat{U}_0(t, t_0) = T_{\rightarrow} \exp\left\{-\frac{i}{\hbar} \int_{t_0}^t \left[\hat{H}_{\text{mol}}(t') + \hat{H}_{\text{leads}}(t')\right] \, \mathrm{d}t'\right\}$$

Weak coupling limit

The LvN equation can be recast into the integro-differential form

$$\dot{\hat{\rho}}_{I}(t) = -\frac{i}{\hbar} \left[\hat{H}_{\mathrm{tun},I}(t), \hat{\rho}_{(t_{0})} \right] + \left(-\frac{i}{\hbar} \right)^{2} \int_{t_{0}}^{t} \left[\hat{H}_{\mathrm{tun},I}(t), \left[\hat{H}_{\mathrm{tun},I}(t'), \hat{\rho}_{I}(t') \right] \right] \mathrm{d}t'$$

We further assume initial time factorization for the density operator

$$\hat{\rho}(t_0) = \hat{\rho}_{\rm mol}(t_0) \otimes \hat{\rho}_{\rm leads}(t_0)$$

Thus, it holds true:

R

$$\hat{\rho}_I(t) = \hat{\rho}_{\mathrm{red},I}(t) \otimes \hat{\rho}_{\mathrm{leads}}(t_0) + O\left(\hat{H}_{\mathrm{tun}}\right)$$

Where the reduced density operator reads:

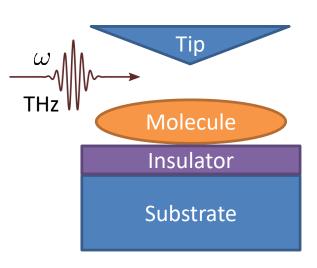
$$\hat{\rho}_{\mathrm{red},I}(t) = \mathrm{Tr}_{\mathrm{leads}} \left\{ \hat{\rho}_I(t) \right\}$$

Weak coupling limit

The reduced density operator obeys the integro-differential equation

$$\dot{\hat{\rho}}_{\mathrm{red},I}(t) = \left(-\frac{i}{\hbar}\right)^2 \int_{t_0}^t \mathrm{Tr}_{\mathrm{leads}} \left\{ \left[\hat{H}_{\mathrm{tun},I}(t), \left[\hat{H}_{\mathrm{tun},I}(t'), \hat{\rho}_{\mathrm{red},I}(t') \otimes \hat{\rho}_{\mathrm{leads}}(t_0)\right]\right] \right\} \mathrm{d}t'$$
$$= \int_{t_0}^t \mathcal{K}_I(t,t') \hat{\rho}_{\mathrm{red},I}(t') \, \mathrm{d}t'$$

The properties of the propagation kernel depend on the specific model at hand



R

$$\begin{split} &\operatorname{Re}[\epsilon_{r}(\omega)] = 1 - \frac{\omega_{p}^{2}}{\omega^{2}} \quad \omega = cq \gg qv_{F} \quad \omega_{p}/\omega \approx 10^{3} \\ &\hat{H}_{\mathrm{leads}} = \sum_{\eta \mathbf{k}\sigma} [\epsilon_{\eta \mathbf{k}} + \alpha_{\eta} eV_{\mathrm{bias}}(t)] \hat{c}_{\eta \mathbf{k}\sigma}^{\dagger} \hat{c}_{\eta \mathbf{k}\sigma} \quad \text{Fermi seas} \\ &\mu_{\eta}(t) = \mu_{0} + \alpha_{\eta} eV_{\mathrm{bias}}(t) \quad &\operatorname{No \ charge \ accumulation} \\ &\mu_{\eta}(t) = \mu_{0} + \alpha_{\eta} eV_{\mathrm{bias}}(t) \quad &\operatorname{No \ charge \ accumulation} \\ &\mu_{\eta}(t) = \mu_{0} + \alpha_{\eta} eV_{\mathrm{bias}}(t) \quad &\operatorname{No \ charge \ accumulation} \\ &\mu_{\eta}(t) = \mu_{0} + \alpha_{\eta} eV_{\mathrm{bias}}(t) \quad &\operatorname{No \ potential \ drop \ on \ the} \\ &\hat{H}_{\mathrm{mol}}(t) = \hat{H}_{\mathrm{mol}}(t_{0}) \quad &\operatorname{No \ potential \ drop \ on \ the} \\ & \operatorname{molecule} \end{split}$$

