Summer Term 2013

Applications of Group Theory

Dr. Andrea Donarini Lectures Exercises

9.2.01, Mondays, 14:15 7.1.21, Fridays, 10:15

Sheet 1

1. Finite vs. infinite groups

A group is generally defined as a set of elements \mathcal{G} and a binary composition (·) satisfying the four following properties:

- i) Closure of \mathcal{G} with respect to the binary composition;
- ii) Existence of the identity element;
- iii) Validity of the associative law;
- iv) Existence of the inverse of each element of \mathcal{G} inside the set \mathcal{G} itself.

In reality some care should be taken with the order of the group.

- 1. Prove that, for a group of finite order, the property iv) can be derived from the other three. Hint: Start by proving that $\forall g \in \mathcal{G}, \exists n \in \mathbb{N}^+ : g^n = E$, where E is the identity element.
- 2. Consider the set of positive integers $\{p\}$ with the addition operation. Is it a group? If you add 0? What about the set of all (positive and negative) integer numbers with the same operation?

2. Cyclic groups

Consider the sequence g, g^2, \ldots and assume that $g^{n+1} = g$ with $n \in \mathbb{N}$.

- 1. Verify that $\{g, g^2, \ldots, g^n\}$ is a group: it is a cyclic group.
- 2. Show that cyclic groups are abelian.
- 3. Show that for a finite cyclic group the existence of the inverse of each element is guaranteed.
- 4. Show that $\omega = \exp(-2\pi i/n)$ generates a cyclic group of order n, when binary composition is defined to be the multiplication of complex numbers.

3. Groups of order 4

There are only two groups of order 4 that are not isomorphous and so have different multiplication tables. Derive the multiplication tables of these two groups, \mathcal{G}_4^1 and \mathcal{G}_4^2 . Hints: First derive the multiplication table of the cyclic group of order 4. Call this group \mathcal{G}_4^1 . How many elements of \mathcal{G}_4^1 are equal to their inverse? Now try to construct further groups in which a different number of elements are equal to their own inverse. Observe the rearrangement theorem. It is a bit like sudoku!

Frohes Schaffen!