Mesoscopic Physics

Dr. Andrea Donarini
Room 5.01.01
Dr. Miriam del Valle
Wednesdays at 15:15

Sheet 2

1. Naïve distribution function

Consider the trial distribution function given by $f(q, p)=\operatorname{Tr}\{\hat{\rho} \delta(q-\hat{q}) \delta(p-\hat{p})\}$. Prove that this function is complex and thus represents a bad choice.
Hint: It is enough to provide a counter example. Consider for instance the pure state density operator defined by $\hat{\rho}=|\psi\rangle\langle\psi|$, built from a wave function such as $\psi(x)=\sqrt{\alpha / \pi} \sin \left(\frac{\alpha x}{\hbar}\right)$, with x defined in the interval $[0,2 \pi \hbar / \alpha]$.

2. Wigner distribution

- The Wigner distribution function is defined as

$$
f_{\mathrm{W}}(q, p)=\frac{1}{2 \pi \hbar} \int_{-\infty}^{\infty} \mathrm{d} y\left\langle q-\frac{y}{2}\right| \hat{\rho}\left|q+\frac{y}{2}\right\rangle e^{\mathrm{i} \frac{p y}{\hbar}}
$$

Prove that it has the following properties:
(i) It is real. That is, $\operatorname{Im}\left(f_{\mathrm{W}}\right)=\frac{1}{2}\left(f_{\mathrm{W}}-f_{\mathrm{W}}^{*}\right)=0$.
(ii) f_{W} satisfies:

$$
\begin{aligned}
\int \mathrm{d} p f_{\mathrm{W}}(q, p) & =\langle q| \hat{\rho}|q\rangle \\
\int \mathrm{d} q f_{\mathrm{W}}(q, p) & =\langle p| \hat{\rho}|p\rangle \\
\int \mathrm{d} q \mathrm{~d} p f_{\mathrm{W}}(q, p) & =\operatorname{Tr}(\hat{\rho})=1
\end{aligned}
$$

Remember that $2 \pi \delta(x)=\int_{-\infty}^{\infty} e^{\mathrm{i} \kappa x} \mathrm{~d} \kappa$ and that $\langle x \mid p\rangle=\frac{1}{\sqrt{2 \pi \hbar}} e^{\mathrm{i} x p / \hbar}$.
(iii) f_{W} is Galilei invariant:

$$
\begin{aligned}
\psi(q) \rightarrow \psi(q+a) & \Longrightarrow f_{\mathrm{W}}(q, p) \rightarrow f_{\mathrm{W}}(q+a, p) \\
\psi(q) \rightarrow e^{\mathrm{i} p^{\prime} q / \hbar} \psi(q) & \Longrightarrow f_{\mathrm{W}}(q, p) \rightarrow f_{\mathrm{W}}\left(q, p-p^{\prime}\right)
\end{aligned}
$$

Hint: For the density operator $\hat{\rho}=\sum_{n} p_{n}\left|\psi_{n}\right\rangle\left\langle\psi_{n}\right|$, we can rewrite the Wigner distribution function as

$$
f_{\mathrm{W}}(q, p)=\frac{1}{2 \pi \hbar} \sum_{n} p_{n} \int_{-\infty}^{\infty} \mathrm{d} y \psi_{n}\left(q-\frac{y}{2}\right) \psi_{n}^{*}\left(q+\frac{y}{2}\right) e^{\mathrm{i} \frac{p y}{\hbar}}
$$

Calculate $\overline{f_{\mathrm{W}}}$ associated to $\overline{\psi_{n}}(q)=\psi_{n}(q+a)$ and $\overline{\psi_{n}}(q)=e^{\frac{\mathrm{i}^{\frac{p^{\prime} q}{\hbar}}}{\hbar}} \psi_{n}(q)$ respectively.
(iv) f_{W} is invariant under space and time reflections:

$$
\begin{aligned}
\psi(q) \rightarrow \psi(-q) & \Longrightarrow f_{\mathrm{W}}(q, p) \rightarrow f_{\mathrm{W}}(-q,-p) \\
\psi(q) \rightarrow \psi^{*}(q) & \Longrightarrow \quad f_{\mathrm{W}}(q, p) \rightarrow f_{\mathrm{W}}(q,-p)
\end{aligned}
$$

(v) In the force-free case the equation of motion is the classical one:

$$
\frac{\partial f_{\mathrm{W}}}{\partial t}=-\frac{p}{m} \frac{\partial f_{\mathrm{W}}}{\partial q}
$$

Consider that the time derivative of the density operator is given by $\dot{\hat{\rho}}=-\frac{i}{\hbar}[\hat{H}, \hat{\rho}]$ and if no forces are present we can write the Hamiltonian as $\hat{H}=\hat{p}^{2} / 2 m$.

3. Weyl representation

Prove that the Weyl representation for $F=q^{n} p^{m}$ is

$$
\hat{F}_{W e y l}=\frac{1}{2^{n}} \sum_{r=0}^{n}\binom{n}{r} \hat{q}^{n-r} \hat{p}^{m} \hat{q}^{r}
$$

Hint: The associated operator for the classical quantity F is given by Weyl's expansion:

$$
\hat{F}_{W e y l}(\hat{q}, \hat{p})=\int \mathrm{d} \sigma \mathrm{~d} \tau e^{\frac{i}{\hbar}(\sigma \hat{q}+\tau \hat{p})} \varphi(\sigma, \tau)
$$

where

$$
\varphi(\sigma, \tau)=\frac{1}{(2 \pi \hbar)^{2}} \int \mathrm{~d} q \mathrm{~d} p e^{\frac{i}{\hbar}(\sigma q+\tau p)} q^{n} p^{m}
$$

Frohes Schaffen!