Adiabatic limit

The **tunnelling** Hamiltonian is bilinear in the leads and molecule operators:

$$\hat{H}_{\rm tun} = \sum_{\ell \mathbf{k}\sigma} t_{\ell \mathbf{k}\sigma}^{\rm tip}(\mathbf{r}_{\rm tip}) \, \hat{c}_{\rm tip,\mathbf{k}\sigma}^{\dagger} \hat{d}_{\ell\sigma} + t_{\ell \mathbf{k}\sigma}^{\rm sub} \, \hat{c}_{\rm sub,\mathbf{k}\sigma}^{\dagger} \hat{d}_{\ell\sigma} + h.c.$$

The asymptotic behaviour of the propagation kernel can be analysed

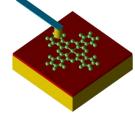
$$\mathcal{K}_{I}(t,t') \propto \sum_{\eta \mathbf{k}\sigma} \operatorname{Tr}_{\text{leads}} \left\{ \hat{c}_{\eta \mathbf{k}\sigma,I}^{\dagger}(t) \hat{c}_{\eta \mathbf{k}\sigma,I}(t') \hat{\rho}_{\text{leads}}(t_{0}) \right\}$$
$$\rightarrow \exp\left(-\pi \frac{t-t'}{\hbar\beta}\right) \sum_{\eta} \exp\left(-\frac{i}{\hbar}\mu_{0}(t'-t) - \frac{i}{\hbar} \int_{t}^{t'} \alpha_{\eta} e V_{\text{bias}}(t'') dt''\right)$$

The adiabatic limit $% \lambda =0$ is given by $\ \beta \hbar \omega \ll 1$

$$\mathcal{K}_{I}(t,t') \propto \exp\left(-\pi \frac{t-t'}{\hbar\beta}\right) \sum_{\eta} \exp\left(-\frac{i}{\hbar}[\mu_{0} + \alpha_{\eta}eV_{\text{bias}}(t)](t'-t)\right)$$

The theory is the same as in stationary non-equilibrium, with the replacement:

 $V_{\rm bias} \to V_{\rm bias}(t)$

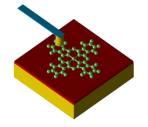


The reduced density operator in the interaction picture evolves on time scales

$$\Gamma = \max(\Gamma_{\rm tip}, \Gamma_{\rm sub})$$

where

$$\Gamma_{\eta} = \frac{2\pi}{\hbar} |t^{\eta}|^2 D_{\eta}$$



In the limit $\beta\hbar\Gamma\ll 1$ we obtain the Generalized Master Equation:

$$\dot{\hat{\rho}}_{\mathrm{red},I}(t) = \int_{t_0}^t \mathcal{K}_I(t,t') [\hat{\rho}_{\mathrm{red},I}(t')] \,\mathrm{d}t' \approx \int_0^\infty \mathcal{K}_I(t,t-t') \,\mathrm{d}t' \left[\hat{\rho}_{\mathrm{red},I}(t)\right]$$

More explicitly, in the Schrödinger picture

$$\dot{\hat{\rho}}_{\rm red}(t) = -\frac{i}{\hbar} [\hat{H}_{\rm mol}, \hat{\rho}_{\rm red}(t)] - \frac{i}{\hbar} [\hat{H}_{\rm LS}(t), \hat{\rho}_{\rm red}(t)] + \mathcal{L}_{\rm tun}(t) [\hat{\rho}_{\rm red}(t)]$$

Coherent dynamics relevant for quasi degenerate states: $\Delta\epsilon < \Gamma$

current

dl/dV

2

LUMO ~

Time scales

dl/dV (arb. units)

600

400

200

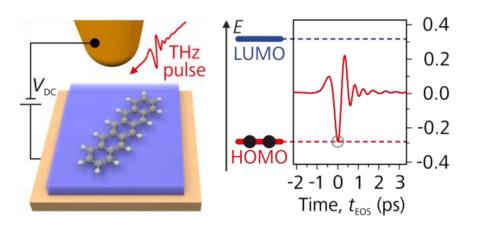
(Yd -200

HOMO

dl/dV

current

-2



T. Cocker et al. Nature (2016)

J. Repp et al. Phys. Rev. Lett. (2005)

-1

0

Voltage (V)

The experiments are performed at T = 10 K $\hbar\beta \approx 4 \text{ ps}$ Non adiabatic ?

