Density Matrix Theory

Prof. Andrea Donarini
5.0.21, Tuesdays, $10: 15$

Sheet 6

1. Equilibrium: the free energy formulation

Consider the master equation for the Anderson impurity model introduced in the Sheet 4:

$$
\begin{aligned}
\dot{P}_{0}= & -2 \gamma f^{+}\left(\varepsilon_{d}\right) P_{0}+\gamma \sum_{\sigma} f^{-}\left(\varepsilon_{d}\right) P_{1 \sigma} \\
\dot{P}_{1 \sigma}= & -\gamma\left[f^{+}\left(\varepsilon_{d}+U\right)+f^{-}\left(\varepsilon_{d}\right)\right] P_{1 \sigma} \\
& +\gamma f^{+}\left(\varepsilon_{d}\right) P_{0}+\gamma f^{-}\left(\varepsilon_{d}+U\right) P_{2} \\
\dot{P}_{2}= & -2 \gamma f^{-}\left(\varepsilon_{d}+U\right) P_{2}+\gamma \sum_{\sigma} f^{+}\left(\varepsilon_{d}+U\right) P_{1 \sigma}
\end{aligned}
$$

where

$$
P_{0}(t) \equiv\langle 0| \rho_{\text {red }}(t)|0\rangle, P_{1 \sigma} \equiv\langle 1 \sigma| \rho_{\text {red }}(t)|1 \sigma\rangle, P_{2}(t) \equiv\langle 2| \rho_{\text {red }}(t)|2\rangle
$$

are the populations of the reduced density matrix with respect to the manybody energy eigenbasis $|0\rangle,|1 \uparrow\rangle,|1 \downarrow\rangle,|2\rangle$ of the impurity.

1. Prove that the stationary solution of this master equation is independent of the magnitude of the bare tunnelling rate γ and, for every value of the parameters $\left(\varepsilon_{d}, U, \mu, T\right)$ defining the model, can be written in the form:

$$
\begin{align*}
& P_{0}^{s t a t}=\frac{1}{N} f^{-}\left(\varepsilon_{d}\right) f^{-}\left(\varepsilon_{d}+U\right) \\
& P_{1 \sigma}^{s t a t}=\frac{1}{N} f^{+}\left(\varepsilon_{d}\right) f^{-}\left(\varepsilon_{d}+U\right) \tag{1}\\
& P_{2}^{s t a t}=\frac{1}{N} f^{+}\left(\varepsilon_{d}\right) f^{+}\left(\varepsilon_{d}+U\right)
\end{align*}
$$

where N is the normalization factor that ensures the sum of the probability to be 1 . Moreover $f^{+}(\epsilon) \equiv\left[1+e^{\beta(\epsilon-\mu)}\right]^{-1}$ and $f^{-}(\epsilon) \equiv 1-f^{+}(\epsilon)$.
2. Prove that the equilibrium probabilities derived at the previous point can be obtained from a thermodynamical formulation of the problem where the impurity, defined by the Hamiltonian H_{S} (see Sheet 4), can exchange energy and particles with a bath with temperature T and chemical potential μ. In particular calculate the grand canonical partition function $\mathcal{Z}=$ $\operatorname{Tr}_{\mathrm{S}}\left\{e^{-\beta\left(H_{\mathrm{S}}-\mu N_{\mathrm{S}}\right)}\right\}$ for the impurity and prove that:

$$
P_{\alpha}^{s t a t}=\frac{1}{\mathcal{Z}} \operatorname{Tr}_{\mathrm{S}}\left\{|\alpha\rangle\langle\alpha| e^{-\beta\left(H_{\mathrm{S}}-\mu N_{\mathrm{S}}\right)}\right\}
$$

where $|\alpha\rangle$ is a manybody energy eigenstate of the impurity and N_{S} the particle number.

2. Time evolution for a Markovian master equation

In this exercise we consider the Markoff master equation (1) and calculate numerically the time evolution for the populations of the many-body states of the impurity.

1. Show that the equations (1) can be cast into a matrix form $\dot{P}(t)=L P(t)$ where $P \equiv$ $\left(P_{0}, P_{1 \uparrow}, P_{1 \downarrow}, P_{2}\right)^{T}$ and

$$
L=\gamma\left(\begin{array}{cccc}
-2 f^{+}\left(\varepsilon_{d}\right) & f^{-}\left(\varepsilon_{d}\right) & f^{-}\left(\varepsilon_{d}\right) & 0 \\
f^{+}\left(\varepsilon_{d}\right) & -f^{-}\left(\varepsilon_{d}\right)-f^{+}\left(\varepsilon_{d}+U\right) & 0 & f^{-}\left(\varepsilon_{d}+U\right) \\
f^{+}\left(\varepsilon_{d}\right) & 0 & -f^{-}\left(\varepsilon_{d}\right)-f^{+}\left(\varepsilon_{d}+U\right) & f^{-}\left(\varepsilon_{d}+U\right) \\
0 & f^{+}\left(\varepsilon_{d}+U\right) & f^{+}\left(\varepsilon_{d}+U\right) & -2 f^{-}\left(\varepsilon_{d}+U\right)
\end{array}\right) .
$$

Prove that the solution of the equation can be written in the form $P(t)=e^{L t} P(t=0)$. Taking advantage of this algebraic formulation, calculate the numerical solution of (1). Hint: the function "expm" calculates the exponential of a matrix in Matlab.
2. Prove that, if the time is measured in units of $1 / \gamma$ solutions with different tunneling rates coincide.
3. Check that the stationary solution is reached by the system after a time corresponding to a few $1 / \gamma$ and that it is independent of the initial condition.
4. Calculate the time evolution for the population vector P also with the help of one of the packages for ordinary differential equations available in Matlab. Compare the results with the previous method. Hint: There are different types of solvers. You can start by typing "help ode 23 " in the command line and read the documentation.

Frohes Schaffen!

