Quantum Theory of Condensed Matter I

Prof. Milena Grifoni
Dr. Andrea Donarini
5.1.01 Mondays 10:15

Sebastian Pfaller

Sheet 8

1. Wick's theorem

1. Show that, for a system of non-interacting fermions described by the Hamiltonian in the energy basis

$$
\hat{H}=\sum_{\alpha} \epsilon_{\alpha} \hat{c}_{\alpha}^{\dagger} \hat{c}_{\alpha}\left(=\sum_{i=1}^{N} \hat{h}_{i}\right)
$$

the following relation for the many-body grandcanonical expectation value holds:

$$
\left\langle\hat{c}_{\alpha_{1}}^{\dagger} \hat{c}_{\alpha_{2}}^{\dagger} \hat{c}_{\alpha_{3}} \hat{c}_{\alpha_{4}}\right\rangle=\left\langle\hat{c}_{\alpha_{1}}^{\dagger} \hat{c}_{\alpha_{4}}\right\rangle\left\langle\hat{c}_{\alpha_{2}}^{\dagger} \hat{c}_{\alpha_{3}}\right\rangle \delta_{\alpha_{1} \alpha_{4}} \delta_{\alpha_{2} \alpha_{3}}-\left\langle\hat{c}_{\alpha_{1}}^{\dagger} \hat{c}_{\alpha_{3}}\right\rangle\left\langle\hat{c}_{\alpha_{2}}^{\dagger} \hat{c}_{\alpha_{4}}\right\rangle \delta_{\alpha_{1} \alpha_{3}} \delta_{\alpha_{2} \alpha_{4}},
$$

where

$$
\left\langle\hat{c}_{\alpha_{1}}^{\dagger} \hat{c}_{\alpha_{2}}^{\dagger} \hat{c}_{\alpha_{3}} \hat{c}_{\alpha_{4}}\right\rangle \equiv \frac{1}{Z} \operatorname{Tr}\left\{\hat{c}_{\alpha_{1}}^{\dagger} \hat{c}_{\alpha_{2}}^{\dagger} \hat{c}_{\alpha_{3}} \hat{c}_{\alpha_{4}} \exp [-\beta(H-\mu N)]\right\}
$$

and Z is the grandcanonical partition function. The trace is taken over the full Fock space. Hint: Consider the use of the eigenbasis of \hat{h}.
(2 Points)
2. Derive from 1.1 that, for noninteracting fermions, in every other given single particle basis $\{|n\rangle\}$ the following relation holds:

$$
\left\langle\hat{c}_{n_{1}}^{\dagger} \hat{c}_{n_{2}}^{\dagger} \hat{c}_{n_{3}} \hat{c}_{n_{4}}\right\rangle=\left\langle\hat{c}_{n_{1}}^{\dagger} \hat{c}_{n_{4}}\right\rangle\left\langle\hat{c}_{n_{2}}^{\dagger} \hat{c}_{n_{3}}\right\rangle-\left\langle\hat{c}_{n_{1}}^{\dagger} \hat{c}_{n_{3}}\right\rangle\left\langle\hat{c}_{n_{2}}^{\dagger} \hat{c}_{n_{4}}\right\rangle .
$$

Note that this is valid even if in this basis the Hamiltonian

$$
\hat{H}=\sum_{n, m} h_{n m} \hat{c}_{n}^{\dagger} \hat{c}_{m}
$$

would contain non-diagonal terms, $h_{n m}$ for $n \neq m$. Hint: Diagonalize H first, using a unitary transformation $\hat{c}_{n}=\sum_{\alpha} u_{n \alpha} \hat{c}_{\alpha}$. Apply the equation proven in 1.1. Finally perform the canonical transformation in the reverse direction.
(2 Points)

2. Spectrum of a many-body Hamiltonian

Let us consider a fermionic system with two single particle states $\left|\phi_{1}\right\rangle$ and $\left|\phi_{2}\right\rangle$ spanning the (two-dimensional) one-particle Hilbert space.

1. Consider the Hamilton operator

$$
\hat{H}=\hat{T}+\hat{V},
$$

where \hat{T} is a single particle operator and \hat{V} a two particle one. With respect to the single particle basis $\left|\phi_{i}\right\rangle$ the matrix elements are:

$$
\begin{aligned}
\left\langle\phi_{i}\right| \hat{T}\left|\phi_{i}\right\rangle & =\epsilon, \quad\left\langle\phi_{i}\right| \hat{T}\left|\phi_{j}\right\rangle=t \text { for } i \neq j \\
\left\langle\phi_{1}, \phi_{2}\right| \hat{V}\left|\phi_{1}, \phi_{2}\right\rangle & =U, \quad\left\langle\phi_{1}, \phi_{2}\right| \hat{V}\left|\phi_{2}, \phi_{1}\right\rangle=J
\end{aligned}
$$

where the notation is such that, e.g.:

$$
\left\langle\phi_{1}, \phi_{2}\right| \hat{V}\left|\phi_{2}, \phi_{1}\right\rangle \equiv \int \mathrm{d} \mathbf{r}_{1} \mathrm{~d} \mathbf{r}_{2} \phi_{1}^{*}\left(\mathbf{r}_{1}\right) \phi_{2}^{*}\left(\mathbf{r}_{2}\right) V\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right) \phi_{1}\left(\mathbf{r}_{2}\right) \phi_{2}\left(\mathbf{r}_{1}\right)
$$

Remember that in second quantization a single and two particle operators are respectively written as:

$$
\hat{T}=\sum_{\lambda, \mu} c_{\lambda}^{\dagger}\left\langle\phi_{\lambda}\right| \hat{T}\left|\phi_{\mu}\right\rangle c_{\mu}, \quad \hat{V}=\frac{1}{2} \sum_{\lambda \mu \lambda^{\prime} \mu^{\prime}} c_{\lambda}^{\dagger} c_{\mu}^{\dagger}\left\langle\phi_{\lambda}, \phi_{\mu}\right| \hat{V}\left|\phi_{\lambda^{\prime}}, \phi_{\mu^{\prime}}\right\rangle c_{\mu^{\prime}} c_{\lambda^{\prime}}
$$

where $\left|\phi_{\lambda}\right\rangle$ represent a generic single particle basis and c_{λ}^{\dagger} the corresponding creation operator. Write the operator \hat{H} in second quantization and in the matrix representation (starting from the single particle basis introduced). Calculate the eigenvalues and eigenvectors for \hat{H}.
(2 Points)
2. (Oral) Again, write \hat{H} in second quantization, but this time as a single particle basis use the eigenvectors of \hat{T}. Compute explicitly the matrix that connects the many-body basis generated in point 2.1 and the one obtained from the eigenstates of \hat{T}. Finally, extend the result to the general case of an arbitrary number of orbitals, by proving the following relation:

$$
\left\langle\left\{n_{\alpha}\right\} \mid\left\{n_{\ell}\right\}\right\rangle=\operatorname{det}\left(M_{\left\{n_{\alpha}\right\},\left\{n_{\ell}\right\}}\right)
$$

where $\left\{n_{\alpha}\right\}\left(\left\{n_{\ell}\right\}\right)$ is a string of (0 or 1) occupation numbers in the single particle basis labeled by the quantum number $\alpha(\ell), M_{\alpha \ell}$ is the unitary matrix connecting the two single particle bases and $M_{\left\{n_{\alpha}\right\},\left\{n_{\ell}\right\}}$ indicates the sub-matrix obtained extracting only the elements of M for which $n_{\alpha}=n_{\ell}=1$.

Frohes Schaffen!