The spectral resolution in the dc case is $\Delta E = 100 \,\mathrm{meV} \, \Rightarrow \, \tau_{\mathrm{rel}} \approx 40 \,\mathrm{fs}$

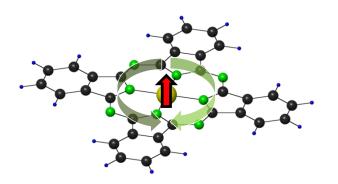
Decaying time of the correlator dominated by electron phonon coupling in the substrate.

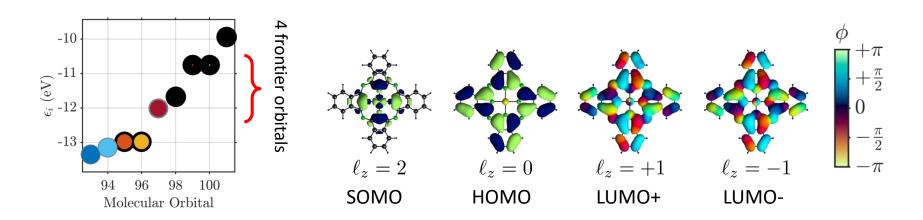
Tunnelling rates at the substrate $\hbar\Gamma_{sub} \approx 1 \,\mathrm{meV}$ $1/\Gamma_{sub} \approx 1 \,\mathrm{ps}$ $(1/\Gamma_{tip} \approx 1 \,\mathrm{ns})$

Frontier orbitals in CuPc

The single particle Hamiltonian is constructed following LCAO schemes of Harrison and Slater-Koster.

R

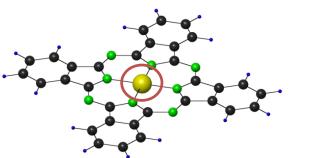




S. Froyen and W.A. Harrison, *PRB* **20**, 2420 (1979) J. C. Slater and G. F. Koster, *Phys. Rev.* **94**, 1498 (1954)

TRSOI in the frontier orbital basis

$$\hat{H}_{mol} = \hat{H}_0 + \hat{V}_{ee} + \hat{V}_{SO} + \hat{V}_Z$$

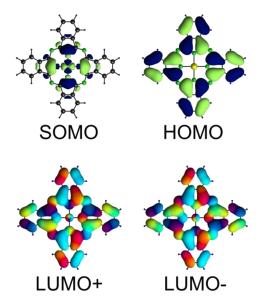


$$\hat{V}_{\rm SO} = \sum_{\alpha, \ell_{\alpha}} \xi_{\ell_{\alpha}} \, \boldsymbol{\ell}_{\alpha} \cdot \mathbf{s}_{\alpha}$$

Projection onto the frontier orbital basis yields

$$\hat{V}_{SO} = \lambda_1 \sum_{\tau=\pm} \tau \left(d^{\dagger}_{L\tau\uparrow} d_{L\tau\uparrow} - d^{\dagger}_{L\tau\downarrow} d_{L\tau\downarrow} \right) + \lambda_2 \left(d^{\dagger}_{S\uparrow} d_{L-\downarrow} + d^{\dagger}_{L+\uparrow} d_{S\downarrow} + \text{h.c.} \right)$$

where
$$\lambda_1 = \frac{1}{2} \xi_{Cu} |c_L|^2 = 0.47 \text{ meV}$$
, $\lambda_2 = \xi_{Cu} \frac{c_S c_L}{\sqrt{2}} = 6.16 \text{ meV}$
and $\xi_{Cu} = 100 \text{ meV}$

