Applications of Group Theory

Dr. Andrea Donarini Lectures Exercises

9.2.01, Mondays, 14:15 7.1.21, Fridays, 10:15

Sheet 11

1. Quaternion algebra

Quaternions are the most natural way to treat double groups. The product of two quaternions is given by:

$$[a, A][b, B] = [ab - A \cdot B, aB + bA + A \times B]$$

This exercise is meant to get more familiar with the algebra of these numbers.

- 1. Prove the associative property of the quaternion product.
- 2. Prove that the product of two pure quaternions is a pure quaternion only if their corresponding (pseudo-)vectors are orthogonal. Interpret the result in terms of binary rotations.
- 3. Consider the quaternions $\mathbb{A} = [a, \mathbf{A}]$ and $\mathbb{B} = [b, \mathbf{B}]$ with the conjugation prescription $\mathbb{A}^* = [a, -\mathbf{A}]$. Prove that $(\mathbb{A}\mathbb{B})^* = \mathbb{B}^*\mathbb{A}^*$.
- 4. Prove that the product of two normalized quaternions is a normalized quaternion.
- 5. Prove that A is a pure quaternion if and only if

$$\mathbb{A}^* = -\mathbb{A}$$
.

2. Multiplication tables of double groups

Using the quaternion algebra calculate the multiplication tables for the groups \bar{D}_2 and \bar{C}_3 . Verify explicitly the validity of the Opechowski's rules in the construction of the class system for the two forementioned double groups.

Frohes Schaffen!