Mesoscopic Physics

Dr. Andrea Donarini
Room 5.01.01
Dr. Miriam del Valle
Wednesdays at 15:30

Sheet 5

Analysis of the molecule A_{4} by means of Group Theory

Consider a schematic molecule A_{4}, built by positioning all A-atoms at the corners of a square, as seen in the figure:

1. Prove that the molecule is invariant with respect to the $\mathrm{D}_{4 h}$ symmetry point group.
2. Prove that D_{4} and C_{4} are two subgroups of $\mathrm{D}_{4 h}$ and find for each of the groups all the classes of symmetry.
3. - Consider the Hamiltonian

$$
\begin{equation*}
H=\sum_{\alpha \sigma} \varepsilon c_{\alpha, \sigma}^{\dagger} c_{\alpha, \sigma}+b \sum_{\alpha \sigma}\left(c_{\alpha, \sigma}^{\dagger} c_{\alpha+1, \sigma}+c_{\alpha+1, \sigma}^{\dagger} c_{\alpha, \sigma}\right) \tag{1}
\end{equation*}
$$

where $c_{\alpha, \sigma}^{\dagger}$ creates an electron in the $1 s$ atomic orbital centered in atom α, and $b<0$. The index $\alpha=1, \ldots, 4$ should be consider with periodic boundary conditions: $\alpha+4=\alpha$. Which is the group of this Hamiltonian? Why? Construct explicitly one element of the group of operators which leaves the Hamiltonian invariant.
4. - Construct the representation corresponding to the single particle Hilbert space associated to states with total spin in the z-direction of $1 / 2$.
Hint: There is no need of calculating all matrix representatives. The characters are enough.
5. By means of the reduction formula and of the character tables for C_{4} and D_{4} (see Tables ??, ??), determine whether the representation constructed at point 4 is reducible or not and the irreducible components calculated with respect of the two groups. What can you say about the single particle spectrum of the Hamiltonian H ?
6. By means of the projection operator technique, calculate the eigenvectors of the Hamiltonian H. To which eigenvalues do they correspond? Check the expected degeneracies of the spectrum.
7. Consider the case of the two electron problem. How would you proceed?

Table 1: Character table for group C_{4}

C_{4}	E	C_{4}^{+}	C_{2}	C_{4}^{-}
Γ_{1}	1	1	1	1
Γ_{2}	1	-1	1	-1
Γ_{3}	1	-i	-1	i
Γ_{4}	1	i	-1	-i

Table 2: Character table for group D_{4}

D_{4}	E	$2 C_{4}$	C_{2}	$2 C_{2}^{\prime}$	$2 C_{2}^{\prime \prime}$
A_{1}	1	1	1	1	1
$\mathrm{~A}_{2}$	1	1	1	-1	-1
$\mathrm{~B}_{1}$	1	-1	1	1	-1
$\mathrm{~B}_{2}$	1	-1	1	-1	1
E	2	0	-2	0	0

Frohes Schaffen!