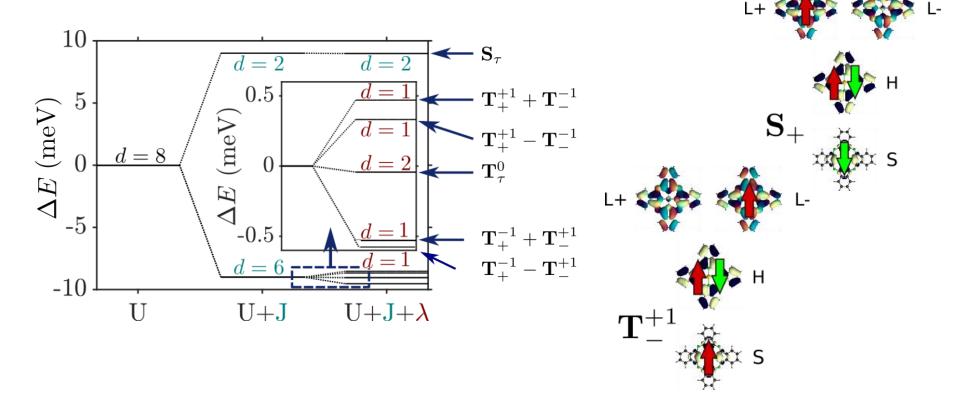


Anionic low energy spectrum

 $U > J > \lambda$

 $H_{
m mol}$ contains three different energy scales

IR



B. Siegert, A. Donarini and M. Grifoni, Beilstein J. of Nanotech. 6, 2452 (2015)

Spin-orbit hamiltonian

The spin orbit Hamiltonian in the triplet subspace is parametrized by 4 constants:

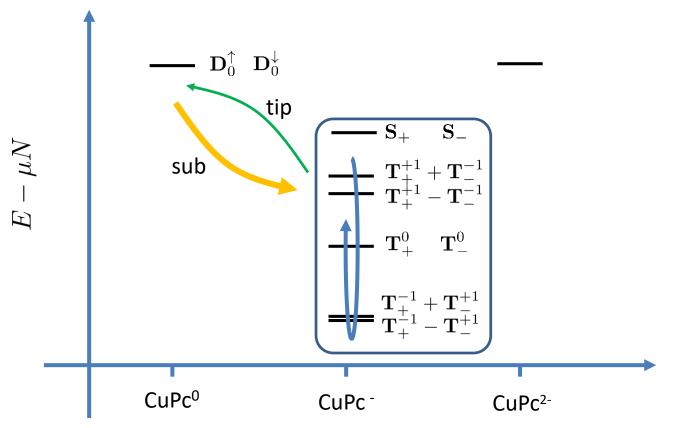
$$\hat{H}_{\rm SOI}^{\rm eff} = \begin{pmatrix} \alpha_1/2 & 0 & 0 & 0 & \alpha_2 \\ 0 & \alpha_4 & 0 & 0 & 0 & 0 \\ 0 & 0 & -\alpha_1/2 & \alpha_3 & 0 & 0 \\ 0 & 0 & 0 & 0 & \alpha_4 & 0 \\ 0 & 0 & 0 & 0 & \alpha_4 & 0 \\ \alpha_2 & 0 & 0 & 0 & 0 & \alpha_1/2 \end{pmatrix}$$

 $\alpha_1 = 0.86 \text{ meV}$ $\alpha_2 = 0.02 \text{ meV}$ $\alpha_3 = 0.01 \text{ meV}$ $\alpha_4 = -0.01 \text{ meV}$

Tunnelling and precession

ЛR

 $\Delta E < \hbar \Gamma, \, k_{\rm B} T \ll U$

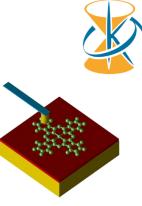


Tunnelling rate matrices

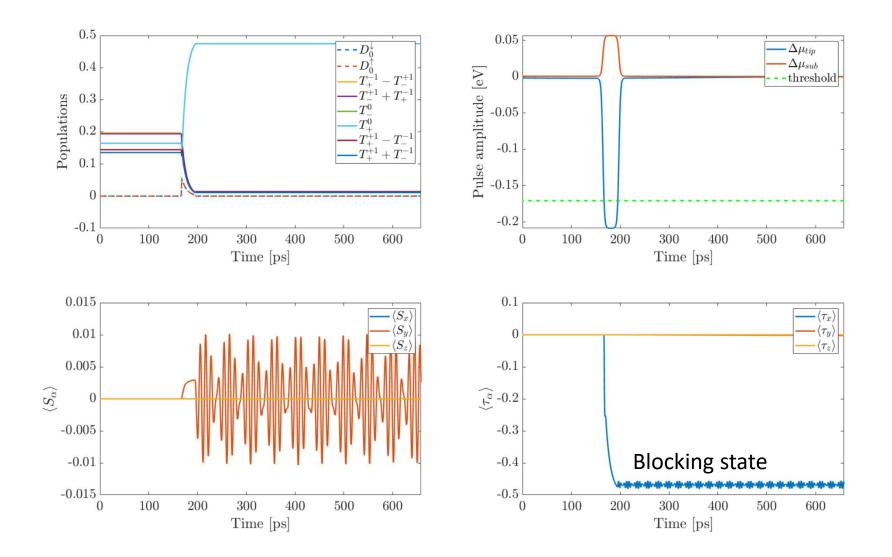
The single particle rate matrices consist of an angular momentum and a spin part. The coupling is asymmetric.

