Density Matrix Theory

Sheet 10

1. Single electron transistor: Transport through a metallic island

In the previous Sheet you have calculated the master equation for a metallic island in weak tunnelling coupling to metallic leads and capacitively coupled to a gate. This time you will consider the transport characteristics of such a device and calculate them numerically. The starting point are the Eq. (9) and (10) in Sheet 9:

$$
\begin{equation*}
\dot{P}_{N}=-\left(\Gamma_{N \rightarrow N+1}+\Gamma_{N \rightarrow N-1}\right) P_{N}+\Gamma_{N+1 \rightarrow N} P_{N+1}+\Gamma_{N-1 \rightarrow N} P_{N-1} \tag{1}
\end{equation*}
$$

where

$$
\begin{align*}
& \Gamma_{N \rightarrow N+1}=\sum_{\alpha \sigma} \gamma_{\alpha} f\left(E(N+1)-E(N)-\mu_{\alpha}\right) \tag{2}\\
& \Gamma_{N \rightarrow N-1}=\sum_{\alpha \sigma} \gamma_{\alpha} f\left(E(N-1)-E(N)+\mu_{\alpha}\right)
\end{align*}
$$

are the tunnelling rates and $f(E)=E n_{B}(E)$ with n_{B} the Bose function $n_{B}(x)=\left(e^{\beta} x-1\right)^{-1}$. Moreover $\gamma_{\alpha}=2 \pi / \hbar D_{\alpha} D_{\text {sys }}|\tau|^{2}$ and $E(N)$ is the energy of the N-particle manybody ground state of the metallic island. One can visualize this dynamical system as a chain of states with probability flowing in both directions.

1. Prove that the current through the metallic island can be written as:

$$
\begin{equation*}
I_{\alpha}=e \sum_{N}\left(\Gamma_{N \rightarrow N+1}^{\alpha}-\Gamma_{N \rightarrow N-1}^{\alpha}\right) P_{N} \tag{3}
\end{equation*}
$$

where $\Gamma_{N \rightarrow N \pm 1}^{\alpha}$ derives from equation (2) by omitting the sum on the lead index α.
2. Calculate the asymptotic behaviour of the function $f(E)$ introduced in Eq. (2) in the limit $E \rightarrow \pm \infty$ and calculate also the limit $E \rightarrow 0$. Compare now the energy dependance of the rates $\Gamma_{N \rightarrow N+1}$ and $\Gamma_{N+1 \rightarrow N}$. Conclude that, in equilibrium ($\mu_{L}=\mu_{R}=\mu_{0}$) and assuming $\mu_{\text {sys }}=\mu_{0}$, the number of electron on the metallic island can be estimated by $N_{e q} \approx-\frac{e V_{g}}{U}$.
3. The stationary state for the probabilities P_{N} is obtained in the so called detailed balance, when the flow of probability in and out each of the states with N electrons balances out. This condition is expressed by the equation:

$$
\begin{equation*}
\Gamma_{N \rightarrow N+1} P_{N}=\Gamma_{N+1 \rightarrow N} P_{N+1} \tag{4}
\end{equation*}
$$

Calculate numerically the stationary solution of Eq. (1) in the limit in which $\mu_{L, R}=\mu_{\text {sys }} \pm$ $V_{b} / 2$. Hint: Start considering $P_{N_{e q}}=1$ where $N_{e q}$ is the integer that approximates at best the equation $N=-\frac{e V_{g}}{U}$. Calculate the probabilities of the neighboring states by detailed balance. Repeat the operation and stop when $P_{M}<\epsilon$ for a given convergence parameter ϵ. Do not forget to consider both $N>N_{e q}$ and $N<N_{e q}$. Finally normalize the result such that the sum of the relevant probabilities equals 1.
4. Calculate the current as a function of the bias and gate voltage. Plot the result for different temperatures.
5. Calculate also the differential conductance and plot it as a function of bias and gate voltage. Compare the results with the stability diagram for an Anderson impurity model considered in the Sheet 8 .

Frohes Schaffen!

