Mesoscopic Physics

Dr. Andrea Donarini Dr. Miriam del Valle $\begin{array}{c} {\rm Room} \ 5.01.01 \\ {\rm Wednesdays} \ {\rm at} \ 15:30 \end{array}$

Sheet 4

1. Landau levels

• Consider a narrow conductor etched out of a wide conductor as in Fig.1 and assume a parabolic confining potential. Calculate the number of transverse modes as a function of the magnetic field, for the following cases:

- (a) assuming constant Fermi energy
- (b) assuming constant electron density

If the Fermi energy remains constant then the conductor can be completely depleted as the magnetic field is increased,¹ but if the electron density is assumed to remain constant then the number of modes cannot decrease to zero (at least one mode remains always occupied).²

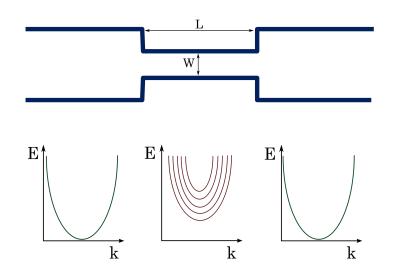


Figure 1: Junction made by the narrowing of a wide conductor. In the wide regions the transverse modes are essentially continuous, but the narrow part they are discrete and separated in energy.

 $^{^1\}mathrm{B.J.}$ van Wees et al., Phys. Rev. B $\mathbf{38},\,3625~(1988)$

²K.F. Berggren et al., Phys. Rev. B 37, 10118 (1988)

2. Rearrangement Theorem

The rearrangement theorem states that for the set of elements $\{g_i\}$ forming a group, if each element is multiplied from the left, or from the right, by a particular element g_j of $\{g_i\}$, then the set $\{g_i\}$ is regenerated with the elements, in general, re-ordered. Prove this theorem making use of the properties of a group, showing first that every element of the group is contained and then that it is contained only once.

3. Groups and subgroups

- (a) Show that, with binary composition as multiplication, the set $\{1 1 i i\}$ where $i^2 = -1$, form a group G.
- (b) A subset $H \subset G$, that is itself a group with the same law of binary composition, is a subgroup of G. That is, H has to satisfied closure as all other properties are automatically fulfilled. Find the subgroups of G.

4. Symmetry operations

• Consider the molecule AB_4 , where the B atoms lie at the corners of a square and the A atom is at the center and is not coplanar with the B atoms.

- (a) Determine the symmetry operations for this molecule.
- (b) Find its multiplication table.
- (c) List the subgroups.
- (d) List the classes.

5. Wonderful Orthogonality Theorem

Show that every symmetry operator for every group can be represented by the (1×1) unit matrix. Is it also true that every symmetry operator for every group can be represented by the (2×2) unit matrix? If so, does such a representation satisfy the wonderful orthogonality theorem?

Frohes Schaffen!