R

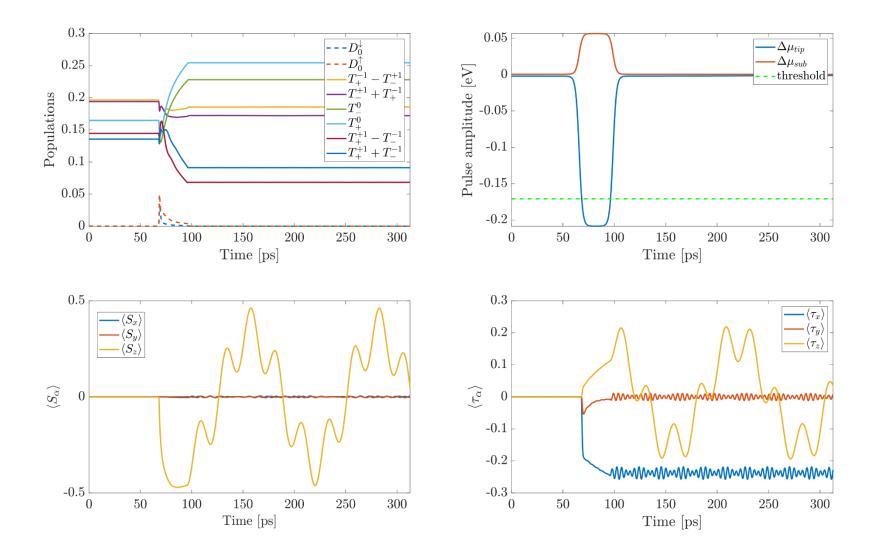
S. Sobczyk, A. Donarini, and M. Grifoni Phys. Rev. B 85, 205408 (2012)



