Applications of Group Theory

Dr. Andrea Donarini Lectures Exercises

9.2.01, Mondays, 14:15 7.1.21, Fridays, 10:15

Sheet 2

1. Groups and subgroups

- 1. Show that, with binary composition as multiplication, the set $\{1, -1, i, -i\}$, where i is the imaginary unit is a group \mathcal{G} .
- 2. A subset \mathcal{H} of \mathcal{G} , that is itself a group with the same law of binary composition, is a subgroup of G. That is, \mathcal{H} has to satisfy closure as all other properties are automatically fulfilled. Find all the subgroups of \mathcal{G} .

2. Conservation of the norm

Consider a vectorial space V on which a scalar product is defined as a bilinear function by the relation $\langle e_i, e_j \rangle = \delta_{ij}$, where δ_{ij} is the Kronecker function, and $i(j) = 1, \ldots, n$ labels the n elements $e_{i(j)}$ of a complete basis for V. Prove that each linear transformation f in V which conserves the scalar product between vectors, $i.e. \langle f(v), f(w) \rangle = \langle v, w \rangle$ is represented by a unitary matrix i.e. $M_f M_f^{\dagger} = M_f^{\dagger} M_f = \mathbf{1}$, where $\mathbf{1}$ represents the identity matrix.

3. Matrix representations

In the lecture we have introduced the set of homomorphisms connecting point groups to groups of 3x3 matrices generating linear mappings of \mathbb{R}^3 into itself. Moreover we related the latter to group of function transformations which can eventually be mapped back into matrix groups once a vectorial space of functions invariant under the group of functional operations is introduced. Let us now make a concrete example:

- 1. Construct the matrix that generates, in \mathbb{R}^3 , the anticlockwise rotation of $\pi/2$ with respect of the z axis C_4^+ .
- 2. Construct the associated function operator $\hat{R}_{C_4^+}$ and find the transformed function for each of the 3 hydrogen 2p orbitals. Find the associated matrix representation of the point symmetry operation in the Hilbert space generated by such orbitals.
- 3. Repeat the first two steps for all the elements of the cyclic group C_4 . You have obtained a matrix representation of the group. Is it reducible or irreducible?
- 4. Analogously, find the matrix representation of the dihedral group D_4 in the same Hilbert space. Is it reducible or irreducible?

Frohes Schaffen!