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1. The Anderson impurity model with multiple baths

Let us consider again the Anderson impurity introduced in the Sheet 4 but this time in tunneling
contact with a set of baths. While the system Hamiltonian remains unchanged, the bath and
tunneling Hamiltonians read:

HB =
∑
αkσ

εk c
†
αkσcαkσ,

HT =
∑
αkσ

τα

(
c†αkσdσ + d†σcαkσ

)
,

respectively. With α we label the di�erent baths and for simplicity we assume the same dispersion
relation for the di�erent baths. The tunnelling coupling τα is, instead, di�erent to the di�erent
baths and we also assume a di�erent equilibrium temperature Tα and chemical potential µα for
each of the baths.

1. Assume that: i)The tunnelling Hamiltonian HT can be treated perturbatively; ii)The im-
purity and the baths are uncorrelated at time t = 0 (i.e. ρ = ρS ⊗ ρB). iii) The baths are
not correlated between themselves (i.e. ρB =

⊗
α ρBα); iv) The temperatures and tunnelling

couplings of the baths satisfy the relation minα(kBTα) ≫ maxα(~γα) where γα = 2π
~ τ2αDα

and Dα is the density of states (constant) for the bath α; iii) Derive for the reduced density
matrix of the impurity an equation of the form:

Ṗ0 =−
∑
α

γα

{
2f+

α (εd)P0 −
∑
σ

f−
α (εd)P1σ

}
Ṗ1σ =−

∑
α

γα

{
[f+

α (εd + U) + f−
α (εd)]P1σ

}
+
∑
α

γα

{
f+
α (εd)P0 + f−

α (εd + U)P2

}
Ṗ2 =−

∑
α

γα

{
2f−

α (εd + U)P2 −
∑
σ

f+
α (εd + U)P1σ

}
where f+

α (ε) ≡ [1 + eβα(ϵ−µα)]−1 and f−
α (ε) = 1− f+

α (ε).

2. Prove that the solution of the master equation derived in the �rst point can be written in
the form:

P stat
0 =

1

N

∑
α

[
γαf

−
α (εd)

]∑
α

[
γαf

−
α (εd + U)

]
P stat
1σ =

1

N

∑
α

[
γαf

+
α (εd)

]∑
α

[
γαf

−
α (εd + U)

]
P stat
2 =

1

N

∑
α

[
γαf

+
α (εd)

]∑
α

[
γαf

+(εd + U)
]

where N is the normalization factor that ensures the sum of the populations to be 1.



3. Consider now the case U + εd ≫ µα ∀α. Prove that in this case the two particle state is
excluded from the stationary solution. Moreover show that the stationary reduced density
matrix can be written as:

ρstatS =
∑
α

γα[f
−
α (εd) + 2f+

α (εd)]∑
α′ γα′ [f−

α′(εd) + 2f+
α′(εd)]

ρthSα,

where ρthSα = 1
Zα

eβα(HS−µαNS) is the grancanonical distribution of the impurity relative to
the bath α.

Hint: It can be useful to consider the stationary density matrix obtained at the previous
point written in the form

ρstatS =
1

N

[
|0⟩⟨0|+

∑
σ

|1σ⟩
∑

α γαf
+
α (εd)∑

α γαf
−
α (εd)

⟨1σ|

]
,

where N is the appropriate normalization.

4. Prove analogously that, under the condition εd ≪ µα ∀α, the stationary reduced density
matrix can be written as:

ρstatS =
∑
α

γα[2f
−
α (εd + U) + f+

α (εd + U)]∑
α′ γα′ [2f−

α′(εd + U) + f+
α′(εd + U)]

ρthSα.

5. Prove that with the two formulas derived at points 3 and 4 one obtains a description of
the stationary state of the system ∀εd under the only condition that U ≫ |µα − µ̄| and
U ≫ kBTα, ∀α where µ̄ = 1

Nα

∑
α µα and Nα is the total number of baths connected to the

impurity.

2. Current through the impurity

Consider now the situation in which only 2 baths are in tunneling coupling with the impurity. If
the chemical potentials of the two baths are maintained at a constant di�erence we obtain a net
stationary current through the system.

1. Prove that the current �owing from the bath α towards the impurity is given by the formula:

Iα = γα
∑
σ

{
f+
α (εd)P0 + [f+

α (εd + U)− f−
α (εd)]P1σ − f−

α (εd + U)P2

}
Hint: Start with the de�nition of the current as the average particle variation on the impurity.

2. Prove that, according to the previous formula, the stationary currents Iα vanish if the two
baths have the same chemical potential and the same temperature.

3. Prove that, in the stationary limit, I1 = −I2 where 1 and 2 indicate the two baths.

Frohes Scha�en!