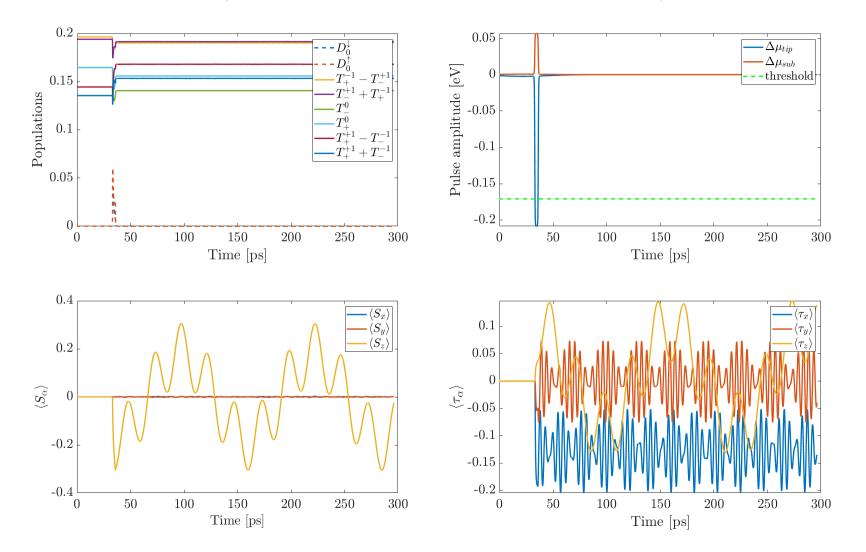
Pseudospin valve



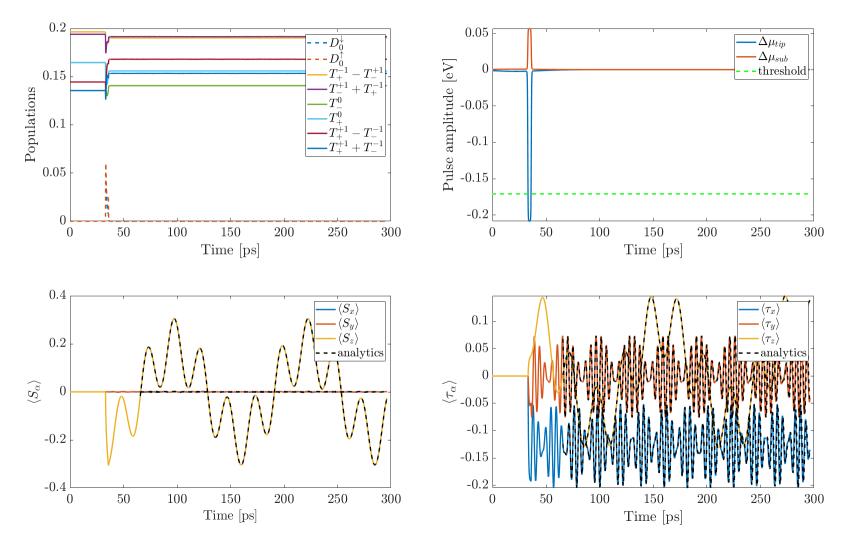
Spin polarized tip



CR Short pulse to drive the system

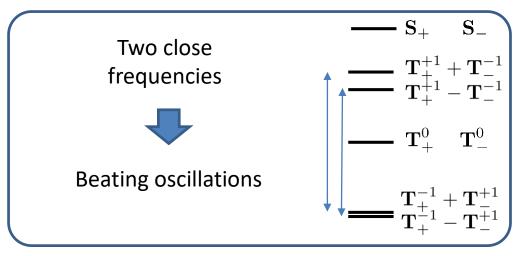


Analytic evaluation of the dynamics



Mixed correlators

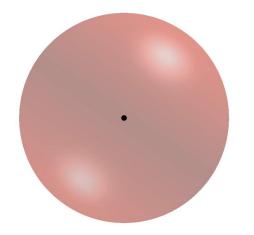
$$\begin{aligned} \langle \tau_x(t) \rangle &= \frac{1}{3} (\langle \tau_x \rangle - \langle \tau_x S_{z^2} \rangle) + \\ & \left(\frac{1}{3} \langle \tau_x \rangle + \frac{1}{4} \langle S_{x^2 y^2} \rangle + \frac{1}{6} \langle \tau_x S_{z^2} \rangle \right) \cos[(\alpha_1 + \alpha_2 - \alpha_3)t] \\ & \left(\frac{1}{3} \langle \tau_x \rangle - \frac{1}{4} \langle S_{x^2 y^2} \rangle + \frac{1}{6} \langle \tau_x S_{z^2} \rangle \right) \cos[(\alpha_1 - \alpha_2 + \alpha_3)t] \\ & \frac{1}{2} (\langle \tau_y S_z \rangle + \langle \tau_z S_{xy} \rangle) \sin[(\alpha_1 + \alpha_2 - \alpha_3)t] \\ & \frac{1}{2} (\langle \tau_y S_z \rangle - \langle \tau_z S_{xy} \rangle) \sin[(\alpha_1 - \alpha_2 + \alpha_3)t] \end{aligned}$$

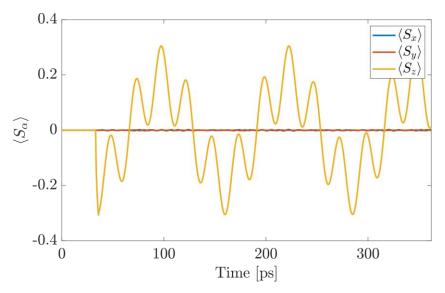


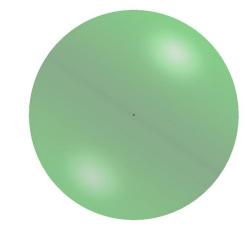
Triplet states: complete description requires information on the spin quadrupoles

