Mesoscopic Physics

Dr. Andrea Donarini
Room 3.1.26
Jürgen Wurm

Sheet 9

1. Combination of S-matrices and the double- δ potential

Consider a quasi-1D wire (only 1 propagating mode) with two identical scatterers scatterers at $x=0$ and $x=d$ respectively. The scattering potential is approximated by

$$
\begin{equation*}
U(x)=U_{0}[\delta(x)+\delta(x-d)] \tag{1}
\end{equation*}
$$

(a) Show that the transmission and reflection reflection probabilities are given by

$$
\begin{equation*}
T_{1}=\frac{\hbar^{2} v^{2}}{\hbar^{2} v^{2}+U_{0}^{2}} \quad R_{1}=\frac{U_{0}^{2}}{\hbar^{2} v^{2}+U_{0}^{2}} \tag{2}
\end{equation*}
$$

with the velocity $v=\sqrt{2 E / m}$.
(Hint: Remember the special matching conditions for the wavefunctions at a δ-like potential from QM I.)
(b) Use the procedure of coherent S-matrix combination to show that the total transmission probability is given by

$$
\begin{equation*}
T=T(E)=\frac{T_{1}^{2}}{1-2 R_{1} \cos (\theta)+R_{1}^{2}} \tag{3}
\end{equation*}
$$

with $\theta=2\left[d m v / \hbar+\tan ^{-1}\left(\hbar v / U_{0}\right)\right]$ and plot $T(E)$ for $U_{0}=9 \mathrm{eV} \AA, d=50 \AA$ and $0<E<250 \mathrm{meV}$.
(c) - Resonant transmission: Although the individual transmission probability T_{1} is usually very small, T can become large for certain resonant energies. What is the maximum value for T ? For strong scatterers $U_{0} \gg \hbar v$, calculate the positions of the resonances E_{n}.

2. Transfer matrix formalism and the double barrier potential

While the scattering matrix S connects incoming and outgoing waves, the transfer matrix \mathcal{T} connects waves on the left side and waves on the right side of a scatterer in a (quasi-)onedimensional problem.

In the schematic notation of the figure, the transfer matrix is defined as

$$
\begin{equation*}
\binom{\text { out }^{\prime}}{\text { in }^{\prime}}=\mathcal{T}\binom{\text { in }}{\text { out }} \tag{4}
\end{equation*}
$$

(a) - Show that for a scatterer with transmission and reflection amplitudes t and r for particles coming from the left and t^{\prime} and r^{\prime} for particles coming from the right

the transfer matrix is

$$
\mathcal{T}=\left(\begin{array}{cc}
t-\frac{r r^{\prime}}{t^{\prime}} & \frac{r^{\prime}}{t^{\prime}} \tag{5}\\
-\frac{r}{t^{\prime}} & \frac{1}{t^{\prime}}
\end{array}\right)
$$

By convention within the transfer matrix formalism, the waves are normalized to unit probability, not to unit flux as for the scattering matrix. Therefore the Transmission is in general given by

$$
\begin{equation*}
T=\frac{v^{\prime}}{v}|t|^{2}=\frac{v}{v^{\prime}}\left|t^{\prime}\right|^{2}=\frac{v}{v^{\prime}} \frac{1}{\left|\mathcal{T}_{22}\right|^{2}} \tag{6}
\end{equation*}
$$

where v and v^{\prime} are the velocities on the left and right side respectively.
(b) - If one has a series of scatteres, how are the individual transfer matrices combined to give the transfer matrix of the full system?
(c) Consider a rectangular barrier

$$
U(x)= \begin{cases}U & a \leq x \leq b \tag{7}\\ 0 & \text { else }\end{cases}
$$

and use the transfer matrix formalism to show that the transmission and reflection amplitudes for $E<U$ are given by

$$
\begin{equation*}
t=\frac{e^{i k(b-a)}}{\cosh [\kappa(b-a)]+i \frac{\varepsilon}{2} \sinh [\kappa(b-a)]} \quad r=-i \frac{\eta}{2} \frac{\sinh [\kappa(b-a)] e^{i k(b-a)}}{\cosh [\kappa(b-a)]+i \frac{\varepsilon}{2} \sinh [\kappa(b-a)]} \tag{8}
\end{equation*}
$$

with $\kappa=\sqrt{2 m(U-E)} / \hbar, \varepsilon=\kappa / k-k / \kappa$ and $\eta=\kappa / k+k / \kappa$. Herefore determine the transfer matrices for the first potential step, the piece within the barrier and the second step and combine them.
(d) - Now consider two barriers in series with transfer matrices \mathcal{T}_{1} and \mathcal{T}_{2} and transmission/reflection amplitudes t_{1}, r_{1}, t_{2} and r_{2}.

