Quantum Theory of Condensed Matter I

Prof. Milena Grifoni
Dr. Andrea Donarini
Sebastian Pfaller

Sheet 1

1. Fourier transform of the Yukawa and Coulomb potential

The 3d Yukawa potential is given as

$$
V_{\mathrm{Y}}(\mathbf{r}) \equiv V_{\mathrm{Y}}(r)=\frac{A}{r} \exp (-\alpha r) \quad(\alpha>0)
$$

1. Calculate the Fourier transform $F_{Y}(\mathbf{k})$ of the Yukawa potential

$$
F_{\mathrm{Y}}(\mathbf{k})=\int \mathrm{d} \mathbf{r} V_{\mathrm{Y}}(\mathbf{r}) \exp (-\mathrm{i} \mathbf{k} \cdot \mathbf{r})
$$

(2 Points)
2. Calculate the Fourier transform $F_{\mathrm{C}}(\mathbf{k})$ of the 3d Coulomb potential

$$
V_{\mathrm{C}}(\mathbf{r}) \equiv V_{\mathrm{C}}(r)=\frac{A}{r}
$$

(2 Points)

2. The δ sum rules for crystals

Let us take a set of equally spaced points x_{0}, \ldots, x_{N-1}, on an interval of length $L=N \Delta x$,

$$
\begin{equation*}
x_{j}=-\frac{L}{2}+j \Delta x, \quad j=0, \ldots, N-1, \tag{1}
\end{equation*}
$$

and consider a periodic function $f\left(x_{j}\right)$ such that $f\left(x_{j}\right)=f\left(x_{j+N}\right)$. The points of the reciprocal lattice are:

$$
\begin{equation*}
k_{n}=-\frac{\pi}{\Delta x}+n \Delta k=-\frac{\pi}{\Delta x}+\frac{n}{N} \frac{2 \pi}{\Delta x}, \quad n=0, \ldots, N-1 . \tag{2}
\end{equation*}
$$

The Discrete Fourier Transform (DFT) of the function $f\left(x_{j}\right)$ is defined as

$$
\begin{equation*}
\tilde{f}\left(k_{n}\right)=\sum_{j=0}^{N-1} \Delta x \exp \left(-\mathrm{i} k_{n} x_{j}\right) f\left(x_{j}\right) \tag{3}
\end{equation*}
$$

1. Verify the identities

$$
\begin{equation*}
\frac{1}{N} \sum_{j=0}^{N-1} \exp \left(\mathrm{i} x_{j}\left(k_{n}-k_{m}\right)\right)=\delta_{n m} \quad \text { and } \quad \frac{1}{N} \sum_{n=0}^{N-1} \exp \left(\mathrm{i} k_{n}\left(x_{i}-x_{j}\right)\right)=\delta_{i j} \tag{4}
\end{equation*}
$$

and prove with them the validity of the inverse DFT:

$$
\begin{equation*}
f\left(x_{i}\right)=\frac{1}{2 \pi} \sum_{n=0}^{N-1} \Delta k \exp \left(\mathrm{i} k_{n} x_{i}\right) \tilde{f}\left(k_{n}\right) . \tag{5}
\end{equation*}
$$

2. Extend the previous results to the case of a periodic function $f(x)=f(x+L)$ of a continuous variable x defined on the interval $[-L / 2, L / 2]$. Hint: Make the limits $N \rightarrow \infty$ and $\Delta x \rightarrow 0$ with $\Delta x N=L=$ constant. In extending the results follow the order: Eq. (3) \rightarrow first of (4) \rightarrow (5) \rightarrow second of (4).
Points)
3. (Oral) Let us take a function $f_{c}(x): \mathbb{R} \rightarrow \mathbb{R}, f_{c}(x)=f(x)$ on the interval $[-L / 2, L / 2]$ and zero elsewhere. We define the continuous periodic function

$$
\begin{equation*}
f_{p}(x)=\sum_{n \in \mathbb{Z}} f_{c}(x-n L) \tag{6}
\end{equation*}
$$

Prove the following identity for the so called Dirac comb distribution:

$$
\begin{equation*}
\sum_{n \in \mathbb{Z}} \delta\left(\frac{x}{L}-n\right)=\sum_{m \in \mathbb{Z}} \exp \left(\mathrm{i} k_{m} x\right) \tag{7}
\end{equation*}
$$

and apply this identity to prove the so called Poisson sum rule

$$
\begin{equation*}
f_{p}(x)=\frac{1}{L} \sum_{m \in \mathbb{Z}} \tilde{f}\left(k_{m}\right) \exp \left(\mathrm{i} k_{m} x\right) \tag{8}
\end{equation*}
$$

Use the previous equation to prove the relation

$$
\begin{equation*}
\frac{\pi}{\alpha} \operatorname{coth} \frac{\pi}{\alpha}=\sum_{m \in \mathbb{Z}} \frac{1}{1+\alpha^{2} m^{2}} \tag{9}
\end{equation*}
$$

4. (Oral)As a last step, extend the definition of Fourier transform to continuous functions without periodicity. Should we restrict ourselves to $\mathcal{L}^{2}(\mathbb{R})$, the space of the square integrable functions?

Frohes Schaffen!

