Quantum Theory of Condensed Matter I

Prof. Milena Grifoni
Dr. Andrea Donarini
5.1.01 Mondays 10:15

Sebastian Pfaller

Sheet 5

1. Density of states for tight binding models

Consider the following tight-binding Hamiltonian representing the valence electrons of an infinite chain of atoms with the lattice constant a :

$$
\hat{H}=\lim _{N_{\text {sites }} \rightarrow \infty}\left\{-t \sum_{i=1}^{N_{\text {sites }}}\left(\hat{c}_{i}^{\dagger} \hat{c}_{i+1}+\hat{c}_{i+1}^{\dagger} \hat{c}_{i}\right)\right\}
$$

where for simplicity the spin is neglected and we assume periodic boundary conditions.

1. What is the first quantization Hamiltonian for this system?
(1 Point)
2. Prove that the density of states for the system reads (in the limit $N_{\text {sites }} \rightarrow \infty$)

$$
\rho(E)=\frac{1}{\pi} \frac{1}{\sqrt{4 t^{2}-E^{2}}}
$$

for $|E|<2 t$ and vanishes elsewhere. Hint: start from the definition of the density of states,

$$
\rho(E)=\frac{1}{N_{\text {tot }}} \sum_{\alpha} \delta\left(E-E_{\alpha}\right)
$$

where $N_{\text {tot }}$ is the total number of states for the system and α is labelling the eigenstates of the system with eigenvalue E_{α}. The following relation involving the Dirac delta can be useful:

$$
\delta(f(x))=\sum_{i} \frac{1}{\left|f^{\prime}\left(x_{i}\right)\right|} \delta\left(x-x_{i}\right)
$$

where the points x_{i} are the zeroes of $f(x)$.
(2 points)
3. What is the density of states for a 1-dimensional free electron gas? Compare it with the result calculated in the previous point.
(2 points)
4. Now consider the generalization of the tight-binding model of an infinite chain to a square (2D) and a cubic (3D) lattice. What are the dispersion relations in these two cases?
(1 point)
5. (Oral) Prove that the density of states can be reduced to the generic form

$$
\rho_{d}(E)=\frac{1}{\pi} \int_{0}^{\infty} d \lambda \cos (\lambda E) J_{0}^{d}(2 t \lambda)
$$

where $J_{0}(x)$ is a Bessel function defined as

$$
J_{0}(x)=\frac{1}{\pi} \int_{0}^{\pi} d y \exp (-i x \cos y)
$$

and d is the dimensionality, $d=1,2,3$. Hint: the following relations may be useful

$$
\begin{aligned}
\delta(x) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} d y e^{-i x y} \\
J_{0}(-x) & =J_{0}^{*}(x)=J_{0}(x)
\end{aligned}
$$

2. Occupation number representation

Let us consider a fermionic system with two single particle states $|\alpha\rangle$ and $|\beta\rangle$ that span the (two-dimensional) one-particle Hilbert space.

1. What is the dimension of the two-particle Hilbert space? What is the dimension of the Fock space? Write down the basis of the Fock space explicitly as Slater determinants of the wave functions $\phi_{\alpha}(\mathbf{r}), \phi_{\beta}(\mathbf{r})$ and in the occupation number representation.
(2 Points)
2. Calculate, in the Fock basis, the matrix representation of the creation and annihilation operators $\hat{c}_{\mu}, \hat{c}_{\mu}^{\dagger}$ ($\mu=\alpha, \beta$) and also of the occupation operators $\hat{n}_{\mu}=\hat{c}_{\mu}^{\dagger} \hat{c}_{\mu}$.
(2 Points)
3. Using explicitly the matrix multiplication of the matrices calculated in (b), calculate the anticommutator relations

$$
\left[\hat{c}_{\mu}, \hat{c}_{\nu}\right]_{+}=\left[\hat{c}_{\mu}^{\dagger}, \hat{c}_{\nu}^{\dagger}\right]_{+}=0 ; \quad\left[\hat{c}_{\mu}, \hat{c}_{\nu}^{\dagger}\right]_{+}=\delta_{\mu \nu}
$$

Frohes Schaffen!