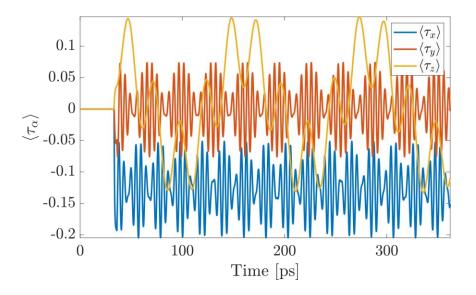
Spin orbit coupling: generates entangled spin and pseudo spin dynamics

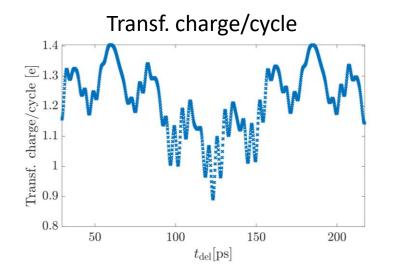
More than spin precession

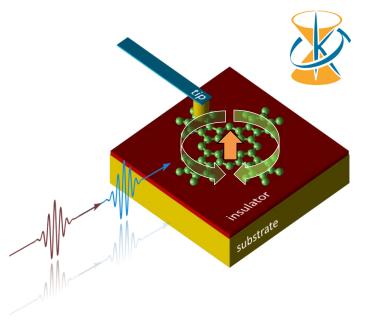


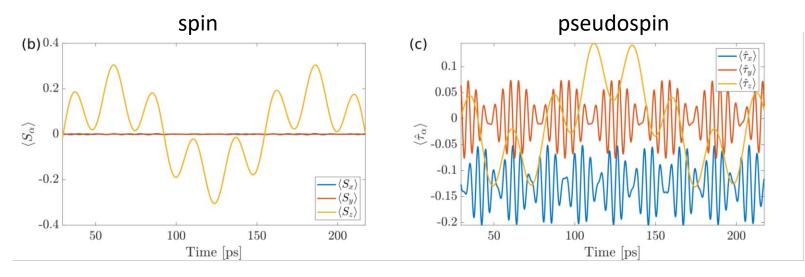












- Pulsed driven dynamics of an open interacting system in terms of generalized master equation for the reduced density matrix
- Time scale separation allows for an **adiabatic** and **Markovian** dynamics
- Pumping with a THz laser pulse generates spin-orbit induced dynamics
- Analytic description of the free system dynamics reveals spin orbit induced correlation between spin and pseudospin
- Fingerprints of spin and pseudospin valve effects are detected in the transferred charge per pump probe cycle

Thank you for your attention

Many body Hamiltonian

The minimal many body Hamiltonian, in the frontier orbital basis, of CuPc is given by:

$$\hat{H}_{mol} = \hat{H}_0 + \hat{V}_{ee} + \hat{V}_{SO} + \hat{V}_Z$$

Single particle Hamiltonian:

 $\delta=1.83\,\,eV$: renormalization for ionic background and crystal field

 $\hat{H}_0 = \sum \left(\epsilon_i + \delta\right) \hat{n}_{i\sigma}$

Electronic interactions:

$$\hat{V}_{ee} = \sum_{ijkl} \sum_{\sigma\sigma'} V_{ijkl} \hat{d}^{\dagger}_{i\sigma} \hat{d}^{\dagger}_{k\sigma'} \hat{d}_{l\sigma'} \hat{d}_{j\sigma}$$

 V_{ijkl} : Coulomb integrals between all dynamical orbitals

U_S	$11.352~{\rm eV}$	$J_{HL}^{\rm ex} = -\tilde{J}_{H+-}^{\rm p}$	548 meV
U_H	$1.752~{\rm eV}$	J_{+-}^{ex}	$258 \mathrm{~meV}$
$U_L = U_{+-}$	$1.808~{\rm eV}$	J_{+-}^{p}	$168~{\rm meV}$
U_{SH}	$1.777~{\rm eV}$	$J_{SL}^{\text{ex}} = -\tilde{J}_{S+-}^{\text{p}}$	$9 \mathrm{meV}$
U_{SL}	$1.993~{\rm eV}$	$J_{SH}^{\text{ex}} = J_{SH}^{\text{p}}$	$2 \mathrm{meV}$
U_{HL}	$1.758~{\rm eV}$		

