Mesoscopic Physics

Dr. Andrea Donarini Jürgen Wurm Room 3.1.26 Fridays at 10:15

Sheet 9

1. Combination of S-matrices and the double- δ potential

Consider a quasi-1D wire (only 1 propagating mode) with two identical scatterers scatterers at x = 0 and x = d respectively. The scattering potential is approximated by

$$U(x) = U_0 \left[\delta(x) + \delta(x - d)\right]. \tag{1}$$

(a) Show that the transmission and reflection reflection probabilities are given by

$$T_1 = \frac{\hbar^2 v^2}{\hbar^2 v^2 + U_0^2} \quad R_1 = \frac{U_0^2}{\hbar^2 v^2 + U_0^2} \tag{2}$$

with the velocity $v = \sqrt{2E/m}$.

(*Hint:* Remember the special matching conditions for the wavefunctions at a δ -like potential from QM I.)

(b) Use the procedure of coherent S-matrix combination to show that the total transmission probability is given by

$$T = T(E) = \frac{T_1^2}{1 - 2R_1 \cos(\theta) + R_1^2}$$
(3)

with $\theta = 2 \left[\frac{dmv}{\hbar} + \tan^{-1}(\frac{\hbar v}{U_0}) \right]$ and plot T(E) for $U_0 = 9 \text{ eV} \text{ Å}$, d = 50 Å and 0 < E < 250 meV.

(c) • Resonant transmission: Although the individual transmission probability T_1 is usually very small, T can become large for certain resonant energies. What is the maximum value for T? For strong scatterers $U_0 \gg \hbar v$, calculate the positions of the resonances E_n .

please turn over

2. Transfer matrix formalism and the double barrier potential

While the scattering matrix S connects incoming and outgoing waves, the *transfer matrix* T connects waves on the left side and waves on the right side of a scatterer in a (quasi-)onedimensional problem.

In the schematic notation of the figure, the transfer matrix is defined as

$$\binom{out'}{in'} = \mathcal{T}\binom{in}{out} \tag{4}$$

(a) • Show that for a scatterer with transmission and reflection amplitudes t and r for particles coming from the left and t' and r' for particles coming from the right

the transfer matrix is

$$\mathcal{T} = \begin{pmatrix} t - \frac{rr'}{t'} & \frac{r'}{t'} \\ & & \\ -\frac{r}{t'} & \frac{1}{t'} \end{pmatrix}$$
(5)

By convention within the transfer matrix formalism, the waves are normalized to unit probability, not to unit flux as for the scattering matrix. Therefore the Transmission is in general given by

$$T = \frac{v'}{v} |t|^2 = \frac{v}{v'} |t'|^2 = \frac{v}{v'} \frac{1}{|\mathcal{T}_{22}|^2}, \qquad (6)$$

where v and v' are the velocities on the left and right side respectively.

- (b) If one has a series of scatteres, how are the individual transfer matrices combined to give the transfer matrix of the full system?
- (c) Consider a rectangular barrier

$$U(x) = \begin{cases} U & a \le x \le b \\ 0 & \text{else} \end{cases}$$
(7)

and use the transfer matrix formalism to show that the transmission and reflection amplitudes for E < U are given by

$$t = \frac{e^{ik(b-a)}}{\cosh[\kappa(b-a)] + i\frac{\varepsilon}{2}\sinh[\kappa(b-a)]} \quad r = -i\frac{\eta}{2}\frac{\sinh[\kappa(b-a)]e^{ik(b-a)}}{\cosh[\kappa(b-a)] + i\frac{\varepsilon}{2}\sinh[\kappa(b-a)]} \tag{8}$$

with $\kappa = \sqrt{2m(U-E)}/\hbar$, $\varepsilon = \kappa/k - k/\kappa$ and $\eta = \kappa/k + k/\kappa$. Herefore determine the transfer matrices for the first potential step, the piece within the barrier and the second step and combine them.

(d) • Now consider two barriers in series with transfer matrices \mathcal{T}_1 and \mathcal{T}_2 and transmission/reflection amplitudes t_1 , r_1 , t_2 and r_2 .

$$U(x) = \begin{cases} U_1 & 0 \le x \le W_1 \\ U_2 & W_1 + d \le x \le W_1 + d + W_2 \\ 0 & \text{else} \end{cases}$$
(9)

Note that the free space between the barriers also has a transfer matrix \mathcal{T}_d . Combine the transfer matrices again to show that the total Transmission is given by

$$T = \left| \frac{t_1 t_2}{1 - r_1 r_2 e^{2ikd}} \right|^2 \tag{10}$$

(*Hint:* Use the relation $(\mathcal{T}_{1/2})_{11} = (\mathcal{T}_{1/2})_{22}^*$. Can you prove by it looking at the time reversed problem $\psi \to \psi^*$?)

(e) • Plot T for identical barriers $(U_1 = U_2, W_1 = W_2)$ for different parameter sets such that

$$d + \frac{1}{2}(W_1 + W_2) = 50 \text{ Å}$$

$$W_1 U_1 = W_2 U_2 = 9 \text{ eV}$$

$$U_1, U_2 < 250 \text{ meV}$$

$$0 < E < 250 \text{ meV}.$$

Compare with exercise 1.

- (f) Use the method of finite differences and the Fisher-Lee relations to solve the double barrier problem numerically:
 - Show that the second derivative of the wavefunction has to be discretized as

$$\psi(x) \to \psi(x_i) \equiv \psi_i$$

$$\psi''(x) \to \psi''(x_i) = \frac{\psi_{i+1} - 2\psi_i + \psi_{i-1}}{a^2}$$
(11)

with the lattice spacing a. This leads to the discrete Schrödinger equation $H_{ij}\psi_j = E\psi_i$ with

$$H_{ij} = (2t + V_i)\delta_{ij} - t\delta_{i+1,j} - t\delta_{i-1,j}.$$
(12)

 $t = \hbar^2/2ma^2$ is the hopping parameter and $V_i \equiv V(x_i)$.

- In the lecture it was shown that the problem of inverting the full (infinite) matrix E - H can be avoided by using the finite sized Hamiltonian of the scattering region H_S and taking the leads into account by adding the so-called self energy $\Sigma^{R/A}$ with

$$\Sigma_{ij}^R = -\delta_{ij} t e^{ika} \left[\delta_{1j} + \delta_{Nj} \right] \tag{13}$$

and $\Sigma_{ij}^A = (\Sigma_{ji}^A)^*$ for identical leads in 1D. "1" and "N" are the first and the last point in the scattering region respectively. The retarded/advanced Green function of the scattering region is then

$$G_S^{R/A} = \frac{\hbar}{a} \left(E - H_S - \Sigma^{R/A} \right)^{-1} . \tag{14}$$

Set up H_S and calculate $G_S^{R/A}$ numerically. You can use for example Matlab to invert the matrix.

- Relate the Green function to the transmission using the Fisher-Lee relation derived in class

$$T = \operatorname{Tr}\left[\Gamma G_S^R \Gamma G_S^A\right] \quad \Gamma = i[\Sigma^R - \Sigma^A].$$
(15)

- Plot the result for different parameters and lattice spacings.

Frohes Schaffen!