Quantum Theory of Condensed Matter I

Prof. Milena Grifoni Dr. Andrea Donarini Sebastian Pfaller

5.1.01 Mondays 10:15 9.2.01 Tuesdays 12:15

Sheet 8

1. Wick's theorem

1. Show that, for a system of non-interacting fermions described by the Hamiltonian in the energy basis

$$\hat{H} = \sum_{\alpha} \epsilon_{\alpha} \hat{c}_{\alpha}^{\dagger} \hat{c}_{\alpha} \left(= \sum_{i=1}^{N} \hat{h}_{i} \right)$$

the following relation for the many-body grandcanonical expectation value holds:

$$\langle \hat{c}^{\dagger}_{\alpha_1} \hat{c}^{\dagger}_{\alpha_2} \hat{c}_{\alpha_3} \hat{c}_{\alpha_4} \rangle = \langle \hat{c}^{\dagger}_{\alpha_1} \hat{c}_{\alpha_4} \rangle \langle \hat{c}^{\dagger}_{\alpha_2} \hat{c}_{\alpha_3} \rangle \delta_{\alpha_1 \alpha_4} \, \delta_{\alpha_2 \alpha_3} - \langle \hat{c}^{\dagger}_{\alpha_1} \hat{c}_{\alpha_3} \rangle \langle \hat{c}^{\dagger}_{\alpha_2} \hat{c}_{\alpha_4} \rangle \delta_{\alpha_1 \alpha_3} \, \delta_{\alpha_2 \alpha_4},$$

where

$$\langle \hat{c}^{\dagger}_{\alpha_1} \hat{c}^{\dagger}_{\alpha_2} \hat{c}_{\alpha_3} \hat{c}_{\alpha_4} \rangle \equiv \frac{1}{Z} \operatorname{Tr} \left\{ \hat{c}^{\dagger}_{\alpha_1} \hat{c}^{\dagger}_{\alpha_2} \hat{c}_{\alpha_3} \hat{c}_{\alpha_4} \exp\left[-\beta(H-\mu N)\right] \right\}$$

and Z is the grandcanonical partition function. The trace is taken over the full Fock space. Hint: Consider the use of the eigenbasis of \hat{h} . (2 Points)

2. Derive from 1.1 that, for noninteracting fermions, in every other given single particle basis $\{|n\rangle\}$ the following relation holds:

$$\langle \hat{c}_{n_1}^{\dagger} \hat{c}_{n_2}^{\dagger} \hat{c}_{n_3} \hat{c}_{n_4} \rangle = \langle \hat{c}_{n_1}^{\dagger} \hat{c}_{n_4} \rangle \langle \hat{c}_{n_2}^{\dagger} \hat{c}_{n_3} \rangle - \langle \hat{c}_{n_1}^{\dagger} \hat{c}_{n_3} \rangle \langle \hat{c}_{n_2}^{\dagger} \hat{c}_{n_4} \rangle.$$

Note that this is valid even if in this basis the Hamiltonian

$$\hat{H} = \sum_{n,m} h_{nm} \hat{c}_n^{\dagger} \hat{c}_m$$

would contain non-diagonal terms, h_{nm} for $n \neq m$. Hint: Diagonalize H first, using a unitary transformation $\hat{c}_n = \sum_{\alpha} u_{n\alpha} \hat{c}_{\alpha}$. Apply the equation proven in 1.1. Finally perform the canonical transformation in the reverse direction. (2 Points)

2. Spectrum of a many-body Hamiltonian

Let us consider a fermionic system with two single particle states $|\phi_1\rangle$ and $|\phi_2\rangle$ spanning the (two-dimensional) one-particle Hilbert space.

1. Consider the Hamilton operator

$$\hat{H} = \hat{T} + \hat{V} \,,$$

where \hat{T} is a single particle operator and \hat{V} a two particle one. With respect to the single particle basis $|\phi_i\rangle$ the matrix elements are:

$$\begin{split} \langle \phi_i | \, \hat{T} \, | \phi_i \rangle &= \epsilon \,, \quad \langle \phi_i | \, \hat{T} \, | \phi_j \rangle = t \text{ for } i \neq j \\ \langle \phi_1, \phi_2 | \, \hat{V} \, | \phi_1, \phi_2 \rangle &= U \,, \quad \langle \phi_1, \phi_2 | \, \hat{V} \, | \phi_2, \phi_1 \rangle = J \end{split}$$

where the notation is such that, e.g.:

$$\langle \phi_1, \phi_2 | \hat{V} | \phi_2, \phi_1 \rangle \equiv \int \mathrm{d}\mathbf{r}_1 \mathrm{d}\mathbf{r}_2 \phi_1^*(\mathbf{r}_1) \phi_2^*(\mathbf{r}_2) V(\mathbf{r}_1, \mathbf{r}_2) \phi_1(\mathbf{r}_2) \phi_2(\mathbf{r}_1) \,.$$

Remember that in second quantization a single and two particle operators are respectively written as:

$$\hat{T} = \sum_{\lambda,\mu} c_{\lambda}^{\dagger} \langle \phi_{\lambda} | \, \hat{T} \, | \phi_{\mu} \rangle c_{\mu} \,, \quad \hat{V} = \frac{1}{2} \sum_{\lambda\mu\lambda'\mu'} c_{\lambda}^{\dagger} c_{\mu}^{\dagger} \langle \phi_{\lambda}, \phi_{\mu} | \, \hat{V} \, | \phi_{\lambda'}, \phi_{\mu'} \rangle c_{\mu'} c_{\lambda'} \,,$$

where $|\phi_{\lambda}\rangle$ represent a generic single particle basis and c_{λ}^{\dagger} the corresponding creation operator. Write the operator \hat{H} in second quantization and in the matrix representation (starting from the single particle basis introduced). Calculate the eigenvalues and eigenvectors for \hat{H} . (2 Points)

2. (Oral) Again, write \hat{H} in second quantization, but this time as a single particle basis use the eigenvectors of \hat{T} . Compute explicitly the matrix that connects the many-body basis generated in point 2.1 and the one obtained from the eigenstates of \hat{T} . Finally, extend the result to the general case of an arbitrary number of orbitals, by proving the following relation:

$$\langle \{n_{\alpha}\} | \{n_{\ell}\} \rangle = \det \left(M_{\{n_{\alpha}\}, \{n_{\ell}\}} \right)$$

where $\{n_{\alpha}\}$ ($\{n_{\ell}\}$) is a string of (0 or 1) occupation numbers in the single particle basis labeled by the quantum number α (ℓ), $M_{\alpha\ell}$ is the unitary matrix connecting the two single particle bases and $M_{\{n_{\alpha}\},\{n_{\ell}\}}$ indicates the sub-matrix obtained extracting only the elements of M for which $n_{\alpha} = n_{\ell} = 1$.

Frohes Schaffen!