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1. Calculating with bosonic operators

Refresh the physics of the simple harmonic oscillator
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which can be written in “second quantized” form, by expressing x̂ and p̂ in terms of boson creation and annihilation
operators:
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From the canonical commutation relations between position and momentum operators, it follows immediately (do you
remember it?) that the basic commutation relations hold:

[a, a†] = 1, [a, a] = 0,

where [A,B] = AB −BA, |0〉 is the vacuum, and † indicates the Hilbert space adjoint.

1. Show that for two non commuting operators A, and B it holds

[A,Bn] =

n−1∑
k=0

Bk [A,B]Bn−1−k.

2. Consider the analytic function f : R→ R and prove the following relation:

[b, f(b†)] = f ′(b†),

where f ′(x) = df
dx and b is a bosonic operator.

Hint: You can start by proving, with the help of 1.1, that[
b, (b†)n

]
= n(b†)n−1.

(3 Points)

2. Exponential of bosonic operators

A particular role is played in quantum mechanics by exponential operators. Time evolution, spatial translation
and any transformation associated to a continuum symmetry group is represented by an exponential operator. Thus
we dedicate a special exercise to them.

1. Using the previous arguments (Ex. 1.2) show that the following relation hold

g1(α; b, b
†) = e−αb

†
beαb

†
= b+ α

1



2. Simplify the following expression

g2(α; b, b
†) = e−(α

∗b†−αb)be(α
∗b†−αb).

Hint: Introduce a “dummy” variable λ, consider the auxiliary function:

g̃2(λ, α; b, b
†) = e−λ(α

∗b†−αb)beλ(α
∗b†−αb)

and calculate the derivative ∂g̃2(λ, α; b, b
†)/∂λ. Notice that:

g̃2(1, α; b, b
†) = g2(α; b, b

†)

g̃2(0, α; b, b
†) = b.

(2 Points)

3. Calculating with fermionic operators

The basis commutation relations for fermion creation and annihilation operators are

[c, c†]+ = 1, [c, c]+ = 0, c|0〉 = 0,

where [A,B]+ = AB+BA, |0〉 the vacuum, and † indicates the Hilbert space adjoint. Similarly to exercise 2, simplify
the following expressions involving, this time, the fermionic operators c, and c†

g(α; c, c†) = eαc
†
ceαc

†
,

h(α; c, c†) = e−αc
†cceαc

†c.

(2 Points)

Frohes Schaffen!
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