Mesoscopic Physics

Dr. Andrea Donarini
Room 5.01.01
Dr. Miriam del Valle
Wednesdays at 15:15
Jürgen Wurm

Sheet 8

1. Orthogonality of magnetic transverse modes

- The transverse modes of an infinite lead in presence of a magnetic field B in z-direction fulfill the Schrödinger equation

$$
\begin{equation*}
\left[\frac{(\hbar k+e B y)^{2}}{2 m}-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d y^{2}}+U(y)\right] \chi_{n, k}(y)=E_{n, k} \chi_{n, k}(y) \tag{1}
\end{equation*}
$$

Here k is the longitudinal momentum and $U(y)=U(-y)$ is the confining potential. Prove that for $B \neq 0$,

$$
\begin{equation*}
\int d y \chi_{m, k^{\prime}}(y)\left[\frac{\hbar\left(k+k^{\prime}\right)}{2}+e B y\right] \chi_{n, k}(y) \sim \delta_{k k^{\prime}} \tag{2}
\end{equation*}
$$

2. Quantum point contacts in series

- Consider the four terminal device with two voltage probes (contacts 2 and 4):

We assume a symmetric geometry, but allow for a finite magnetic field pointing in z-direction, so that

$$
\begin{aligned}
G_{13} & =G_{31} \equiv G_{F} \\
G_{42} & =G_{24} \equiv G_{F}^{\prime} \\
G_{21} & =G_{32}=G_{43}=G_{14} \equiv G_{R} \\
G_{41} & =G_{12}=G_{23}=G_{34} \equiv G_{L}
\end{aligned}
$$

Convince yourself that the above assignments make sense, then show that the conductance is given by

$$
\begin{equation*}
G \equiv R_{13,13}^{-1}=\frac{1}{2}\left(\frac{2 e^{2}}{h} M+G_{F}+\frac{\left(G_{R}-G_{L}\right)^{2}}{2 G_{F}^{\prime}+G_{R}+G_{L}}\right) . \tag{3}
\end{equation*}
$$

M is the number of propagating modes in leads 1 and 3 . What happens for zero magnetic field in the coherent $\left(G_{F}=\frac{2 e^{2}}{h} M\right)$ and the incoherent $\left(G_{F}=0\right)$ limit?

3. Magnetic focusing

Consider the following setup with a magnetic field B in z-direction:

Contact 3 is a voltage probe, contact 1 and 2 serve as source and drain.
(a) Assume a strong magnetic field so that G_{13} can be neglected and show that the three terminal resistance is given by

$$
\begin{equation*}
R_{12,32}=\frac{G_{31}}{G_{12} G_{23}} . \tag{4}
\end{equation*}
$$

(b) Electrons emitted from 1 follow curved trajectories as indicated. Therefore, G_{31} depends strongly on B. In particular, G_{13} is largest if the trajectory is focused into the lead at 3. At which magnetic fields can focused trajectories be expected? Give numbers for an electron density of $n=10^{11} \mathrm{~cm}^{-1}$ and $W=800 \mathrm{~nm}$. What happens to $R_{12,32}$ at these fields? Sketch $R_{12,32}(B)$.
(c) At very large magnetic fields, one enters the IQH effect regime, i.e. every electron entering from 1 is absorbed into 3 . Formulate a criterion for this transition.

Frohe Weihnachten!