$$
U(x)=\left\{\begin{array}{cl}
U_{1} & 0 \leq x \leq W_{1} \tag{9}\\
U_{2} & W_{1}+d \leq x \leq W_{1}+d+W_{2} \\
0 & \text { else }
\end{array}\right.
$$

Note that the free space between the barriers also has a transfer matrix \mathcal{T}_{d}. Combine the transfer matrices again to show that the total Transmission is given by

$$
\begin{equation*}
T=\left|\frac{t_{1} t_{2}}{1-r_{1} r_{2} e^{2 i k d}}\right|^{2} \tag{10}
\end{equation*}
$$

(Hint: Use the relation $\left(\mathcal{T}_{1 / 2}\right)_{11}=\left(\mathcal{T}_{1 / 2}\right)_{22}^{*}$.
Can you prove by it looking at the time reversed problem $\psi \rightarrow \psi^{*}$?)
(e) - Plot T for identical barriers $\left(U_{1}=U_{2}, W_{1}=W_{2}\right)$ for different parameter sets such that

$$
\begin{array}{r}
d+\frac{1}{2}\left(W_{1}+W_{2}\right)=50 \AA \\
W_{1} U_{1}=W_{2} U_{2}=9 \mathrm{eV} \\
U_{1}, U_{2}<250 \mathrm{meV} \\
0<E<250 \mathrm{meV} .
\end{array}
$$

Compare with exercise 1.
(f) Use the method of finite differences and the Fisher-Lee relations to solve the double barrier problem numerically:

- Show that the second derivative of the wavefunction has to be discretized as

$$
\begin{array}{r}
\psi(x) \rightarrow \psi\left(x_{i}\right) \equiv \psi_{i} \\
\psi^{\prime \prime}(x) \rightarrow \psi^{\prime \prime}\left(x_{i}\right)=\frac{\psi_{i+1}-2 \psi_{i}+\psi_{i-1}}{a^{2}} \tag{11}
\end{array}
$$

with the lattice spacing a. This leads to the discrete Schrödinger equation $H_{i j} \psi_{j}=E \psi_{i}$ with

$$
\begin{equation*}
H_{i j}=\left(2 t+V_{i}\right) \delta_{i j}-t \delta_{i+1, j}-t \delta_{i-1, j} \tag{12}
\end{equation*}
$$

$t=\hbar^{2} / 2 m a^{2}$ is the hopping parameter and $V_{i} \equiv V\left(x_{i}\right)$.

- In the lecture it was shown that the problem of inverting the full (infinite) matrix $E-H$ can be avoided by using the finite sized Hamiltonian of the scattering region H_{S} and taking the leads into account by adding the so-called self energy $\Sigma^{R / A}$ with

$$
\begin{equation*}
\Sigma_{i j}^{R}=-\delta_{i j} t e^{i k a}\left[\delta_{1 j}+\delta_{N j}\right] \tag{13}
\end{equation*}
$$

and $\Sigma_{i j}^{A}=\left(\Sigma_{j i}^{A}\right)^{*}$ for identical leads in 1D. "1" and " N " are the first and the last point in the scattering region respectively. The retarded/advanced Green function of the scattering region is then

$$
\begin{equation*}
G_{S}^{R / A}=\frac{\hbar}{a}\left(E-H_{S}-\Sigma^{R / A}\right)^{-1} \tag{14}
\end{equation*}
$$

Set up H_{S} and calculate $G_{S}^{R / A}$ numerically. You can use for example Matlab to invert the matrix.

- Relate the Green function to the transmission using the Fisher-Lee relation derived in class

$$
\begin{equation*}
T=\operatorname{Tr}\left[\Gamma G_{S}^{R} \Gamma G_{S}^{A}\right] \quad \Gamma=i\left[\Sigma^{R}-\Sigma^{A}\right] . \tag{15}
\end{equation*}
$$

- Plot the result for different parameters and lattice spacings.

Frohes Schaffen!

