Quantum Theory of Condensed Matter I

Prof. Milena Grifoni
Dr. Andrea Donarini
5.1.01 Mondays 10:15

Sebastian Pfaller

Sheet 12

1. Open questions

Give a concise (and as much as possible precise) answer to the following questions:

- Explain the presence of continuous energy bands in the spectrum of a solid, if compared with the discrete energy spectrum of an atom.
(2 Points)
- Electron-electron interaction can be considered as a perturbation at high electron densities. Substantiate this counterintuitive statement.
(2 Points)
- Define the concept of phonon. Compare the Einstein and the Debye models for the calculation of the specific heat at constant volume for a solid.
(2 Points)

2. Density of states of an infinite ribbon

Let's us consider an infinite ribbon made of N_{y} chains of atoms organized in a square lattice (see Fig. 1). The valence (spinless) electrons are described by the tight binding Hamiltonian:

$$
\begin{equation*}
H=\lim _{N_{x} \rightarrow \infty} t \sum_{\langle i, j\rangle} c_{i}^{\dagger} c_{j} \tag{1}
\end{equation*}
$$

where the sum runs over nearest neighbors and we assume periodic boundary conditions in the x direction (i.e. $\left.N_{x}+1=1\right)$.

Fig. 1

1. The ribbon is invariant under translation in the x direction by any multiple of lattice unit. Use the Bloch theorem to block diagonalize the Hamiltonian for $N_{x} \rightarrow \infty$ and calculate the band structure for the ribbon for the case with $N_{y}=2,3$. How many bands do you obtain in each case?
(3 Points)
2. Consider now the isolated unit cell (see figure). Call ϵ_{n} and $|n, R\rangle, n=1, \ldots, N_{y}$ the eigenenergies and eigenstates of the unit cell in position R, respectively. Prove that the ribbon hamiltonian (1) is equivalent to the Hamiltonian of N_{y} independent chains of atoms where the n-th chain is characterized by an on-site energy ϵ_{n} and the same hopping t of the ribbon, i.e:

$$
\begin{equation*}
H=\sum_{n=1}^{N_{y}}\left(\sum_{R} \epsilon_{n}|n, R\rangle\langle n, R|+t|n, R\rangle\langle n, R+a|+t|n, R+a\rangle\langle n, R|\right) \tag{2}
\end{equation*}
$$

Hint: the n-th eigenstate of an open chain of N atoms reads:

$$
|n\rangle=\left(\frac{2}{N+1}\right)^{1 / 2} \sum_{\alpha=1}^{N} \sin \left(\frac{\pi}{N+1} n \alpha\right)|\alpha\rangle
$$

(4 Points)
3. Prove that the density of states (normalized to the length) of the ribbon reads:

$$
\rho(E) \equiv \lim _{N_{x} \rightarrow \infty} \frac{1}{N_{x}} \sum_{\alpha} \delta\left(E-\epsilon_{\alpha}\right)=\sum_{n=1}^{N_{y}} \frac{1}{\pi \sqrt{4 t^{2}-\left(E-2 t \cos \left(\pi /\left(N_{y}+1\right) n\right)\right)^{2}}}
$$

where α is a collection of quantum numbers labeling the eigenstates of the ribbon.
(2 Points)

Frohes Schaffen!

