Quantum theory of condensed matter II

Mesoscopic physics
Prof. Milena Grifoni
PD Dr. Andrea Donarini

Tue	$8: 00-10: 00$	9.2 .01
Fri	$10: 00-12: 00$	H33
Fri	$12: 00-14: 00$	5.0 .20

Sheet 8

1. Calculating with bosonic operators

Refresh the physics of the simple harmonic oscillator

$$
\hat{H}=\frac{\hat{p}^{2}}{2 m}+\frac{m \omega^{2} \hat{x}^{2}}{2}
$$

which can be written in "second quantized" form, by expressing \hat{x} and \hat{p} in terms of boson creation and annihilation operators:

$$
\hat{H}=\hbar \omega\left(a^{\dagger} a+\frac{1}{2}\right), \quad a^{\dagger}=\frac{1}{\sqrt{2 \hbar}}\left(\sqrt{m \omega} \hat{x}-\mathrm{i} \frac{\hat{p}}{\sqrt{m \omega}}\right)
$$

From the canonical commutation relations between position and momentum operators, it follows immediately (do you remember it?) that the basic commutation relations hold:

$$
\left[a, a^{\dagger}\right]=1, \quad[a, a]=0
$$

where $[A, B]=A B-B A,|0\rangle$ is the vacuum, and \dagger indicates the Hilbert space adjoint.

1. Show that for two non commuting operators A, and B it holds

$$
\left[A, B^{n}\right]=\sum_{k=0}^{n-1} B^{k}[A, B] B^{n-1-k}
$$

2. Consider the analytic function $f: \mathbb{R} \rightarrow \mathbb{R}$ and prove the following relation:

$$
\left[b, f\left(b^{\dagger}\right)\right]=f^{\prime}\left(b^{\dagger}\right)
$$

where $f^{\prime}(x)=\frac{\mathrm{d} f}{\mathrm{~d} x}$ and b is a bosonic operator.
Hint: You can start by proving, with the help of 1.1, that

$$
\left[b,\left(b^{\dagger}\right)^{n}\right]=n\left(b^{\dagger}\right)^{n-1}
$$

2. Exponential of bosonic operators

A particular role is played in quantum mechanics by exponential operators. Time evolution, spatial translation and any transformation associated to a continuum symmetry group is represented by an exponential operator. Thus we dedicate a special exercise to them.

1. Using the previous arguments (Ex. 1.2) show that the following relation hold

$$
g_{1}\left(\alpha ; b, b^{\dagger}\right)=\mathrm{e}^{-\alpha b^{\dagger}} b \mathrm{e}^{\alpha b^{\dagger}}=b+\alpha
$$

2. Simplify the following expression

$$
g_{2}\left(\alpha ; b, b^{\dagger}\right)=\mathrm{e}^{-\left(\alpha^{*} b^{\dagger}-\alpha b\right)} b \mathrm{e}^{\left(\alpha^{*} b^{\dagger}-\alpha b\right)} .
$$

Hint: Introduce a "dummy" variable λ, consider the auxiliary function:

$$
\tilde{g}_{2}\left(\lambda, \alpha ; b, b^{\dagger}\right)=\mathrm{e}^{-\lambda\left(\alpha^{*} b^{\dagger}-\alpha b\right)} b \mathrm{e}^{\lambda\left(\alpha^{*} b^{\dagger}-\alpha b\right)}
$$

and calculate the derivative $\partial \tilde{g}_{2}\left(\lambda, \alpha ; b, b^{\dagger}\right) / \partial \lambda$. Notice that:

$$
\begin{aligned}
& \tilde{g}_{2}\left(1, \alpha ; b, b^{\dagger}\right)=g_{2}\left(\alpha ; b, b^{\dagger}\right) \\
& \tilde{g}_{2}\left(0, \alpha ; b, b^{\dagger}\right)=b .
\end{aligned}
$$

(2 Points)

3. Calculating with fermionic operators

The basis commutation relations for fermion creation and annihilation operators are

$$
\left[c, c^{\dagger}\right]_{+}=1, \quad[c, c]_{+}=0, \quad c|0\rangle=0
$$

where $[A, B]_{+}=A B+B A,|0\rangle$ the vacuum, and \dagger indicates the Hilbert space adjoint. Similarly to exercise 2 , simplify the following expressions involving, this time, the fermionic operators c, and c^{\dagger}

$$
\begin{aligned}
& g\left(\alpha ; c, c^{\dagger}\right)=\mathrm{e}^{\alpha c^{\dagger}} c \mathrm{e}^{\alpha c^{\dagger}}, \\
& h\left(\alpha ; c, c^{\dagger}\right)=\mathrm{e}^{-\alpha c^{\dagger} c} c \mathrm{e}^{\alpha c^{\dagger} c} .
\end{aligned}
$$

Frohes Schaffen!

