Mesoscopic Physics

Dr. Andrea Donarini Dr. Miriam del Valle Room 5.01.01 Wednesdays at 15:30

Sheet 5

Analysis of the molecule A_4 by means of Group Theory

Consider a schematic molecule A_4 , built by positioning all A-atoms at the corners of a square, as seen in the figure:

- 1. Prove that the molecule is invariant with respect to the D_{4h} symmetry point group.
- 2. Prove that D_4 and C_4 are two subgroups of D_{4h} and find for each of the groups all the classes of symmetry.
- 3. Consider the Hamiltonian

$$H = \sum_{\alpha\sigma} \varepsilon c^{\dagger}_{\alpha,\sigma} c_{\alpha,\sigma} + b \sum_{\alpha\sigma} \left(c^{\dagger}_{\alpha,\sigma} c_{\alpha+1,\sigma} + c^{\dagger}_{\alpha+1,\sigma} c_{\alpha,\sigma} \right)$$
(1)

where $c_{\alpha,\sigma}^{\dagger}$ creates an electron in the 1s atomic orbital centered in atom α , and b < 0. The index $\alpha = 1, ..., 4$ should be consider with periodic boundary conditions: $\alpha + 4 = \alpha$. Which is the group of this Hamiltonian? Why? Construct explicitly one element of the group of operators which leaves the Hamiltonian invariant.

4. • Construct the representation corresponding to the single particle Hilbert space associated to states with total spin in the z-direction of 1/2.

Hint: There is no need of calculating all matrix representatives. The characters are enough.

- 5. By means of the reduction formula and of the character tables for C_4 and D_4 (see Tables ??, ??), determine whether the representation constructed at point 4 is reducible or not and the irreducible components calculated with respect of the two groups. What can you say about the single particle spectrum of the Hamiltonian H?
- 6. By means of the projection operator technique, calculate the eigenvectors of the Hamiltonian H. To which eigenvalues do they correspond? Check the expected degeneracies of the spectrum.
- 7. Consider the case of the two electron problem. How would you proceed?

Table 1: Character table for group C_4

C_4	E	C_4^+	C_2	C_4^-
Γ_1	1	1	1	1
Γ_2	1	-1	1	-1
Γ_3	1	-i	-1	i
Γ_4	1	i	-1	-i

Table 2: Character table for group D_4

D_4	E	$2C_4$	C_2	$2C_2^{\prime}$	$2C_2^{\prime\prime}$
A_1	1	1	1	1	1
A_2	1	1	1	$^{-1}$	$^{-1}$
B_1	1	$^{-1}$	1	1	$^{-1}$
B_2	1	$^{-1}$	1	$^{-1}$	1
Ε	2	0	-2	0	0

Frohes Schaffen!